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Abbreviations

ADF Amsterdam density functional

AFM atomic force microscopy

ASA atomic spheres approximation

bcc body centered cubic

BEM bonding energy per metal atom

BEMBa�Ba bonding energy per metal atom which arises from Ba–Ba bonding

BEMcovalent bonding energy per metal atom which arises from covalent bonding

BEMgeo bonding energy per metal atom which arises from geometrical distortions

BEMionic bonding energy per metal atom which arises from ionic bonding

B3LYP Becke 3-parameter hybrid based on Lee-Yang-Parr functional

CPU computer power unit

DFPT density functional perturbation theory

DFT density functional theory

DNA deoxyribonucleic acid

DOS density of states

DZ basis valence double–� Slater type basis

DZP basis valence double–� Slater type basis with one set of polarization functions

EA electron affinity

ECP effective core potential

ELF electron localization function

fcc face centered cubic

FP-LMTO full potential LMTO

GFM Gibbs free energy change per metal atom

GGA generalized gradient approximation

GIAO gauge-including atomic orbitals

HEC M change in the finite temperature enthalpy correction per metal atom

HK Hohenberg-Kohn

HOMO highest occupied molecular orbital

IP ionization potential
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KKR Korringa, Kohn, Rostoker

KS Kohn-Sham

LDA local density approximation

LMTO linear muffin tin orbital

LUMO lowest unoccupied molecular orbital

MAS magic angle spinning

MD molecular-dynamics

MPI-FKF Max Planck Institut für Festkörperforschung

MT muffin tin

MTZ muffin tin zero

NMR nuclear magnetic resonance

N MTO muffin tin orbitals of order N , also known as 3rd generation LMTOs

PBE Perdew, Burke, Ernzerhof

PES potential energy surface

QM quantum mechanics

revPBE revised Perdew, Burke, Ernzerhof

RI resolution–of–identity

SCF self-consistent field

SconfM change in the configurational entropy per metal atom

SEM scanning electron microscopy

SOMO singly occupied HOMO

STM scanning tunneling microscopy

STO Slater type orbital

SV(P) basis polarized split–valence basis

SWNT single-walled nanotube

TB tight–binding

TEM transmission electron microscopy

TMS tetramethylsilane

TOF time of flight

TSM the temperature multiplied by the entropy change per metal atom

TZP basis valence triple–� Slater type basis with one set of polarization functions

TZ2P basis valence triple–� Slater type basis with two sets of polarization functions

VWN Vosko-Wilk-Nusair

XPS X–ray photoemission spectroscopy

ZORA zero order regular approximation



Abstract

Density functional calculations were performed in order to elucidate the electronic structure,

bonding and properties of solids and molecules. In particular, within the first part of this work

we outline and employ the N MTO method to gain a chemical picture of bonding within the

solid state for graphite, boron nitride, cesium, ˛-ThSi2 and ˇ-ThSi2. In the second part we

study systems which are typically investigated using solid-state methods, C60-metal clusters

and single-walled carbon nanotubes, using molecular calculations.

Part I: Solids
An Introduction to N MTO Wannier-like Functions

A method that is able to generate truly minimal basis sets that accurately describe either a group

of bands, a band or even just the occupied part of a band is outlined. These basis sets are the

so-called N MTOs, muffin-tin orbitals of order N . For an isolated set of bands, symmetrical

orthonormalization of the N MTOs yields a set of Wannier functions that are atom-centered

and localized by construction. They are not necessarily maximally localized, but a procedure

by which this may be accomplished is described. For bands that overlap others, Wannier-like

functions may be generated. It is shown that N MTOs give a chemical understanding of an

extended system. In particular, we construct orbitals for the � and � bands in an insulator,

boron nitride, and a semi-metal, graphite.

Theoretical Studies of High Pressure Cesium

Under pressure, cesium undergoes a number of interesting structural phase transitions accom-

panied by an s ! d valence electronic transition. A simple explanation for the raising of the s

and lowering of the d band under compression is provided, based upon the pressure theorem

applied to an elemental solid in the atomic spheres approximation. The calculated TB-LMTO

band structures of Cs-I, Cs-II and Cs-IV are presented. Examination of the band structures

decorated with eigenvectors in an orthogonal representation (fat bands) clearly shows that the

d-character of the occupied bands increases with increasing pressure. The regions of the Bril-

louin zone where Lifshitz transitions (changes in the topology of the Fermi surface) occur with

decreasing volume are pointed out. FP-LMTO calculations for Cs-II reveal that at a volume
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of approximately v=v0 D 0:40 the TŒ1N10�Œ��0� phonon frequencies become imaginary around

� D 1=4 and that the largest electron phonon coupling occurs at � D 0:375 and � D 0:25. It

is shown that the regions of the Fermi surface which arise due to the Lifshitz transition nest

onto each other and cause the structural instability. We illustrate that it is possible to obtain

Wannier-like functions for only the occupied states in a metallic system by generating N MTOs

for Cs-I, Cs-II and Cs-IV. This allows us to visualize the pressure-induced electronic s ! d

transition. The stability of Cs-IV is analyzed and attributed to the splitting of the xz=yz bands

near the N -point.

The Electronic Structure of ˛-ThSi2 and ˇ-ThSi2
The electronic structure and bonding in two intermetallic compounds, ˛-ThSi2 and ˇ-ThSi2, is

analyzed. We present N MTO Wannier-like functions which yield a good description of just the

occupied bands. The bonding within both structures could be explained in a similar manner. It

was found that the lowest lying bands arise from � -bonding within the silicon sublattice. The

�-bonding bands were full and yielded orbitals which showed some hybridization with s and

d orbitals on the nearest neighbour thorium atoms. The upper two bands could be described by

an s��� N MTO which hybridized strongly with the Th dz2 orbitals. Due to the fact that the

thorium sublattice in ˛-ThSi2 has the same structure as Cs-IV and both systems yield similar

electron densities, an alternative analysis of the bonding in ˛-ThSi2, based upon the previous

results for Cs-IV, was performed. A basis composed of Si � , � , �� and Th s, s� orbitals was

found to reproduce the occupied bands quite well. The Th and Cs s-like N MTOs were found

to resemble each other, both showing a high degree of sd hybridization. However, the former

contained just one lobe pointing along the center of the prisms, whereas the latter consisted of

two such lobes.

Part II: Molecules
The 13C NMR Chemical Shifts in (9,0) Carbon SWNTs

The electronic structure and 13C NMR chemical shifts of finite carbon single-walled nanotube

(SWNT) fragments are studied theoretically. Density functional calculations were carried out

on progressively longer C30–capped and H–capped systems. The convergence of the properties

with respect to the length of the fragments was examined. At relatively short lengths, the

H–capped tubes displayed a vanishing HOMO-LUMO gap and therefore such systems were

predicted to exhibit “metallic” behaviour. However, the HOMO and LUMO energies them-

selves were not converged even for the largest system studied, C162H18. The chemical shift

of the central carbon atom approached � 133 ppm from above. The shift of a carbon atom at

the end of a tube was smaller than that in the tube’s center if the carbon was directly bound

to a hydrogen, otherwise it was larger. The C30–capped fragments of D3d=D3h symmetry, on
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the other hand, were found to be small-gap semiconductors like the infinite (9,0) tubes. It was

predicted that for systems containing around 300 atoms the HOMO-LUMO gaps and energies

of the frontier orbitals should converge. The shift of the central carbon atom approached �
130 ppm from above while the shifts of the carbon atoms found in the tips of the caps were

about 25 ppm larger. The results suggest that the C30–capped fragments are better models for

the infinite (9,0) tubes, which should therefore yield chemical shifts of around 130 ppm, in

reasonably good agreement with experimental estimates. For the H–capped systems the frontier

orbitals were found to be localized on the tubes ends. However, the HOMOs and LUMOs of

the tubes terminated with fullerene hemispheres were delocalized over the whole fragment,

further suggesting that they are indeed better models for the infinite system. The findings imply

that NMR might be useful in the characterization of SWNT samples.

Magic (C60)n–Metal Clusters of Extreme Thermal Stability

We have performed density functional calculations in order to elucidate the enhanced stabil-

ity and bonding of the recently measured Ba3(C60)2 and K4(C60)2 magic clusters. Possible

geometries of a number of different Mn(C60)2 (M D K, Ba, 1 � n � 6) clusters have been

optimized. For Ba, the energetically most favourable clusters contained Ba atoms sandwiched

between two fullerenes with a C60–Ban–C60 configuration. A bonding analysis revealed that

the stability of these clusters results from an interplay between ionic and covalent bonding. The

former occurs due to electron transfer from the valence Ba [6s2] orbitals into the unoccupied

fullerene orbitals. The latter is a result of C60! Ba back donation into the empty Ba 5d orbitals

which then covalently bond with orbitals which are unoccupied in the free C60s. For 1 � n � 3

and n D 5; 6 the dominant interaction is ionic and covalent, respectively. With increasing n,

the ionic bonding decreases, as does the average Mulliken charge per Ba atom. This may be

explained by realizing that the positively charged Ba atoms repel each other electrostatically

and therefore for large n full charge donation cannot occur. Instead, as n increases so does

back donation into the Ba 5d orbitals, stabilizing clusters where all of the metal atoms are

located between the two fullerenes. Thus, the d-element character of Ba is important in order

to understand the preferred geometries of, and bonding within, these clusters. The energies

revealed that Ba3(C60)2 is the most stable, however it was only slightly more favourable than

Ba(C60)2. Calculations showed that the entropic contribution to the Gibbs free energy has

a larger destabilizing effect on smaller clusters than on larger ones. In full agreement with

experiment the Gibbs free energy per metal atom at the experimental conditions (150 K and

10�6 Torr) exhibited a distinct minimum for Ba3(C60)2, confirming the stability of this config-

uration. For the Ba clusters an interplay between covalent and ionic bonding and the entropic

contributions to the Gibbs free energy determine which cluster is magic.

The preferred geometries for the K clusters contained all of the metal atoms between the
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two C60s for n � 4. For n D 5; 6, a structural transition to a K–C60–Kn�2–C60-K configuration

was predicted to occur in order to reduce the electrostatic repulsion between positively charged

metal ions. The bonding was found to be purely ionic, with an almost complete transfer of

the valence [4s1] electrons into the unoccupied fullerene orbitals. A simple model showed

that the most stable structural alternatives minimize the total electrostatic energy. In this case

consideration of the finite temperature contributions to the Gibbs free energy changed the order

of stability of the clusters: K(C60)2 and K4(C60)2 were predicted to be magic at 0 K and 150 K,

respectively. Thus, in full agreement with experiment K4(C60)2 was found to be the preferred

cluster at the experimental conditions.



Zusammenfassung

Um die Elektronenstruktur, die chemische Bindung und andere Eigenschaften von Molekülen

und Festkörpern zu bestimmen, wurden theoretische Berechnungen mit Hilfe der Dichte-

funktionaltheorie (DFT) durchgeführt. Im ersten Teil der Arbeit wird die N MTO-Methode

beschrieben und angewendet. Hierbei wird ein chemisch orientiertes Bild der Bindung in

kristallinem Grafit, Bor-Nitrid (BN), Cäsium sowie ˛-ThSi2 und ˇ-ThSi2 erarbeitet. Im

zweiten Teil der Arbeit untersuchen wir mittels molekularer Rechnungen C60-Metall-Cluster

und einwandige Kohlenstoff-Nanoröhrchen.

Teil I: Festkörper
Einführung in die N MTO-Methode

Eine Methode zur Berechnung minimaler Basissätze – sogenannter N MTOs, “Muffin–Tin”

Orbitale N -ter Ordnung – wird vorgestellt. Sie ermöglicht es, eine Gruppe von Bändern,

einzelne Bänder oder auch nur den besetzten Teil eines Bandes korrekt zu beschrieben. Für

isolierte Bänder wird mittels symmetrischer Orthogonalisierung der N MTOs ein Satz von

Wannier-Funktionen erhalten, die per Konstruktion atom-zentriert und lokalisiert sind. Diese

sind jedoch nicht notwendigerweise maximal lokalisiert. Deshalb wird eine weitere Technik

beschrieben, mit der die Lokalisierung realisiert werden kann. Außerdem wird gezeigt, dass

auch für Bänder, die mit anderen Bändern überlappen, Wannier-Funktionen generiert werden

können und dass N MTOs ein chemisches Verständnis eines Festkörpers ermöglichen. Beson-

deres Augenmerk wird auf die Konstruktion von �- und �-Bändern in einem Isolator (BN) und

einem Halbmetall (Grafit) gerichtet.

Theoretische Untersuchungen an Cäsium unter hohem Druck

Cäsium erfährt unter Druck eine Anzahl interessanter Phasenumwandlungen, die mit einem

s ! d Elektronenübergang verbunden sind. Eine einfache Erklärung für das Anheben des

s-Bandes und das Absenken des d -Bandes, welche auf dem Druck-Theorem für einen el-

ementaren Festkörper in Atom-Sphären-Näherung basiert, wird vorgestellt. Hierzu werden

Bandstrukturen für Cs-I, Cs-II und Cs-IV präsentiert. Eine Untersuchung der Bandstrukturen,

welche mit den Eigenvektoren in orthogonaler Darstellung verbreitert wurden (“fette Bänder”),
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zeigt eindeutig, dass der d-Charakter der besetzten Bänder mit zunehmendem Druck zunimmt.

Bereiche der Brillouin-Zone in denen Lifschitz-Übergänge (dies sind Änderungen in der

Tolopogie der Fermi-Fläche) mit abnehmendem Volumen vorkommen, verdienen besondere

Beachtung. FP-LMTO-Berechnungen für Cs-II zeigen, dass die TŒ1 N10�Œ��0� Phonon-Frequenzen

um � D 1=4 bei einem Volumen von etwa v=v0 D 0:40 imaginär werden und dass die stärkste

Elektron-Phonon-Kopplung bei � D 0:375 und � D 0:25 erhalten wird. Es wird gezeigt, dass

mit Hilfe der N MTOs für Cs-I, Cs-II und Cs-IV Wannier-ähnliche Funktionen für die besetzten

Zustände eines metallischen Systems erhalten werden können. Diese Wannier-Funktionen

erlauben die Visualisierung des s ! d Übergangs. Die Stabilität von Cs-IV wird analysiert

und mittels der Aufspaltung der xz=yz-Bänder in der Nähe des N -Punkts erklärt.

Die Elektronenstruktur von ˛-ThSi2 und ˇ-ThSi2
In zwei intermetallischen Verbindungen, ˛-ThSi2 und ˇ-ThSi2, wird die Elektronenstruktur

untersucht. Wir stellen N MTO-Orbitale vor, die eine gute Beschreibung der besetzten Zustände

liefern und erlauben, die chemische Bindung in beiden Systemen zu verstehen. Die am niedrig-

sten liegenden Zustände können den �-Bindungen innerhalb des Si-Gitters zugeschrieben

werden. Die �-Bänder sind voll besetzt und ergeben Orbitale, die eine leichte Hybridisierung

mit den s- und d -Zuständen der angrenzenden Thorium-Atome zeigen. Die zwei am höchsten

liegenden Bänder können mittels eines s���-N MTOs beschrieben werden, welches stark mit

den Th-dz2-Zuständen hybridisiert. Da das Th-Gitter in ˛-ThSi2 die gleiche Struktur wie Cs-IV

und auch eine sehr ähnliche Elektronendichte hat, wurde die Bindung in ˛-ThSi2 auf der Basis

der Ergebnisse von Cs-IV weiter untersucht. Ein Basissystem aus Si � -, �-, ��- und Th s-

und s�-Orbitalen reproduzieren die besetzten Bänder recht gut. Die s-artigen N MTOs von Th

und Cs-IV sind sehr ähnlich und zeigen beide eine ausgeprägte sd -Hybridisierung. Allerdings

enthalten erstere lediglich ein Dichtemaximum entlang der Prismen-Zentren während letztere

zwei solcher Maxima enthalten.

Teil II: Moleküle
13C NMR Chemische Verschiebungen von einwandigen (9,0) Kohlenstoff–Nanoröhrchen

DFT-Rechnungen an molekularen Fragmenten von Kohlenstoff-Nanoröhrchen (“single–walled

carbon nanotubes” oder SWNTs) mit zunehmender Länge wurden durchgeführt und die Elek-

tronenstruktur und 13C NMR chemische Verschiebungen untersucht. Die endlichen Fragmente

wurden mit Wassertoff-Atomen oder je einer halben C60-Einheit terminiert. Für kurze Frag-

mente zeigen die H-terminierten SWNTs ein metallisches Verhalten (verschwindende HOMO-

LUMO-“Bandlücke”), wobei allerdings selbst für ein C162H18 Fragment die Grenzorbital-

Energien noch nicht vollständig konvergiert sind. Die chemische Verschiebung der C-Atome

im Zentrum konvergiert mit zunehmender Länge von oben gegen einen Wert von etwa 133



Zusammenfassung 15

ppm. Die Werte der Atome an Rand sind etwas kleiner für C-Atome, die direkt mit einem

Wasserstoff-Atom verbunden sind, und etwas größer für die Atome, die nicht mit Wasserstoff

verbunden sind. Die C-terminierten Fragmente mit D3d=D3h-Symmetrie sind halbleitend,

was auch für das unendlich lange (9,0) SWNT-System erwartet wird. Die chemischen Ver-

schiebungen konvergieren von oben gegen einen Wert von etwa 130 ppm für länger werdende

Fragmente. Die Verschiebungen in den C-“Kappen” sind ca. 25 ppm größer. Die Ergebnisse

dieser Rechnungen suggerieren, dass die Fragmente mit den C30-Kappen bessere Modelle für

unendlich lange (9,0) SWNT darstellen. Wir erwarten daher für (9,0) SWNT eine chemische

Verschiebung von ca. 130 ppm. Dieses Ergebnis ist in guter Übereinstimmung mit experi-

mentellen Abschätzungen. Es wird geschlussfolgert, dass NMR in der Zukunft eine wertvolle

Methode zur Charakterisiertung von SWNTs sein wird.

“Magische” (C60)n-Metall-Cluster mit hoher thermischer Stabilität

Es wurden DFT-Rechnungen durchgeführt, um die hohe Stabilität sowie die Bindungseigen-

schaften von kürzlich entdeckten, sogenannten “magischen”, Ba3(C60)2- und K4(C60)2-

Clustern zu verstehen. Verschiedene mögliche Geometrien einiger Mn(C60)2-Oligomere

(M D K, Ba, 1 � n � 6) wurden optimiert. Für Ba bestehen die energetisch günstigsten

Cluster aus einem Kern von Ba-Atomen zwischen zwei Fullerenen, d.h. einer C60-Ban-C60

Konfiguration. Eine Analyse der chemischen Bindungen in diesen Clustern zeigte, dass deren

Stabilität von einer Balance zwischen ionischer und kovalenter Bindung herrührt. Erstere wird

durch einen Elektronentransfer von den Ba-6s2-Orbitalen zu den unbesetzten tiefliegenden

Fulleren-Orbitalen herbeigeführt, letztere ist eine Konsequenz einer Ladungsrückdonation von

C60 in die leeren Ba-5d Orbitale. Es entsteht so eine kovalente Bindung unter Einbezug der

Ba-5d-Orbitale und unbesetzter Orbitale im freien C60. Die wichtigste Wechselwirkung für

1 � n � 3 und n D 5; 6 ist ionisch beziehungsweise kovalent. Mit steigendem n nimmt

die ionische Bindung ab und die kovalente zu. Ebendso nehmen die Mulliken-Ladungen der

Metall-Atome zu. Eine einfache Erklärung dafür ist, dass die Metall-Atome sich gegenseitig

abstoßen, weswegen in größeren Clustern keine vollständige Ionisierung mehr erfolgen kann.

Statt dessen steigt mit größerem n der Beitrag der Rückbindung in die Ba-5d-Orbitale an. Hier-

bei werden solche Cluster stabilisiert, bei denen sich alle Metallatome zwischen den Fullerenen

befinden. Zum Verständnis der Geometrien und der Bindung in diesen Clustern spielt daher

der Charakter von Barium als d-Element eine wichtige Rolle. Den Bindungsenergien zu-

folge ist Ba3(C60)2 der stabilste Cluster. Er ist jedoch nur geringfügig stabiler als Ba(C60)2.

Aus den Berechnungen folgt, dass entropische Terme in der freien Enthalpie einen größeren

destabilisierenden Effekt bei kleineren als bei größeren Clustern haben. Unter Einbezug der

entropischen Terme hat daher Ba3(C60)2 eine deutlich größere Stabilität und ist daher im

Einklang mit dem Experiment “magisch”. Die Stabilität ergibt sich aus dem Zusammenspiel
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von ionischer und kovalenter Bindung sowie den entropischen Termen in der freien Enthalpie.

In der bevorzugten Geometrie der K-Cluster mit n � 4 befinden sich alle Metall-Atome

zwischen den C60-Molekülen. Für n D 5; 6 wird ein Strukturübergang vorhergesagt, bei dem

K-C60-Kn�2-C60-K-Konfigurationen stabiler sind. Deren Stabilität wird mit Hilfe der vermin-

derten elektrostatischen Abstoßung erklärt. Die Bindung zwischen Metall und Fulleren ist rein

ionisch, mit einem nahezu kompletten Übergang der K-4s1-Elektronen in die unbesetzten C60-

Orbitale. Ein einfaches Modell mit Atomladungen zeigt, dass das stabilste Strukturmotiv die

elektrostatische Abstoßung zwischen den Metallatomen minimiert. Im Fall der K-Cluster ändert

der Einbezug der entropischen Therme die Reihenfolge der Stabilitäten: den Rechnungen zu-

folge ist am absoluten Nullpunkt K(C60)2 die stabilste Spezies, während bei 150 K K4(C60)2 am

stabilsten ist. Im Experiment wurde ebenfalls K4(C60)2 als der “magische” Cluster identifiziert.



Chapter 1

Introduction

The development of quantum mechanics (QM) in the beginning of the 1900s made it in principle

possible to calculate the properties of atoms, molecules and solids. However, the mathematical

machinery was not available to solve the equations for these complicated systems. Thus, in

1929 Paul Dirac stated that: “The fundamental laws necessary for the mathematical treatment

of large parts of physics and the whole of chemistry are thus fully known, and the difficulty lies

only in the fact that application of these laws leads to equations that are too complex to be

solved.”

It was not only the advent of modern computers, but moreover of approximate means by

which the QM equations may be solved, that has made the fields of quantum chemistry and

computational condensed matter physics what they are today. One of the most widely used

methods is density functional theory (DFT) and its importance was highlighted by the 1998

Nobel Prize in Chemistry which was awarded “to Walter Kohn for his development of the

density functional theory and to John Pople for his development of computational methods in

quantum chemistry.” Within this thesis DFT is employed to study solids and molecules. The

application to very different systems and the calculation of a variety of properties shows that

DFT is versatile and ubiquitous in both solid state physics and theoretical chemistry.

In Chapter 2 a basic outline of the standard theoretical methods used in this work is given.

Due to the fact that N MTOs are a new approach in band structure calculations and one of the

major themes of this thesis, they will be described in greater detail within Chapter 3.

In the first part of this thesis we will apply DFT methods to study bonding in the solid state.

Particular emphasis is placed on outlining and using the newly developed N MTO method for

the construction of Wannier-like functions for a number of very different compounds.

Chapter 3 is devoted to outlining the N MTO method. The application to well understood

systems such as the �-bond in benzene and later to graphite and boron nitride will aid the reader

in understanding the associated terminology and concepts.

A procedure which may be used to obtain Wannier-like functions for only the occupied
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bands in a metal is presented in Chapter 4. The pressure driven electronic s ! d transition in

cesium is visualized via construction of N MTOs for Cs-I, Cs-II and Cs-IV. FP-LMTO is used

to calculate the phonon spectra and electron phonon coupling in Cs-II at different pressures. It

is suggested that the Cs-II!Cs-III transition is a result of Fermi surface nesting. Finally, the

origin of the stability of Cs-IV is discussed.

In Chapter 5 the bonding of two intermetallic compounds, ˛-ThSi2 and ˇ-ThSi2, is analyzed

by constructing N MTOs for sets of occupied bands. A truly minimal basis for both structures is

proposed. Due to the fact that Cs-IV and ˛-ThSi2 have the same space group, with the thorium

and cesium atoms located at equivalent positions and that they both display a similar maximum

electron density, an alternative basis based upon the calculations on Cs-IV is presented. We

compare and contrast the bonding within ˛-ThSi2 and Cs-IV.

In the second part of this thesis, quantum chemical programs are used to perform molecular

calculations on fullerene-metal clusters and nanotube fragments. In Chapter 6 two different

models for finite (9,0) carbon single-walled nanotubes (SWNTs) are considered. The tubes are

capped with hydrogen or with half of a C60 hemisphere. The HOMO-LUMO gaps for succes-

sively larger fragments are computed and the results are compared with experimental ones for

infinite tubes. An analysis of the frontier MOs reveals that those for the H–capped systems are

localized on the ends of the tubes whereas those of the C30–terminated systems are delocalized

over the whole fragment. The 13C NMR chemical shifts of most of the symmetry inequiva-

lent atoms are computed. Based upon the current work and previous theoretical predictions,

it is postulated that semiconducting and metallic tubes should display shifts of approximately

130 ppm and 141 ppm, respectively. Thus, it is suggested that NMR might be a useful tool in

characterizing SWNT samples.

Chapter 7 presents the results of DF computations on Ba-C60 and K-C60 clusters which

were studied experimentally in the Kern group (MPI-FKF). Contrary to common belief, these

superstable compound clusters were not found to be characterized by filled geometrical or elec-

tronic shells. The most energetically stable isomers of Mn(C60)2 (M D K, Ba and 1 � n � 6)

are computed and the bonding within them is analyzed. Particular emphasis is placed on eval-

uating the ionic and covalent contributions to the total bonding energy. Next, the entropic and

enthalpic contributions to the Gibbs free energies are determined. It is shown that an interplay

between ionic (K, Ba) and covalent (Ba) interaction between C60 and the metal atoms, on the

one hand, and entropic contributions to the Gibbs free energy, on the other hand, determine the

unusual stability.

In the final chapter, the results are summarized and future directions for study are presented.



Chapter 2

Theoretical Methods

2.1 Density Functional Theory

The Born-Oppenheimer approximation assumes that the nuclei of the atoms, molecules or solids

remain fixed and generate a static external potential in which the electrons move. For such a

system containing N electrons Schrödinger’s equation can be written as
2
4� ~

2

2m

NX

iD1

r2
i C

NX

iD1

Vext.ri/C
1

2

NX

j¤iD1

e2

jri � rj j

3
5‰.x1; x2:::; xN / D E‰.x1; x2:::; xN /;

(2.1)

where the first, second and third terms on the left are the kinetic energy (T ), the external poten-

tial (Vext ) and the electron-electron interaction (U ), respectively. Here, xi D ri; �i , where r and

� are the electronic space and spin coordinates. Most often Vext is the electrostatic potential

generated by the nuclei,
NX

iD1

Vext.ri/ D
X

ik

Zke2

jri � Rk j
; (2.2)

where Zk is the atomic number of nucleus k at Rk . However it may also contain contributions

from the surroundings or perturbations of the system.

The usual quantum-mechanical approach taken to solve Eq. 2.1 involves specifying the ex-

ternal potential, calculation of the wavefunction and finally of observables by taking expectation

values of operators with this wavefunction. One such observable is the particle density, n.r/,

which is given as

n.r/ D N

Z
d�1

Z
dx2

Z
dx3:::

Z
dxN‰

�.x1; x2:::; xN /‰.x1; x2:::; xN /: (2.3)

Similarly, integrating over all but one spin and space coordinate yields the spin-density, n.r; �/.

The Hohenberg-Kohn (HK) theorem1 states that for a ground state Eq. 2.3 can be reversed.

That is, given a ground-state density, n0.r/, it is possible, in principle, to calculate the cor-
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responding ground state wavefunction ‰0.x1; x2:::; xN /. This implies that ‰0, along with all

other ground-state observables, are functionals of n0,

‰0 D ‰Œn0�.x1; x2:::; xN /: (2.4)

In particular, the relationships established by Hohenberg and Kohn are as follows:

� Theorem I: For any system of interacting particles in an external potential Vext.r/, the

potential is determined uniquely by the ground state particle density n0, except for a

constant. This implies that the Hamiltonian is fully determined, except for a constant

shift of the energy, and therefore the wavefunctions for all ground states may be found.

Thus, all of the properties of the system can be calculated from the ground state density

n0. In essence, the expectation value of any observable OO is a functional of n0:

O0 D O Œn0� D h‰Œn0�j OOj‰Œn0�i: (2.5)

� Theorem II: It is possible to define a universal functional for the energy EŒn� in terms of

the density n.r/ valid for any external potential Vext.r/. For a given Vext.r/, the global

minimum of this functional is the exact ground state energy of the system and the density

that minimizes the functional is the exact ground state density n0. In other words, the

ground-state energy, EVext
Œn0�, has the useful variational property

EVext
Œn0� � EVext

Œn0� (2.6)

where n0 is the ground state density for Vext and n0 is another density.

The HK theorems by themselves do not give a prescription of how one may obtain the

ground state density and would probably be only an interesting curiosity if it were not for the

Kohn and Sham ansatz. Kohn and Sham’s approach was to replace the difficult interacting

many-body problem of Eq. 2.1 by an auxiliary independent particle problem. In particular, they

proposed that the density of the original interacting system can be decomposed into that of a

non-interacting system plus all of the many-body terms grouped into an exchange-correlation

functional of the density. For the non-interacting system, the independent particle equations

can in practice be solved exactly by numerical means. The accuracy of the method is therefore

only limited by the approximations made for the exchange-correlation functional. Herein, we

will describe the Kohn-Sham2 approach which has made DFT the most common method for

electronic structure calculations. In the following equations Hartree atomic units (~ D me D
e D 4�=�0 D 1) will be used.

It is useful to decompose the kinetic-energy functional of interacting electrons, T Œn� into one

part which represents the kinetic energy of non-interacting particles and one which represents

the remainder, that is the correlation as

T Œn� D Ts Œn�C Tc Œn�: (2.7)
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Ts Œn� is not known as a functional of n, however it can be expressed in terms of the single-

particle orbitals, �i.x/, of a non-interacting system with density n via

Ts Œn� D �
1

2

X
�

NX

i

Z
dx��i .x/r2�i.x/: (2.8)

For a system containing an even number of spin-up and spin-down electrons the density of

the original many-body system can be written in terms of the orbitals as

n.r/ D
X
�

n.r; �/ D
X
�

NX

i

j�i.x/j2: (2.9)

Thus, all �i.x/ are functionals of n and since Ts is an explicit orbital functional it is also an

implicit density functional, Ts Œn� D Ts Œ�i Œn��. Moreover the total number of electrons N is a

simple functional of the density

N D
Z

n.r/dr: (2.10)

The classical Coulomb self-interaction energy of the electron density, otherwise known as

the Hartree energy, is defined as

UH Œn� D
1

2

Z Z
drdr0

n.r/n.r0/
jr � r0j D

1

2

Z
VC .r/n.r/dr; (2.11)

and the energy of the external potential can be written as a functional of the density
Z

n.r/Vext.r/dr: (2.12)

The Kohn-Sham approach is to rewrite the energy functional of the interacting system in the

form

EKS Œn� D T Œn�C U Œn�C V Œn� (2.13)

D Ts Œ�i Œn��C UH Œn�CExc Œn�C Vext Œn�

D Ts Œn�C
Z

n.r/
�
Vext.r/C

1

2
VC .r/

�
drCExc Œn�

where, by definition Exc contains the differences between T � Ts (i.e. Tc) and U � UH . The

exchange-correlation (xc) energy, Exc is often decomposed as Exc D ExCEc , where Ex arises

from the Pauli exclusion principle (exchange energy) and Ec (correlation energy) arises from

the Coulombic electron-electron repulsion. This term contains all of the many-body effects. If it

were known then the exact ground state energy and density of the many-body electron problem

could be found by solving the Kohn-Sham equations for independent particles.
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Applying the variational principle (Eq. 2.6) to the Kohn-Sham energy and including the

constraint Eq. 2.10 via the method of Lagrange multipliers yields

ı

ın

�
EKS � �

�Z
n.r/dr �N

��
D 0 (2.14)

H) ıTs

ın
C VC .r/C

ıExc

ın
C Vext.r/ D �;

where �, the Lagrange multiplier, is the chemical potential.

The effective Hamiltonian for a system of non-interacting particles moving in an external

potential, VKS , constructed so that the total density of the system is the same as for the real

system of interacting electrons

VKS.x/ D Vext.r/C VC .r/C Vxc.x/; (2.15)

with

Vxc D
ıExc

ın
(2.16)

is given as

HKS.x/ D �
1

2
r2 C VKS.x/: (2.17)

This gives rise to the Kohn-Sham Schrödinger-like equation

.HKS � "i/�i.x/ D 0; (2.18)

where "i are the eigenvalues of HKS , and the orbitals satisfying Eq. 2.18, �i , minimize the

Kohn-Sham energy.

This yields orbitals that reproduce the density of the original interacting system and the total

energy, EKS . These are independent particle equations with a potential that must be found self-

consistently with the resulting density. In practice usually one starts with an initial guess for

n.r/, calculates the resulting VKS.x/, then solves Eq. 2.18 for the �i . The orbitals yield a new

density and the process is repeated until it converges.

If the exact functional Exc Œn� were known then the exact ground state density could be

computed. Unfortunately, this is not the case and two main approximations known as the LDA

(local density approximation) and GGA (generalized gradient approximation) are commonly

used. In the former, the functional depends only upon the density at the coordinate where the

functional is evaluated and in the latter it also takes into account the gradient of the density at

this coordinate.

2.2 Linear Muffin Tin Orbitals

Within this section we will first of all describe the muffin tin (MT) approach which forms a

basis of augmented localized orbitals.3 Muffin tin orbitals (MTOs) aim to provide a minimal
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basis of accurate meaningful orbitals which are constructed from the Kohn-Sham Hamiltonian.

The MTO method however leads to non-linear equations due to the fact that the basis functions

are energy dependent. Next we will show how the equations may be linearized as in the LMTO

(linear MTO) approach. Finally, we comment on the TB (tight-binding) LMTO and the FP (full

potential) LMTO techniques.

A muffin tin potential assumes that the total effective potential is spherically symmetric

around each atom within an atomic sphere of radius S and to have a constant value VM T Z , the

muffin-tin zero, in the interstitial region between the spheres:

VMT .r/ D
(

V .r/ r < S

VMT Z r � S
: (2.19)

Within this potential, the basis functions can be constructed as Bloch sums of muffin tin

orbitals (MTOs) defined as

�MTO
L ."; �; r/ D i lYL. Or/

(
'l."; r/C � cot.nl."//jl.�r/; r < S

�nl.�r/; r > S
(2.20)

where L � lm, the phase factor i l is introduced for convenient notation, �2 D E � VMT Z is

the kinetic energy of the basis function outside the MT sphere, YL.Or/ are spherical harmonics

and jl and nl are spherical Bessel and Neumann functions (radial solutions of the Helmholtz

equation in three dimensions). The MTO is localized and continuous in value and derivative

at the sphere boundary. Since the wavefunction within the sphere itself is modified to account

for the influence of the neighbouring atoms, a minimal basis can be constructed in order to

accurately describe the system.

It is possible to simplify the construction of MTOs by fixing a value for � in Eq. 2.20 in such

a way which yields accurate results for most problems.4 This constant primarily represents the

variation of the wavefunction between the atomic spheres. Due to the fact that the wavefunction

is required to have the correct value and slope at the sphere boundary, choosing � D 0 is

a good approximation if the interstitial region is small. In the atomic sphere approximation

(ASA), the MT spheres are chosen to have the same volume as the Wigner-Seitz cell. For

close-packed solids this leads to overlapping spheres with a small distance between neighbours

and the aforementioned approximation is valid. For open structures “empty spheres” may be

introduced in the interstitial region to simulate a closed-packed system. In this case the MTO

from Eq. 2.20 may be rewritten as

�MTO
L ."; 0; r/ D i lYL. Or/'l.";S/

8
ˆ̂<
ˆ̂:

'l .";r/

'l .";S/
� Dl ."/ClC1

2lC1

�
r
S

�l
; r < S

l�Dl ."/

2lC1

�
S
r

�lC1
; r > S

; (2.21)
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where Dl."/ is the dimensionless logarithmic derivative of 'l."; r/ evaluated at the sphere

boundary:

Dl."/ D
�

r

'."; r/

d'."; r/

dr

�

rDS

: (2.22)

For a given � it is possible to define structure constants, SL;L0.k/, which depend only upon

the structure. For � D 0 and 1 atom/cell they are

SL;L0.k/ D gl 0m0;lm

X

T¤0

eik�T
�

S

jTj
�l 00C1 hp

4�i l 00YL00. OT/
i�
; (2.23)

where l 00 D l 0C l and gl 0m0;lm can be written in terms of Gaunt coefficients5 (the integrals over

three spherical harmonics).

The MTO basis function for a given wavevector is constructed by placing the MTO on each

lattice site with the appropriate Bloch phase factor

�MTO
L;k ."; 0; r/ D

X

T

eik�T�MTO
L ."; 0; r � T/: (2.24)

The wavefunction in the sphere at the origin is the sum of the head (r < S ) plus the tails

(r > S) in other spheres (Eq. 2.21) and can be written as

�MTO
L;k ."; 0; r/ D 'l."; r/i

lYL. Or/ �
Dl."/C l C 1

2l C 1
'l.";S/

� r

S

�l

i lYL. Or/ (2.25)

C l �Dl."/

2l C 1
'l.";S/

X

L0

� r

S

�l 0 1

2.2l 0 C 1/
i l 0YL0.Or/SLL0.k/:

The eigenstates are determined as a linear combination of the Bloch MTOs (Eq. 2.25)

'k."; r/ D
X

L

aL.k/�MTO
L;k ."; 0; r/: (2.26)

Due to the fact that the first term on the right hand side of Eq. 2.25 is already a solution inside

the atomic sphere, 'k."; r/ can only be an eigenfunction if the last two terms cancel each other

out. This can be accomplished via the following
X

L

.SL;L0.k/ � Pl."/ıL;L0/ aL.k/ D 0; (2.27)

where the potential function is given as

Pl."/ D 2.2l C 1/
Dl."/C l C 1

Dl."/ � l
: (2.28)

Eq. 2.27 yields a set of linear, homogeneous equations for the eigenvectors aL.k/ at a given

energy where the determinant of the coefficient matrix vanishes

detŒSLL0.k/ � Pl."/ıLL0 � D 0: (2.29)
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If the hybridization between different l is neglected, the elements of SLL0.k/ with l ¤ l 0 are

set to zero. In this case the unhybridized bands can be found by solving the following equation

jPl."/ � Slm;lm0.k/j D 0: (2.30)

This gives rise to the idea of canonical bands which are dependent only upon the crystal struc-

ture. All of the material dependent properties are included in the potential function which can

then be given in terms of a few parameters that one can calculate using very simple models.6

The main drawback of the MTO method is that the basis functions are energy dependent and

matching conditions must be satisfied for every eigenstate at its eigenenergy. This leads to non-

linear equations which are much more difficult to solve than those obtained using a fixed basis,

for example plane waves, gaussians or atomic orbitals. The LMTO method4,7 introduces a way

in which the equations may be linearized while still retaining accuracy. Within this scheme, if

�" is the difference between the actual energy and that chosen for linearization (Ev) then the

wavefunctions are correct to first order, .�"/, and the energies to .�"/3 due to the variational

principle.

Linearization can be achieved by defining augmentation functions as linear combinations

of a radial function '.Ev; r/ (partial wave) and its energy derivative P'.Ev; r/ evaluated at a

chosen fixed energy Ev

P'.Ev; r/ �
@

@"
'."; r/j"DEv : (2.31)

In essence '.Ev; r/ and P'.Ev; r/ form a basis constructed for a particular system that can be

used to calculate all states in a given energy window. Linearization leads to secular equations

similar to those for fixed bases.

The LMTO differs from the MTO defined in Eq. 2.20 since: .i/ inside the central sphere it

is a linear combination of 'l.Ev; r/ and P'l.Ev; r/, and .i i/ the tail in other spheres is replaced

by a combination of P'l.Ev; r/. It may be written as

�LMTO
L ."; �; r/ D i lYL.Or/

(
'l."; r/C � cot.nl."//Jl.�r/; r < S

�Nl.�r/; r > S
(2.32)

where Jl and Nl are Bessel and Neumann functions augmented in such a way so that conditions

.i/ and .i i/ are satisfied. Thus, the LMTO continues smoothly from the central sphere to the

interstitial region where it joins smoothly to P' in the neighbouring sphere.

Choosing � D 0 leads to a simplification of the equations in a manner similar to that for

MTOs. The linear combination of ' and P' with logarithmic derivative Dl."/ is given as

'.Dl ; r/ D '.r/C !.Dl/ P'.r/; (2.33)

where

!.Dl/ D �
'.s/

P'.s/
D �D.'/

D �D. P'/; (2.34)
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and D. P'/ is the logarithmic derivative of P'.

Using the notation that 'l�.r/ � 'l.D D �l � 1; r/ and 'lC.r/ � 'l.D D l; r/, the

LMTO is defined as

�LMTO
Lk .r/ D 'L�.r/

'l�.S/
� 1

'lC.S/

X

L0
'LC.r/

1

2.2l 0 C 1/
SLL0.k/: (2.35)

This orbital contains the effects of the neighbours via the structure constants and by the bound-

ary condition that the wavefunction at the sphere boundary is continuous and has a continuous

slope. Finally, the eigenvalues are found using the LMTO basis and a variational expression

with the full Hamiltonian by solving the eigenvalue equation,

det
ˇ̌
ˇhkLj OH jkL0i � "hkLjkL0i

ˇ̌
ˇ D 0: (2.36)

TB-LMTO (tight-binding LMTO) is an “ab-initio” tight-binding scheme where a unitary

transformation is applied to transform the LMTO basis functions to a localized, short-range

form. This yields a minimal basis tight-binding formulation where all of the Hamiltonian matrix

elements are determined from the the Kohn-Sham equations. In Chapters 3-5 the TB-LMTO

method is used to calculate the band structures of graphite, boron nitride, cesium under pressure,

˛-ThSi2 and ˇ-ThSi2.

In FP-LMTO8 (full potential LMTO), it is no longer required that the potentials and charge

densities retain spherical symmetry. The unit cell is divided into non-overlapping MTs and the

interstitial region between them. In the former region the effective potential is expanded in

spherical harmonics and in the latter by a Fourier series. The basis functions are linearized in

the same fashion as within LMTO and in principle the accuracy of the method is only limited

by the linearization. In Chapter 4 FP-LMTO is used to calculate the band structure of Cs-II for

different v=v0.

2.3 Wannier Functions

Wannier functions,9–11 the solid state analogue of Boys localized molecular orbitals in chem-

istry, are orthonormal localized functions which span the same space as the eigenstates of a band

or a group of bands. In a crystal, the eigenstates of the Hamiltonian are also the eigenstates of

the translation operations, OTn, leading to the Bloch theorem

‰ik.r/ D eik�ruik.r/: (2.37)

Due to the fact that the phase of each eigenstate is arbitrary, the Bloch functions are subject to

a “gauge transformation”, which leaves physically meaningful quantities unchanged, as

‰ik.r/! Q‰ik.r/ D ei�i .k/‰ik.r/: (2.38)
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Since the Bloch functions are periodic in reciprocal space, the Wannier functions are gen-

erated from a Fourier transformation of the Bloch eigenstates. The function for the cell labeled

by the lattice point T for the band i can be found from

wi.r � T/ D V

.2�/3

Z

BZ

dke�ik�T‰ik.r/ D
V

.2�/3

Z

BZ

dkeik�.r�T/uik.r/; (2.39)

where V is the cell volume. For a different cell, T0, the function wi remains unchanged, but is

translated by T0 � T. Moreover, Eq. 2.39 shows that for the L lattice translations

‰ik.r/ D
LX

TD1

e�ik�Twi.r � T/: (2.40)

In general, the Wannier functions can be defined as a linear combination of the Bloch func-

tions of different bands. For example, in diamond the combination of the occupied s and p

bands are needed to form the chemically intuitive sp3 bond orbital. If U k
ji is a k-dependent

unitary transformation, then each function is given by 2.39 with

uik D
X

j

U k
jiujk: (2.41)

As can be seen from Eq. 2.39 with Eqs. 2.38 or 2.41, variations in �i.k/ and U k
ji change

the relative phases and amplitudes of the Bloch functions for different bands i at different k.

Thus, Wannier functions are not uniquely defined. This is one of their most serious drawbacks.

Nonetheless, they can be useful as minimal basis sets for order-N methods and in constructing

many-electron wavefunctions for the study of, for example, strongly correlated systems.

A number of different approaches which aim to construct chemically intuitive Wannier func-

tions have appeared. In maximally projected Wannier functions, the phases of the Bloch func-

tions can be chosen so that the Wannier function has a maximum overlap with a chosen localized

function, for example at a bond center or a p-like state on an atom.12,13 On the other hand, the

so-called maximally localized Wannier functions14 require minimization of the mean square

spread, �, defined by

� D
NbandsX

iD1

Œhr2ii � hri2i � (2.42)

where h:::ii is the expectation value over the i th Wannier function. This method is often used

in electronic structure calculations and is equivalent to the Boys localization used in quantum

chemistry.15

At times it might prove useful to construct Wannier-like functions for “entangled” bands,

ones which are not isolated from others. Here, the desired bands lie within a given energy

range but cross with, or are attached to others which extend further out in energy. In this case
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it is unclear exactly which bands to choose, particularly in those regions of k-space where hy-

bridization with unwanted bands occurs. If the bands cannot be disentangled then there will be

non-analytic properties which arise from mixing with other bands in the integrals over the Bril-

louin zone and the Wannier functions, as defined previously, will not be useful. However, it is

possible to construct useful Wannier-like functions which yield a localized basis for a subspace

of bands spanning a desired energy range. There are basically two main approaches how this

may be done. The first maximizes the overlap with the Bloch functions only over an energy

window, generating a finite subspace of bands that describes those within the chosen range.16

The second identifies the types of orbitals which are involved and generates a reduced set of

localized functions that describes the bands spanning a specified energy window.17 This is the

general idea behind the N MTO method, which will be described and applied in Chapters 3, 4

and 5.

2.4 Properties of Solids

Many properties of solids are found by variations of the energy around the equilibrium geometry

configuration. Phonons, magnons and dielectric response functions are only a few examples. A

number of schemes may be employed to calculate these properties, however here we will only

give a brief outline of the methods that have been used within this work.

2.4.1 Phonons

In Section 4.3.3 we calculate the phonon spectrum of Cs-II for different v=v0 using a FP-LMTO

code that employs density functional perturbation theory (DFPT) for calculating the linear re-

sponse to an external perturbation.18 The main advantage of DFPT is that the standard equations

with sums over empty states can be rewritten only in terms of the occupied states, which are

easily evaluated in DFT.

The first-order change in the density, in terms of the wavefunction, is given as

�n.r/ D 2Re
NX

iD1

'�i .r/�'i.r/ (2.43)

where �'i.r/ can be calculated from first-order perturbation theory via

.HKS � "i/j�'ii D �.�VKS ��"ij'ii: (2.44)

In Eq. 2.44 HKS is the unperturbed Kohn–Sham Hamiltonian, �"i D h'ij�VKS j'ii is the

first-order variation of the eigenvalue "i , and the change in the potential is found by

�VKS.r/ D �Vext.r/C
Z

dr0
�n.r0/
jr � r0j C

Z
dr0

dVxc.r/
dn.r0/

�n.r0/: (2.45)
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The correction to the occupied orbitals can be obtained by

.HKS � "i/j�'ii D �.1 � OPocc/�VKS j'ii (2.46)

where the projection operator is defined as

OPocc D
NX

iD1

j'iih'ij: (2.47)

The basic self-consistent algorithm is to solve Eq. 2.46 for �'i using the definition of OPocc

in Eq. 2.47 and VKS (Eq. 2.45) in terms of �n.r/ from Eq. 2.43. Since �n depends on the

occupied orbitals, �'i , a self-consistent loop is established. In practice the problem is often

more complicated. For example in the FP-LMTO scheme the basis functions are dependent

upon the perturbation and this change must also be calculated.

2.4.2 Electron–Phonon Interactions

The calculation of electron–phonon interactions is important not only in the study of supercon-

ductivity, but also of other phenomena such as structural phase transitions. In Section 4.3.3 the

electron–phonon coupling along a given phonon mode for Cs-II under pressure is calculated.

As the phonon mode softens, the coupling increases leading to an instability in the fcc structure.

The matrix element for the emission or absorption of a phonon �q with frequency ! while

scattering an electron from the state ik to j kC q is given as

gikIjkCq.�/ D
1p

2M!�q
hikj�V�qjj kC qi; (2.48)

where M is the reduced mass and 1=
p

2M!�q is the zero-point phonon amplitude. At the

Fermi surface, the coupling to the phonon branch � is found from

�� D
2

NF

X
q

1

!�q

X

ijk

ˇ̌
gikIjkCq.�/

ˇ̌2
ı."ik/ı."jkCq � "ik � !�q/: (2.49)

Here, NF is the density of states at the Fermi level, !�q is the energy of phonon � with wavevec-

tor q and "ik is the energy of the band i with wavevector k.

A number of methods exist in order to evaluate �V�q. Within this work, this is done by

calculating the phonons via DFPT as outlined above.18,19

2.5 Molecular Properties

Many molecular properties may be calculated as second derivatives of the energy, E. These

properties include, but are not limited to: NMR parameters (chemical shifts, nuclear spin-spin

coupling constants), EPR observables, harmonic force constants and infrared intensities.
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2.5.1 NMR Chemical Shifts

Chapter 6 will be concerned with calculating the nuclear magnetic resonance (NMR) chemical

shifts of finite single-walled carbon nanotubes (SWNTs). Classically, the interaction of an

external magnetic field, B , with a nuclear magnetic moment is given by

E D ��A �B : (2.50)

Here, �A is the spin magnetic moment of a particular nucleus and B is an external static ho-

mogeneous magnetic field. In atoms, molecules and solids B is shielded by the electrons and

thus the nucleus interacts with an effective field. Thus, if � is the nuclear shielding tensor for

nucleus A in a given chemical environment,

E D ��A � .1 � � /B : (2.51)

Since the term ��A �B is not usually included in zero-order quantum chemistry computations,

the nuclear shielding tensor may be written as20

�A D
@2E

@B@�A

ˇ̌
ˇ̌
BD0;�AD0

: (2.52)

This second derivative may be computed analytically, however often numerical methods are

used due to the fact that the energy expression may involve many complicated terms. The

formal agreement with Eq. 2.52 is established by expanding E, H , and ‰ in a perturbation

series in �A and B , then collecting terms that are bi-linear in both. � is dimensionless and is

usually given in units of 10�6 (parts per million, or ppm). The isotropic shielding constant, � , is

the rotational average. Experimental data usually report the chemical shift, ı, which is defined

as

ı D � reference � �: (2.53)

Here, � reference is determined for a reference nucleus in a reference compound. For 1H and
13C NMR the experimental reference often chosen is TMS (tetramethylsilane). NMR quantum

chemical calculations of similar molecules often yield errors with the same sign and order of

magnitude, for a given basis set and functional. Thus, computationally a better reference may

be a molecule with an experimentally well known chemical shift which is chemically similar to

the one being studied.

2.5.2 Thermodynamic Quantities and Frequencies

The energies computed using quantum chemical programs are for isolated, stationary nuclei

at 0K. Comparison to experimental values therefore necessitates the addition of terms which

arise from the zero-point vibration and from the finite temperature of the experiment. From
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statistical mechanics and assuming ideal gas behavior, the change in enthalpy from 0K to some

finite temperature T is given by

�H.T / D Htrans.T /CHrot.T /C�Hvib.T /CRT: (2.54)

The translational, rotational and change in vibrational enthalpy correction and the zero-point

energy can be written, respectively, as21

Htrans.T / D .3=2/RT; (2.55)

Hrot.T / D .3=2/RT (RT for a linear molecule), (2.56)

�Hvib.T / D Hvib.T / �Hvib.0/ D N0h
X

i

vi

.ehvi=kT � 1/
; (2.57)

Hvib.0/ D
1

2
h
X

i

vi; (2.58)

where the summations in Eqs. 2.57 and 2.58 are performed over all i normal modes.

Under the assumption of ideal gas behavior, statistical mechanics may also be used to obtain

equations for the total entropy, given as21

S.T / D Strans.T /C Srot.T /C Svib.T /C Sel � nRŒln.nN0/ � 1� (2.59)

The translational, rotational, vibrational and electronic entropic contributions can be calculated

using Eqs. 2.60-2.63.21

Strans.T / D nR

(
3

2
C ln

"�
2�M kT

2

�3=2 �
nRT

P

�#)
(2.60)

Srot.T / D nR

�
3

2
C ln

�
.�vAvBvC /

1=2

s

��
(2.61)

Svib.T / D nR
X

i

f.uie
ui � 1/�1 � ln.1 � e�ui /g (2.62)

Sel D nR ln!el (2.63)
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In Eqs. 2.54-2.63 the following notation is used,

n D moles of molecules

R D ideal gas constant

N0 D Avogadro’s number

M D mass of molecule

k D Boltzmann’s constant

T D temperature

h D Planck’s constant

P D pressure

IA; IB; IC D principle moments of inertia

vA; vB; vC D h2=8�IAkT , etc.

s D symmetry number

ui D hvi=kT

vi D vibrational frequencies

!el D electronic ground state degeneracy.

Thus in order to calculate thermodynamic quantities, the vibrational frequencies of a mole-

cule must be known. Consider a molecule consisting of N atoms whose nuclei are located

near their equilibrium positions. The mass-weighted cartesian displacements for nucleus A,

(XA, YA and ZA) are given by taking the difference between the equilibrium and displaced

cartesian coordinates and multiplying them by
p

M A, where MA is the mass of the given nu-

cleus. Assuming the harmonic approximation and truncating the energy expansion around the

equilibrium position to second order yields the energy in terms of X D .X1; :::;XN / as

E D .1=2/X |QX (2.64)

where the energy scale has been chosen so that E D 0 at the equilibrium position. The 3N �3N

matrix Q is given by20

Q D @2E

@X@X
0

ˇ̌
ˇ̌
XDX

0D0

(2.65)

with the eigenvectors, q˛, yielding the normal modes and the eigenvalues, k˛, the respective

mass-weighted force constants. Within the harmonic approximation, the vibrational frequen-

cies, !, are related to the mass-weighted force constant via

!˛ D
p

k˛: (2.66)
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In some quantum chemical programs the second derivative of the energy with respect to the

nuclear displacements is calculated analytically. In cases where analytic derivatives are not

available, but analytic gradients are found, the second derivative in Eq. 2.65 is replaced by a

finite difference,

Q D @2E

@X@X
0

ˇ̌
ˇ̌
XDX

0D0

� �.@E=@X/jXD0

�X
0 ; (2.67)

and the frequencies are said to be calculated numerically.

Within Chapter 7 we will use the aforementioned equations, along with the calculated an-

alytic frequencies, in order to determine the entropic and enthalpic contributions to the Gibbs

free energy of a number of (C60)2–metal clusters.





Part I

Solids





Chapter 3

An Introduction to N MTO Wannier-like
Functions

3.1 Introduction

The electronic structure of condensed matter is usually described in terms of one-electron basis

sets. Basis functions used for computation are often simple, eg. Gaussians or plane waves,

but their number is large, 1-2 orders of magnitude larger than the number of electrons to be

described. This is so because the potential in the effective one-electron Schrödinger equation,

arising say in density functional theory, is rather deep inside the atoms. The results of this

kind of computation therefore require interpretation and simplification in terms of a small set

of intelligible orbitals. The results of band-structure calculations for crystals, for instance, are

often parameterized in terms of tight-binding models.

The Car-Parinello technique for performing ab initio molecular-dynamics simulations using

density functional theory, pseudopotentials, plane-wave basis sets, and supercells,22 created

a need to visualize chemical bonds, and this caused renewed interest in generating localized

Wannier functions for the occupied bands. For a set of M isolated energy bands, "j .k/ ; the M

Wannier functions, wm .r � T/ ; enumerated by m and by the L .!1/ lattice translations, T;

is a set of orthonormal functions which spans the eigenfunctions,

‰jk .r/ D L�
1
2

LX

TD1

MX

mD1

wm .r � T/ujmeik�T (3.1)

with eigenvalues "j .k/ ; of the one-electron Schrödinger equation. The Bloch states, Eq. 3.1,

are delocalized, and the set is enumerated by the band index j and the Bloch vector k: Wannier

functions are not unique, because performing a unitary transformation, Wm;m0IT�T0; of one set

produces another set which also satisfies Eq. 3.1, merely with different j k-dependent phases

of the Bloch functions. For molecules, it had long been recognized that chemical bonds should
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be associated with those linear combinations of the occupied molecular orbitals which are most

localized, because those linear combinations are most invariant to the surroundings.15 For in-

finite periodic systems, Marzari and Vanderbilt have developed a useful method for projecting

from the Bloch states a set of so-called maximally localized Wannier functions.14,23,24

This chapter deals with a different kind of basis set, specifically, minimal basis sets of lo-

calized orbitals, the newly developed N MTOs (Muffin Tin Orbitals of order N , also known as

3rd generation MTOs.17,25–27) We shall demonstrate that with N MTOs it is possible to gen-

erate Wannier functions directly, instead of via projection from the delocalized Bloch states.

N MTOs are constructed from the partial-wave solutions of Schrödingers equation for spherical

potential wells (overlapping muffin tins) and N MTO sets are therefore selective in energy. As

a consequence, one can construct an N MTO set which picks a specific set of isolated energy

bands. Since N MTOs are atom-centered and localized by construction, they do –after sym-

metrical orthonormalization– form a set of localized Wannier functions which, if needed, can

be recombined locally to have maximal localization. The N MTO technique is primarily for

generating a localized, minimal basis set with specific orbital characters, and it can therefore be

used also to pick a set of bands which overlap other bands outside the energy region of interest.

The corresponding N MTOs –orthonormalized or not– we refer to as Wannier-like.

N MTO-generated Wannier functions have so-far been used only in a few cases to visualize

chemical bonding.27–29 In Chapter 5 we will employ N MTOs to analyze the bonding in ˛-

ThSi2 and ˇ-ThSi2. They have more often been used to construct Hubbard Hamiltonians for

strongly correlated 3d -electron systems.28–32 In the future, it may be possible to use N MTOs

for real-space electronic-structure methods in which the computational effort increases merely

linearly with system size (order-N methods).33,34

Within this chapter we will focus mainly on showing how N MTOs may be used to pick

specific states in insulators and semi-metals, namely boron nitride and graphite. In Chapter 4,

we will outline a strategy how this may be extended to the description of only the occupied

states in a metal. Since N MTOs are currently a non-standard method in electronic structure

calculations, and more complicated than plane waves, we start out by illustrating the main ideas

by performing an elementary analytical calculation of the �-bonds in the simplest tight-binding

(TB) model of benzene. Then follows a concise summary of the N MTO formalism.

3.2 N MTO Basics

3.2.1 Tight-Binding Calculation of the Benzene �-bond

The simplest TB model for the six �-electrons in benzene has six orthonormal pz-orbitals,

'1; :::; '6; placed on the consecutive corners of the hexagon. The hopping integrals over the
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short (double) bonds are: H12 D H34 D H56 D � .1C d/ ; and those over the long (single)

bonds are: H61 D H23 D H45 D � .1 � d/, where d is the dimerization.

In order to calculate the Wannier function for the three occupied bonding states, it is conve-

nient to partition the orbitals into those on the even .e/- and those on the odd .o/-numbered sites.

The eigenvalue equations are then: Hoouo CHoeue D "1oouo and Heouo CHeeue D "1eeue;

in terms of the 3�3 blocks of the Hamiltonian and the unit matrices. Solving the last set of

equations for the eigenvector for the even orbitals yields:

ue D ." �Hee/
�1 Heouo; (3.2)

and inserting in the first equations results in the eigenvalue equation:
h
Hoo CHoe ."1ee �Hee/

�1 Heo

i
uo D "1oouo; (3.3)

for the energy dependent (Löwdin) downfolded Hamiltonian for the odd sites.

In the present case where there is no hopping between even or odd sites, Hee D Hoo D 0:

Moreover,

Heo D H |
oe D

0
B@
� .1C d/ � .1 � d/ 0

0 � .1C d/ � .1 � d/

� .1 � d/ 0 � .1C d/

1
CA ; (3.4)

and

Hoo CHoe ."1ee �Hee/
�1 Heo D

1

"

0
B@

2
�
1C d2

�
1 � d2 1 � d2

1 � d2 2
�
1C d2

�
1 � d2

1 � d2 1 � d2 2
�
1C d2

�

1
CA : (3.5)

The latter, downfolded Hamiltonian is periodic with period 3 and is therefore diagonalized by

the unitary transformation

Uok D

0
BB@

1p
3

�1p
2

�1p
6

1p
3

1p
2

�1p
6

1p
3

0 2p
6

1
CCA ; (3.6)

yielding singly degenerate a-states .k D 0/ with " D ˙2 and doubly degenerate e-states

.k D ˙1/ with " D ˙
p

1C 3d2: The even components of the eigenvectors are obtained from

Eq. 3.2: Uek D "�1HeoUok ; and finally we can renormalize: u D U=
p

2:

Having found all six Bloch eigenstates, we need to form three Wannier functions, that is,

three congruent linear combinations of the bonding states. The three downfolded pz-orbitals,

�o; defined by: �oUok D 'ouokC'euek ; are obviously congruent. Moreover, they are localized

in the sense that �1 vanishes on the other odd sites (3 and 5). In the present case, they are also

orthonormal and, hence, Wannier functions. Left-multiplication with .Uok/
�1 D Uko yields:

�1 D
1p
2

�
'1 C

�
2

3
C d

�
'2 C

�
2

3
� d

�
'6 �

1

3
'4

�
; (3.7)
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and �3 and �5 by cyclic permutation of site indices. Here and in the following, we work merely

to first order in the dimerization, d: The Wannier function in Eq. 3.7 is essentially the N MTO.

It is atom-centered and, as the dimerization increases, it becomes lopsided towards site 2; ie.,

it spills into the short bond. It breaks the symmetry (when d ¤ 0/ because it was chosen

to vanish on the odd sites different from its own, and it is not maximally localized (unless

d D 0/. Nevertheless, it is a fairly simple matter to achieve maximal localization and, hence,

to restore the symmetry, by finding a unitary transformation, WT�T 0; which maximizes eg.D
jwj4

E
�P6

RD1 jwj4 : Here, w1 �
P

T W1�T�T is the maximally localized Wannier function.

In the present case, W has only one independent matrix element and we find:

w1 D
1

3
p

2

( p
3C 1C

p
3

2
d

!
.'1 C '2/C

�
1 �
p

3d
�
.'3 C '6/

�
 p

3 � 1 �
p

3

2
d

!
.'4 C '5/

)
; (3.8)

which is clearly symmetric (bond-centered). From Eq. 3.7:
D
j�j4

E
D 19

54
CO

�
d2
�
; and from Eq.

3.8:
D
jwj4

E
D 19

54
C 2
p

3
9

dCO
�
d3
�
:Hence, for d D 0; the atom-centered and the bond-centered

Wannier functions are both maximally localized and symmetric.

Now, the N MTO set, �.N /o ; is obtained without solving the eigenvalue equations, ie., it is

not obtained by projection from the Bloch states through multiplication by .Uko/
�1 ; but in a

more tricky way. We first define a set of downfolded, energy-dependent orbitals,

�o ."/ � 'o1oo C 'e ."1ee �Hee/
�1 Heo; (3.9)

which are localized when " does not coincide with an eigenvalue of Hee: Projection onto the

even sites yields:
D
'e

ˇ̌
ˇ OH � "

ˇ̌
ˇ�o ."/

E
D 0oo; so we realize that the functions of the set �o ."/ are

solutions of the impurity problems specified by the boundary conditions that �o ."/ vanishes at

the other odd sites and is normalized to ' at its own site. Projection onto the odd sites yields:
D
'o

ˇ̌
ˇ OH � "

ˇ̌
ˇ�o ."/

E
D Hoo CHoe ."1ee �Hee/

�1 Heo � "1oo � �Goo ."/
�1 ; (3.10)

and comparison with Eq. 3.3 shows that, if " is an eigenvalue of the (downfolded) Hamiltonian

and uo an eigenvector, then �o ."/uo is an eigenfunction. G ."/ defined in Eq. 3.10 is the

resolvent. Finally, we need to find an energy-independent, N th-order approximation to the set

�o ."/: We form the set, �o ."/Goo ."/ ; of (contracted Greens) functions and add an analytical

function of energy determined in such a way that the two sets of functions, �o ."/Goo ."/ and

�
.N /
o Goo ."/ ; coincide when " is on an energy mesh, �0; :::�N ; specifying the energy range of

interest. By taking the highest-order finite difference on this mesh, one obtains:

�.N /o

�N Goo

� Œ0:::N �
D �N�oGoo

� Œ0:::N �
; (3.11)
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which determines the set of (non-orthonormal) N MTOs. For N D 1; for instance:

�.1/o D Œ�o .�1/Goo .�1/ � �o .�0/Goo .�0/� ŒGoo .�1/ �Goo .�0/�
�1 : (3.12)

For the simple benzene model, Eq. 3.9 yields:

�1 ."/ D '1 �
1C d

"
'2 �

1 � d

"
'6; (3.13)

and �3 ."/ and �5 ."/ by cyclic permutation of site indices. To order d; the downfolded Hamil-

tonian Eq. 3.5 is independent of d; and by subtracting " and inverting, we find:

Goo ."/ D
"�

"2 � 1
� �
"2 � 4

�

0
B@
"2 � 3 1 1

1 "2 � 3 1

1 1 "2 � 3

1
CA : (3.14)

Specializing to N D 1; the N MTO found from Eq. 3.12 is:

�
.1/

1 D '1 �
�0 C �1

.�0�1 C 4/ .�0�1 C 1/
fŒ�0�1 C 2C .�0�1 C 4/ d � '2 C

Œ�0�1 C 2 � .�0�1 C 4/ d � '6 � 2'4g; (3.15)

and if, with the benefit of hindsight, we choose �0 D �2 and �1 D �1; we obtain the exact

result Eq. 3.7, apart from the normalization, 1/
p

2. With other choices, the N MTO set is an

approximation to the exact Hilbert space spanned by �o or wo; as explained in connection with

Eq. 3.17 below. Had we chosen �0 D 2 and �1 D 1; we would have obtained the Wannier

functions for the anti-bonding levels.

By considering a simple TB model, we have thus learned that the N MTO procedure for

constructing a minimal basis set, specifically a set of localized Wannier functions, consists

of the following steps: 1) Downfolding to a small set of energy-dependent orbitals and 2) a

polynomial approximation of the latter. The resulting N MTO set is not orthonormal in general,

but may be symmetrically (Löwdin) orthonormalized in a third step. Wannier functions which

are maximally localized, and therefore not symmetry breaking, may be obtained in a fourth

step. None of these steps require knowledge of the extended (Bloch) eigenstates. Although of

utmost importance for applications, steps (3) and (4) are not specific for the N MTO method

and fairly standard. As a consequence, they will not be considered further in this chapter.

3.2.2 N MTOs for Real Systems

For real systems, the N MTO method constructs a set of atom-centered local-orbital basis func-

tions which span the solutions of the one-electron Schrödinger equation for a local potential,

written as a superposition,
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P
R vR .jr � Rj/, of spherically symmetric, short-ranged potential wells, a so-called overlap-

ping muffin-tin potential. This is done by first solving the radial Schrödinger (or Dirac) equa-

tions numerically to find 'Rl ."; jr � Rj/ for all angular momenta, l; with non-vanishing phase-

shifts, for all potential wells, R; and for the chosen set of energies, " D �0; :::; �N .
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Figure 3.1: The band structure of graphite calculated with a full spd basis is

given in black. The red bands have been calculated with a pz N MTO (shown

on the right) on every carbon atom. This corresponds to a � non-bonding basis

set. The energy meshes used for each calculation are given to the right of the band

structure. In all figures, red denotes a positive and blue a negative isosurface value.

For the orbital plots, the isosurface values are given in units of a
�3=2
B

, where aB

is the Bohr radius.

The partial-wave channels, Rlm; are partitioned into active (odd, in the benzene example)

and passive (even). The active ones are those for which one wants to have orbitals in the basis

set. For example, the active channels are pz on all the carbon atoms for the red �-bands in Fig.

3.1, whereas for the black bands, the active channels include all nine s; p; and d -channels on

all the carbon atoms.

For each active channel, NRNl Nm; a kinked partial wave, � NR Nl Nm ."; r/ (Eq. 3.9 in TB theory), is

now constructed from all the partial waves, 'Rl ."; jr � Rj/Ylm

�
r̂ � R

�
, inside the potential-

spheres, and from one solution,  NR Nl Nm ."; r/ ; of the wave-equation in the interstitial, a so-called

screened spherical wave. The construction is such that the kinked partial wave is a solution of

Schrödinger’s equation at energy " in all space, except at some hard screening-spheres –which

are concentric with the potential-spheres, but have no overlap– where it is allowed to have radial

kinks in the active channels. In passive channels, the matching is smooth.

It is now clear that if we can form a linear combination of such kinked partial waves with the

property that all kinks cancel, we have found a solution of Schrödinger’s equation with energy

": In fact, this kink-cancellation condition (Eqs. 3.10 and 3.3 in TB theory) leads to the classical
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method of Korringa, Kohn, and Rostoker35,36 (KKR), but in a screened representation and valid

for overlapping MT potentials to leading order in the potential overlap.

Whereas the screened spherical wave must join smoothly onto all passive partial waves, we

can require that it vanishes at the hard spheres for all the active channels except the eigen-

channel. This confinement is what makes the screened spherical wave localized, provided that

localized solutions exist for the actual potential, energy, hard spheres, and chosen partition into

active and passive channels. Since the screened spherical wave is required to vanish merely in

the other active channels, but not in the eigenchannel, it is an impurity solution for the hard-

sphere solid and is given by Eq. 3.9 in TB theory.

Finally, the set of N MTOs is formed as a superposition of the kinked-partial-wave sets for

the energies, �1; ::::; �N W

�
.N /
Rlm .r/ D

NX

nD0

X

NR Nl Nm
� NR Nl Nm .�n; r/L

.N /

nI NR Nl Nm;Rlm
: (3.16)

Note that the size of this N MTO basis set is given by the number of active channels and is

independent of the number, N C 1; of energy points. The coefficient matrices, L
.N /
n ; in Eq.

3.16 are determined by the condition that the set of N MTOs span the solutions, ‰i ."i; r/ ; of

Schrödinger’s equation with an error

‰
.N /
i .r/ �‰i ."i; r/ D c.N / ."i � �0/ ."i � �1/ ::: ."i � �N / (3.17)

Co .."i � �0/ ."i � �1/ ::: ."i � �N // :

This condition leads to Eq. 3.11 and the N MTO set is a polynomial approximation for the

Hilbert space of Schrödinger solutions, with L
.N /
n being the coefficients in the corresponding

Lagrange interpolation formula. Eq. 3.12 is for N =1. An N MTO with N =0 is a kinked partial

wave, but an N MTO with N > 0 has no kinks, but merely discontinuities in the .2N C 1/st

radial derivatives at the hard spheres for the active channels. The prefactor, c.N /; in Eq. 3.17 is

related to this,25 and it decreases with the size of the set, ie. with the number of active channels.

A basis set which contains as many orbitals as there are bands to be described, we shall

call truly minimal. For an isolated set of bands, the truly minimal N MTO basis converges to

the exact Hilbert space as the energy mesh which spans the range of the bands becomes finer

and finer. Symmetrical orthonormalization of the converged N MTO set therefore yields a set of

atom-centered Wannier functions which are localized by construction. The localization depends

on the system and on the choice of downfolding. Had we, for instance for benzene, chosen

instead of the odd sites, sites 1, 2 and 3 as active, the corresponding N MTO Wannier functions

would have been less localized, the Hilbert space spanned by them would have needed a larger

N for convergence, and the construction from this set of the maximally localized Wannier

functions would have required a larger cluster. Nevertheless, the calculation could have been
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done. Similarly, in real systems the choice of active channels and their hard-sphere radii –their

number and main characters being fixed by the nature of the band to be described– influences

the properties of the individual N MTOs, but not the Hilbert space they converge to.

3.3 Computational Methods

Graphite has a hexagonal unit cell. The space group is P63/mmc (194) and the two basis carbon

atoms are located in the 2b and 2c Wyckoff positions. The lattice constants, a and c were taken

from experimental data37 as being 2.4642 Å and 6.7114 Å, respectively. In addition to the

atoms on the two crystallographic positions, it was necessary to insert two interstitial spheres to

represent the potential in the calculation. Boron nitride is also found with space group P63/mmc

(194), with the boron atom located in the 2c and the nitrogen atom in the 2d Wyckoff positions.

The lattice constants, a and c were taken from experimental data38 as being 2.50399 Å and

6.6612 Å, respectively. It was only necessary to insert one interstitial sphere.

All of the TB-LMTO calculations39 were performed using the Vosko-Wilk-Nusair (VWN)

LDA40 along with the Perdew-Wang GGA.41 Scalar relativistic effects were included. For

graphite and boron nitride a basis set consisting of spd LMTOs on the carbon, boron and ni-

trogen atoms with sp LMTOs on the empty spheres, was used. The calculations utilized 1953

irreducible points in the tetrahedron k-space integrations.42

The present version of the N MTO program is not self-consistent and requires the output

of the self-consistent potential from the TB-LMTO program. The downfolded band structures

are compared with bands computed employing a full N MTO basis set; not with those obtained

using the TB-LMTO program. In all cases, the default values for the hard-sphere radii, aR,

were used. Thus, all of the hard spheres were slightly smaller than touching. However in

general, the aR should be taken as 0.9 times the tabulated covalent, atomic or ionic radii. In the

calculations all partial-waves on the empty spheres were downfolded. The other downfolding

schemes and energy meshes employed for particular calculations are given in the results and

discussion section of the chapter. More details about the N MTO formalism can be found in

Refs. 17, 26, 27 and references within.

3.4 Results and Discussion

3.4.1 Graphite: A Semi-Metal

The bonding in graphite is understood: within a single graphene sheet the s, px and py orbitals

on the two carbon atoms per primitive cell hybridize to form a set of sp2 �-bonding bands

which are occupied, and a set of �-anti-bonding bands which are empty. There are two sheets
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per cell.

The pz orbitals form a group of bonding and anti-bonding �-bands which just touch at the

Fermi level, making graphite a semi-metal. In order to describe the set of �-bands, we would

need to construct two equivalent N MTOs per sheet, each centered on a single carbon atom. We

leave it to the method to shape the orbitals, subject to the aforementioned boundary conditions

for the screened spherical waves. The energy mesh must be chosen in such a way so that it spans

the energy range of the �-bands and excludes the energy range where the �-bands hybridize

with other bands.

In Fig. 3.1 the band structure of graphite calculated with a full spd basis set on each carbon

atom is given in black. It is in excellent agreement with previous calculations.43 The red bands

have been calculated with a basis set comprised of a pz non-bonding N MTO on every carbon.

The energy meshes used for both calculations are given to the right of the band structures.

The two sets of bands are almost identical, on the scale of the figure, with the exception of a

small bump at the top of the red bands, where hybridization with other bands occurs. Thus,

it is possible to describe the set of occupied and unoccupied �-bands in graphite via just one

orbital on every carbon atom, shown to the right of the band structure. The orbital is localized

because it is not allowed to have pz character on any of the other carbons. It is allowed to have

other orbital characters, (e.g. s;px; dxy), on the other symmetry-equivalent carbons, but such

characters are hardly visible in the figure.

It is even possible to generate orbitals for just the occupied or unoccupied �-bands in

graphite. In this case we only want to pick half of the bands, and therefore we need a basis

with, say, a pz orbital on every second carbon atom with all other partial waves being down-

folded, ie. passive. Moreover, an energy mesh spanning the bonding (anti-bonding) bands must

be used in order to obtain the bonding (anti-bonding) �-orbital for graphite. Thus, the choice

of the energy mesh determines which set, bonding or anti-bonding, is chosen. In Figs. 3.2 and

3.3 the orbital on the central carbon atom is shown, along with the band structures computed

with a full spd basis (in black) and those with the truly minimal basis set we have just specified

(in red). The agreement between the two sets of bands is excellent, with only minor devia-

tions in the upper regions of the downfolded band structure of the anti-bonding bands where

hybridization with the next higher bands occurs. Inspection of the �-bonding and anti-bonding

orbitals shows that they spread out onto the first nearest neighbour carbon atoms (passive), but

they are confined not to have any pz character on those carbon atoms, e.g. the second nearest

neighbours, where the basis set has orbitals (active partial waves). The third nearest neighbour

atoms also have all partial waves downfolded and some pz character may be seen. Clearly, this

choice of orbitals breaks the symmetry; the same Hilbert space would have been obtained had

the orbitals been placed on the other half of the carbon atoms.

It is also possible to describe the sp2-bonding bands in graphite by placing an s, px and py
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Figure 3.2: As in the previous figure, but the red bands have now been calculated

with a pz N MTO (shown on the right) on every second atom within a single

graphene sheet. The energy mesh is chosen within the occupied part of the �-

band, which is therefore selected. We shall refer to this as a �-bonding basis.
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Figure 3.3: As in the previous figure, but the energy mesh is now in the empty

part of the �-band. We shall refer to this as a �� anti-bonding basis.

orbital on every second carbon atom, downfolding all other channels and using an energy mesh

which spans the energy range of the bands of interest. The band structure obtained with this

basis is given in red in Fig. 3.4 and is identical, on the scale of the figure, to the black bands

which have been calculated using a full spd basis set on every carbon atom. The orbitals may

spread out onto the nearest neighbour carbons, however are confined not to have any s, px or

py character on the second nearest neighbours. Symmetrical orthonormalization of these three

orbitals gives the well known bond orbital, the carbon sp2 N MTO, also shown in the figure.

The above examples show that it is possible to describe a chosen band, or set of bands, with

a truly minimal basis set consisting of one N MTO per band. Moreover, the N MTOs obtained
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Figure 3.4: As in the previous figures, but the red bands have now been calculated

with a � -bonding basis comprised of an s, px and py N MTO on every second

carbon atom (shown above the band structure). Also shown is one of the three

congruent sp2-bond orbitals which arise by symmetrical orthonormalization of

the s;px and py orbitals.

from our method are in-line with an intuitive chemical picture of bonding in the solid state,

except that they may break the symmetry. This arbitrariness originating in the constraint that

the N MTOs be atom-centered can be removed by forming linear combinations to maximally

localize the Wannier functions. Hence, N MTOs should be useful not only, for example, as

basis sets in linear scaling methods, but also in gaining a chemical understanding of periodic

systems.

3.4.2 Boron Nitride: An Insulator

The bonding in boron nitride is similar to that in graphite: within a single layer the s, px and

py boron and nitrogen orbitals hybridize to form sp2 �-bonding and anti-bonding bands. The

alternation, however, makes the system insulating with a band gap between the bonding and

anti-bonding �-bands. In order to describe the occupied bands, it is possible to generate either

boron or nitrogen centered N MTOs. It can be expected that the electron density, and hence

the orbital at a given isosurface, should have a maximum closer to the more electronegative
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element, nitrogen. The method needs to do less ‘work’ if the orbitals are placed initially where

the electrons are thought to be. Thus, we first place all of the orbitals on nitrogen, and let

the method shape them accordingly. This choice of atom-centered orbitals corresponds to the

extreme ionic limit, a B3CN3� configuration. The bonding � and �-bands and their respective

N MTOs are shown in the top and bottom part of Fig. 3.5, respectively. The s;px and py

N MTOs are not shown, since they are very similar to those obtained for graphite. The full band

structure is in excellent agreement with previous calculations.44
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Figure 3.5: The band structure of boron nitride calculated with a full spd basis

is given in black. The red bands in the upper panel have been calculated with

a � -bonding basis composed of an s;px and py N MTO on all nitrogen atoms.

The red bands in the bottom panel have been calculated with a �-bonding basis

composed of a pz orbital on all nitrogen atoms. Also given is one of the three

equivalent sp2-bond orbitals and the pz N MTO. Boron atoms are purple, nitrogen

black.

In new materials where the bonding is not well understood, it may be difficult to decide

where the orbitals should be placed. In the following we will show that N MTOs are forgiving:

even a bad starting guess can yield the correct bands and Hilbert space. Placing all the orbitals

on the boron atoms (a B5�N5C configuration) yields the bands and orbitals shown in Fig. 3.6.
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The sp2-bond orbital looks identical to the one shown in Fig. 3.5, as it should be when the

energy mesh is converged. For the �-bands, more energy points are necessary since the orbital

has to spread out from a central boron onto three neighbouring nitrogens. Inspection of the

boron (nitrogen) centered �-N MTOs makes it plausible that when squared and summed over

all boron (nitrogen) sites, they give the same electron density, with maxima shifted towards

nitrogen.
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Figure 3.6: As in the previous figure, but with boron-centered � and � basis sets.

3.5 Summary and Conclusions

Within this chapter we have shown that the 3rd generation MTO method can be used to design

a basis set of atom-centered localized orbitals, which span the wave functions in a given energy

range. For an isolated set of bands, arbitrary accuracy may be obtained, with only one basis

function per electron pair (or single electron, in the case of spin-polarized calculations), simply

by increasing the density of the energy mesh which spans the energy range of the band in

question. This method may be applied to insulating and even semi-metallic systems to generate

Wannier-like functions which are in-line with a chemical understanding of bonding in the solid-
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state. It should therefore be a useful analysis tool in, for example, explaining experimental

trends for a given set of compounds via orbital based arguments; clarifying the bonding in

novel or even amorphous materials; visualizing pressure-driven electronic transitions.

3rd generation MTOs may also be useful in generating truly minimal basis sets for order-

N methods and in constructing many-electron wave functions which can be applied to study

strongly correlated systems realistically. In our implementation, N MTOs are generated using

the self-consistent potential from an LMTO calculation. However, our method may be inter-

faced with the results of any other program, provided that the potential can be expressed in

terms of a superposition of spherically symmetric potential wells with radial overlaps of up to

�60 percent.



Chapter 4

Theoretical Studies of High Pressure
Cesium

4.1 Introduction

Under pressure, cesium undergoes a variety of interesting structural phase transitions. At 2.3

GPa Cs-I (bcc cesium) transforms to an fcc phase.45 Until recently, it was believed that Cs-

II undergoes an isostructural transition to Cs-III (which is found in a very narrow pressure

range between �4.2 and �4.3 GPa). However, experiments have shown that Cs-III has a very

complicated structure which is orthorhombic (space group C 2221 with 84 atoms per unit cell).46

At �4.3 GPa Cs-III transforms to the non-close-packed tetragonal Cs-IV47 which undergoes a

transition to orthorhombic Cs-V48 at�12 GPa and finally to the double hexagonal close packed

Cs-VI at �70 GPa.49 It is also remarkable that when cesium is compressed to about 26% of its

normal volume, in the vicinity of the Cs-IV!Cs-V transition, it becomes superconducting.50

The aforementioned structures are shown in Fig. 4.1. In contrast to the conventional picture that

increasing pressure yields closer packed structures, the nearest neighbour coordination number

first increases from 8 (bcc) to 12 (fcc), then decreases to about 10 (Cs-III), 8 (Cs-IV) and

finally increases again to 10/11 (Cs-V) and 12 (Cs-VI). These structural transitions are believed

to be driven by the pressure-induced s ! d valence electronic transition which causes the

interatomic distances to become smaller compared to the ranges of the wavefunction.51

Many theoretical investigations on cesium have been performed. Full potential linear muf-

fin tin orbital (FP-LMTO) calculations have reproduced the observed crystal structure sequence

fcc!Cs-IV!Cs-V!Cs-VI.54 Due to the fact that Cs-V and Si-VI have the same space group

and nearly identical axial ratios and axial coordinates, the bonding within these two systems

was compared. While Si-VI was determined to be nearly free-electron-like, Cs-V was found

to exhibit multi-center d-electron bonding.53 Near the Cs-IV to Cs-V transition the d orbital

occupation was calculated as being approximately 0.8.55–57 For Cs-VI it was found that the
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Cs-I: bcc

v/v0 ~ 1-0.601

Cs-II: fcc

v/v0 ~ 0.601-0.46

Cs-III: orthorhobmic

v/v0 ~ 0.460-0.418
Cs-IV: tetragonal

v/v0 ~ 0.418-0.26

Cs-V: orthorhombic

v/v0 ~ 0.26-0.162

Figure 4.1: The unit cells of Cs-I, Cs-II, Cs-III, Cs-IV and Cs-V along with the

relative volume range within which each structure is found.47,52,53

s ! d electronic transition is already complete and core-core repulsion as well as p � d hy-

bridization with the semicore 5p states become important.49,57 Before the recent determination

of the structure of Cs-III,46 ab initio calculations indicated that an isostructural transition is not

possible.58,59 In particular, it was speculated that fcc Cs-III would become unstable against a

soft phonon which could result in a superstructure prior to the transition to Cs-IV.60

The recent determination of the crystal structure of Cs-III46 has sparked new theoretical

work in this field. FP-LMTO calculations have confirmed the experimental results, and the

calculated transition pressures for fcc!Cs-III!Cs-IV were determined to be in very good

agreement with experiment.61 Moreover, it was postulated that a d-orbital occupation of about

0.52 electrons is necessary in order for the Cs-III structure to be stable. A mechanism describing

the displacement of atoms leading to the formation of Cs-III from Cs-II was proposed.62 It was

also indicated that the participation of the d electrons in bonding modifies the shape of the

electronic shells, which become nonspherical and that the packing of such ellipsoidal atomic

shells is 5-8% closer than the corresponding packing of hard spheres in Cs-IV. Calculations of

the electron density and the electron localization function (ELF) for different structures have

been performed.63 For Cs-II, it was found that at low density the electrons are localized around

the atomic positions, whereas for high density they are more localized in the interstitial sites.
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Thus, the “covalent bond” was postulated to be between second nearest neighbour cesiums with

the “bonding electrons” localized on a 2D plane forming a square net. It was pointed out that

the electron density of Cs-IV can be reconstructed from that of Cs-II by periodic displacements

of the 2D square nets.

Within this chapter we will first of all use a simple argument to illustrate why the bottom

of the d bands in cesium are lowered and the bottom of the s bands are raised in energy with

increasing pressure. Next, we analyze the band structures of Cs-I, Cs-II and Cs-IV at different

volumes. We will in particular focus on how the band structure changes near the experimentally

established volume of a structural phase transition. The phonon spectra and electron phonon

coupling for fcc Cs at different v=v0 will be given. Next, we will show that it is possible to

obtain Wannier-like functions for only the occupied states in a metallic system by calculating

N MTOs for Cs-I, Cs-II, Cs-II under pressure and Cs-IV. Finally, we will analyze the bonding

in Cs-IV and provide an explanation for the stability of this structure.

4.2 Computational Details

Computations were performed on Cs-I (bcc), Cs-II (fcc) and Cs-IV, which has the space group

I41/amd with 2 atoms per unit cell.47 The experimental lattice parameter of 6.048 Å64 for

cesium at ambient conditions was used. Both Cs-I and Cs-II are close-packed so it was not

necessary to insert any interstitial spheres. However, four such spheres were needed to represent

the charge density in Cs-IV. All of the TB-LMTO calculations39 were performed using the

Vosko-Wilk-Nusair (VWN) local density approximation (LDA)40 along with the Perdew-Wang

generalized gradient approximation (GGA).41 Scalar relativistic effects were included and the

basis consisted of sd LMTOs with pf LMTOs being downfolded. The calculations utilized 1661

and 897 irreducible points in the tetrahedron k-space integrations42 for cesium in the bcc and fcc

structures with one atom per unit cell, respectively, and 693 points were used in the calculation

for Cs-IV.

The downfolded band structures are compared with those computed employing a full

N MTO basis set. In all cases, the default values for the hard-sphere radii, aR, were used.

The downfolding schemes and energy meshes employed for particular calculations are given in

the results and discussion section of the chapter.

The phonon spectrum and electron phonon coupling of fcc Cs were obtained from linear

response calculations as implemented in Savrasov’s FP-LMTO code.18,19 Following the com-

putations performed by Kong et al.,60 we have employed the VWN exchange-correlation po-

tential40 along with the GGA-9665 correction. The dynamical matrix for fcc Cs was calculated

for a set of irreducible q-points in an (8,8,8) reciprocal-lattice grid. A 3�-spd LMTO basis

set was used and the one-center expansions inside the non-overlapping muffin-tin spheres were
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performed up to lmax D 6. The s, p and d basis functions were expanded in plane waves in

the interstitial region. The 5s semicore states were treated as valence states in a separate en-

ergy window. The induced screened potentials and charge densities were represented inside the

muffin tin spheres by spherical harmonics up to lmax D 6 and by plane waves with a cut-off

ranging from 142.0 Ry. for v=v0 D 0:47 to 158.1 Ry for v=v0 D 0:40 (9984 plane waves) in

the interstitial region. The k-space integration was performed over a (16,16,16) grid, however

the integration weights were calculated from a (32,32,32) grid, resulting in a more accurate rep-

resentation of the Fermi surface using a smaller number of k-points. The phonon spectra along

the high symmetry lines were calculated in a denser q-mesh fitting with the (16,16,16) k-grid.

4.3 Results and Discussion

4.3.1 Energy Bands of Cesium Under Pressure

Within this section we will show that for an elemental solid within the atomic spheres approxi-

mation (ASA), increasing pressure raises and lowers the energy of a free and tunneling electron,

respectively, at the bottom of a band. Moreover, increasing pressure always raises the energy

of an electron at the top of a band. In the specific case of cesium, the free electrons are the s

and the tunneling electrons are the d . This gives a simple explanation for the s ! d valence

electronic transition for cesium under pressure.

Neglecting the zero-point motion of the nuclei the pressure, P .V /, for a volume V , is given

as the change of the total energy with uniform compression as

P .V / D �dEtot=dV: (4.1)

From this, the equilibrium atomic volume V0, may be estimated via

P .V0/ D 0: (4.2)

It can be shown that for an elemental solid in the ASA, the pressure can be calculated by the

following equivalent expressions6

3PV � �dEtot=dln s D �
occX

j

ıEj=ı ln s; (4.3)

3PV D �
X

l

Z EF

ŒıEl=ı ln s�Nl.E/dE �
X

l

3PlV: (4.4)

In the above, s is the atomic sphere radius, Ej are the one electron energies, l is the angular

momentum and Nl the density of states.
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If v is the value of the potential at some radius r and vl � v C l.l C 1/r�2 is the potential

including the centrifugal term, then the radial wave function as given by the radial Schrödinger

equation can be written as

�Œr'l.E; r/�
00 D ŒE � v.r/ � l.l C 1/r�2�r'l.E; r/ � ŒE � vl.r/�r'l.E; r/: (4.5)

In order to evaluate the pressure, the potential should be frozen and only the atomic sphere

radius should change. Thus, the radial Schrödinger equation (4.5) remains unchanged and only

the radius s at which the boundary condition, Dl.E; s/ � s' 0
l
.s/='l.s/, is implemented varies.

The radial Schrödinger equation can be rewritten as a first order differential equation for

Dl.E; s/ and therefore for the energy, El.Dl ; s/,6 as in the following

�@El.Dl ; s/=@ln s D ŒDl.Dl C 1/C .E � vl/s
2�s'l.E; s/

2: (4.6)

For a bonding electron at the bottom of the band, Dl D 0, and therefore the sign of the

partial pressure is dependent only upon the value of .E�vl/. A free electron which is classically

allowed to leave the atomic sphere has .E � vl/ > 0 and from Eqs. 4.6 and 4.4 we see that

the pressure is positive (repulsive). An electron which can only escape the atomic sphere by

tunneling has .E�vl/ < 0 and therefore yields a negative (attractive) pressure. Examination of

Eq. 4.5 reveals that 'l.E; s/ has a negative curvature for a free electron and a positive curvature

for a tunneling one. This is illustrated in Fig. 4.2. Since ' 0
l
='l is a decreasing function of
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Figure 4.2: The radial wavefunctions, 'l , at the bottom and top of the band. The

red lines are for the free, and the black lines for the tunneling electrons. The sign

of the partial pressure is indicated on the right.

energy, increasing pressure raises the energy of the free electrons and lowers the energy of

the tunneling ones at the bottom of the band. Inspection of the figure indicates that under

compression 'l.E; s/must be raised and lowered for a free and tunneling electron, respectively,

in order to restore the bonding condition ' 0
l
D 0.
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For an anti-bonding electron at the top of the band Dl diverges. Therefore .E � vl/ in Eq.

4.6 may be ignored and Dl.DlC1/ always yields a positive term. Thus, irrespective of whether

we consider a free or a tunneling electron, the pressure is always positive. This behaviour is also

shown in Fig. 4.2 and closer inspection indicates that in order to restore the boundary condition

'l.E; s/ D 0 under compression, ' 0
l

must become more negative. Once again, since ' 0
l
='l is a

decreasing function of energy, the pressure always raises the energy of an electron at the top of

the band.

The above argument shows that for cesium the bottom of the band for the free s and tunnel-

ing d electrons increase and decrease in energy, respectively, with increasing pressure. Thus,

for sufficiently small volumes the bottom of the d band falls below the bottom of the s band

and starts to become populated. Upon increasing pressure, the electronic s ! d transition pro-

gresses further until cesium basically becomes a d1 metal. Smaller volumes even lead to d �p

hybridization with the 5p semicore states.

4.3.2 Band Structure of Cesium

In Fig. 4.3 the TB-LMTO band structure of bcc Cs at ambient volume is decorated with eigen-

vectors in an orthogonal representation (fat bands). Despite the fact that the occupied bands

are primarily s-like, some t2g and dz2 character is found below the Fermi level near the N -

point. Upon increasing pressure, the energy of the eg bands is lowered and around v=v0 D 0:6

they cross the Fermi level around the H -point, causing a change in the topology of the Fermi

surface (Lifshitz transition). It is interesting to note that it is exactly at this volume that the

transformation between Cs-I and Cs-II is found to occur experimentally.

In Fig. 4.4 the TB-LMTO fat bands for fcc Cs at v=v0 D 0:6 are shown. Around the L-point

the occupied band still has primarily s-character, however some degree of hybridization with

the t2g bands is also apparent. Around the X -point, the band under the Fermi level is mostly

eg-like, with a small amount of s-character. The s ! d electronic transition is evident, and

comparison with Cs-I shows that a greater amount of the occupied bands have d-character. The

transition from Cs-II to Cs-III occurs around v=v0 D 0:46, whereas around v=v0 D 0:43 the

LMTO bands show two Lifshitz transitions, with the eg bands touching the Fermi level near

the X -point and another set of bands crossing it near the K-point. It should be noted that the

Lifshitz transition was calculated to occur around v=v0 D 0:46=0:47 with FP-LMTO, which is

inherently more accurate than LMTO. In the next section we will further examine the conjecture

that the structural transition from Cs-II to Cs-III is a result of this Lifshitz transition.

The unit cell of Cs-III contains 84 atoms, with 11 different atom types. Since the band

structure is quite complicated, an analysis of the fat bands does not reveal easily understandable

information and will not be attempted here.
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Figure 4.3: Energy bands of bcc Cs at v=v0 D 1 with orthogonal LMTO charac-

ters (fat bands). Around v=v0 D 0:6, the eg bands, circled in red, cross the Fermi

level near the H -point.
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Figure 4.4: Energy bands of fcc Cs at v=v0 D 0:6 with orthogonal LMTO

characters (fat bands). Around v=v0 D 0:43, the t2g bands, circled in red, cross

the Fermi level near the X -point and another band, also circled in red, crosses the

Fermi level near the K-point.
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In Fig. 4.5 the TB-LMTO fat bands for Cs-IV at v=v0 D 0:4 are shown. Here, the s !
d transition is evident and the occupied bands display a large amount of t2g character. We

will analyze this band structure and the stability of Cs-IV in a latter section. Upon increasing

pressure a few Lifshitz transitions occur. At v=v0 D 0:3 the xz=yz band, circled in red in Fig.

4.5 crosses the Fermi level between the N and P points. Then at around v=v0 D 0:25, another

xz=yz band dips below, and the lower s band rises above, the Fermi level between the P and �

and � and Z points, respectively.
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Figure 4.5: Energy bands of Cs-IV at v=v0 D 0:4 with orthogonal LMTO char-

acters (fat bands). A number of bands, circled in red, cross the Fermi level around

v=v0 D 0:3 and v=v0 D 0:25.

4.3.3 Phonon Spectra and Electron Phonon Coupling in Cs-II

The density functional linear-response LMTO method was previously used to calculate the

phonon spectra of fcc Cs for volumes between 0:44v0 and 0:37v0.60 At the time, the exper-

imental evidence for the complex crystal structure of Cs-III had not yet been published and

despite some theoretical evidence pointing to the contrary, it was generally believed that Cs-II

undergoes an isostructural phase transition to Cs-III. Kong et al. found that around volumes of

v=v0 D 0:41 and 0:40 the TŒ1 N10�Œ��0� phonon frequencies become imaginary around � D 1=3.

They concluded that the soft phonon mode should lead to the formation of superstructures

prior to the tetragonal Cs-IV transition. The resulting superstructure arising from a TŒ1 N10�Œ
1
4

1
4
0�

phonon mode was found to contain triangular prisms, which are also present in the Cs-IV struc-

ture. The soft mode leads to an instability in the fcc structure. However, it was concluded that
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Figure 4.6: Calculated TŒ1 N10�Œ��0� phonon dispersion curves for fcc Cs at v=v0 D
0:47; 0:45; 0:43 and 0:40. The area of each circle is proportional to the electron

phonon coupling. Also shown are the FP-LMTO energy bands calculated for the

given volumes. At about v=v0 D 0:47 and v=v0 D 0:46 the bands indicated by

a red arrow cross the Fermi energy at the K and X points, respectively. As the

volume decreases, they fall further below the Fermi level.



60 Chapter 4. Theoretical Studies of High Pressure Cesium

the s ! d transition is also important in the transformation from fcc Cs to Cs-IV. Within this

section we will examine this conjecture in more detail.

In Fig 4.6 we show the calculated phonon dispersions for different volumes, along with the

FP-LMTO energy bands. The area of the circle is proportional to the electron phonon coupling.

Comparison of the phonon dispersions with those of Ref. 60 reveals the same general trends.

The phonon mode softens with increasing pressure and at v=v0 D 0:40 the phonon frequency

becomes imaginary at � D 1=4. The slight discrepancies for v=v0 D 0:40 can probably be

explained by the fact that in our calculations we used a higher charge density convergence

criterion compared to that of Ref. 60. The band structures indicate that at around v=v0 D 0:47

and v=v0 D 0:46 a Lifshitz transition occurs with bands falling below the Fermi energy around

the K and X points, respectively. Comparison with the fat bands from Sec. 4.3.2 reveals that

the first band has eg, t2g and s character, whereas the second has only t2g character. As the

energy of these bands decreases, the electron phonon coupling increases and at v=v0 D 0:40

the largest interaction is found for � D 0:375 and � D 0:25. This suggests that the two bands

which cross the Fermi level lead not only to the softening of the phonon mode, but moreover to

electron phonon coupling along it.

The LMTO Fermi surface of fcc Cs at v=v0 D 0:40 colored by the electron velocity and

the percentage of d -character of the band is shown in Fig. 4.7. The FP-LMTO Fermi surfaces

are similar to those calculated with LMTO, the main difference being that in the former the

bulge arising from the Lifshitz transition around the K and X points has a larger diameter for a

given volume. This can be explained by the fact that in the FP-LMTO calculations the Lifshitz

transition occurred at a slightly larger volume than in those performed by LMTO. The LMTO

bands are given since the coloring of the Fermi surface by the percentage of d-character has not

yet been implemented in the FP-LMTO code. We show two areas where Fermi surface nesting

can occur by a shift of approximately 1=3 along the high symmetry line connecting the � and

K points. The first is between the pocket which appears around X from the t2g bands crossing

the Fermi level and a pocket around the U point. This latter pocket is the result of another

Lifshitz transition which occurs at approximately the same volume as that around the K point.

The band also contains mixed s and d-character, as can be seen in Fig. 4.7(b). Nesting is also

evident between the pocket around the K-point and that around the X -point in the neighbouring

Brillouin zone. Once again, both are a result of bands crossing the Fermi level upon increasing

pressure. The pocket around X is seen to have a relatively small Fermi velocity and it can be

shown that the nesting function becomes large if one of the Fermi velocities involved in the

nesting becomes small.66 However, in order to verify this, further calculations in the manner of

Ref. 66 should be performed. Moreover, in both cases the nesting is between a pocket which

is purely d -like and those containing both s and d-character. Thus, fcc Cs becomes unstable

under increasing pressure due to the changing Fermi surface topology. Nesting occurs between
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pockets in the Fermi surface which arise from the Lifshitz transition. This creates a lattice

instability. Moreover, these pockets are responsible for the softening of the TŒ1 N10�Œ��0� phonon

mode and the strong electron-phonon coupling along it at � D 0:25 and � D 0:375.

Figure 4.7: LMTO Fermi surface of Cs-II at v=v0 D 0:40 colored by (a) the

electron velocity and (b) percentage of d-character. The red arrow denotes a dis-

placement of approximately Œ1=4; 1=4; 0�.

4.3.4 Wannier-like Functions of Cesium

Within this section we will demonstrate that it is possible to generate Wannier-like functions

that span only the occupied bands of a metal. We shall first look at the convergence of the

bands and the orbital with respect to the size of the supercell used. Whereas we can only hope

to reproduce the long-ranged Friedel oscillations for supercells so large that the facets of the

folded-in Brillouin zone resemble those of the Fermi surface, much smaller cells turn out to

reproduce the rough shape of the occupied orbital. This is a manifestation of what Walter Kohn

named the “nearsightedness” of the electronic structure of matter.67

The band structure of cesium at ambient conditions (Cs-I) calculated with a full sd basis set

on every atom is given in Fig. 4.8 in black. Superimposed on it in red is the band calculated

with one s orbital on every second cesium atom, obtained specifically by breaking the symmetry

and treating Cs metal as CsCl-structured CsCCs�: In most regions of the Brillouin zone the

agreement between the two is good, except it is obvious that with this supercell it is not possible

to describe the occupied part of the upper band along X � � . Nonetheless, the orbital can be

plotted and is shown in Fig. 4.8.

The result obtained by doubling the cell in all three directions is shown in Fig. 4.9. Now

the occupied band structure has improved considerably, but is not yet perfect. The body of the
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Figure 4.8: Band structure of bcc cesium folded into the 2 atom/cell (CsCl)

simple cubic Brillouin zone. The black bands were calculated with a full sd basis

on all atoms. The red bands were calculated with an s N MTO on every second

cesium atom, which is also shown. The white atoms have an s orbital placed

on them (active), whereas on the black atoms all partial waves are downfolded

(passive).
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Figure 4.9: As in the previous figure, but for a 16-atom supercell.

orbital obtained from this calculation is, however, very similar to the one generated from the

CsCl supercell. The long-ranged tail we do not monitor with the contour chosen in the figures.

Already, this orbital at low isosurfaces shows the onset of sd -hybridization. At high isosurfaces

(not shown), the orbital is completely s-like. The hybridization is evident in the dz2 character

found on the nearest neighbour atoms which have all partial waves downfolded, and therefore

can posses any orbital character. It is a result of the fact that even though the occupied band has

primarily s character, near the Fermi level some regions with t2g and dz2 character can be found
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as shown in Fig. 4.3.

The occupied bands for Cs-II with v=v0 D 0:6 are still primarily s-like, however a fair

amount of eg-character can also be found (Fig. 4.4). The bands and orbital obtained for this

structure in a 32-atom supercell are shown in Fig. 4.10. At high contours this orbital is already

no longer spherically symmetrical, with four distinct d -like lobes. We have also used the same

supercell and downfolding to compute the bands and orbital at v=v0 D 0:4, past the calculated

volume of the Lifshitz transition. The downfolded bands, and therefore the orbital, shown in

Fig. 4.11, pick up the contribution from this t2g band which has just crossed the Fermi level. At

high isosurfaces, this orbital is also no longer s-like and comparison with Fig. 4.10 shows that

the effect of increasing pressure is to raise two and lower two of the d-like lobes.

fcc Cs: 32 atoms/unit cell v/v0 = 0.6

Cs orbital
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Figure 4.10: As in the previous figure, but for fcc cesium with v=v0 D 0:6, and a 32-atom supercell.
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Figure 4.11: As in the previous figure, but for v=v0 D 0:4.
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Cs-IV with each cesium atom having a coordination of 8 is no longer a close-packed struc-

ture. It can be viewed as a stacking of prisms with a ninety degree rotation from layer to layer

in the c-direction. The TB-LMTO calculated charge density (Fig. 4.14) shows maxima in the

interstitial regions, in the center of these prisms. The N MTO obtained by placing one s-orbital

on every second cesium atom and downfolding all other partial waves is given in Fig. 4.14 and

the downfolded bands are compared to those calculated with a full basis set in Fig. 4.12. Clearly

this orbital can be obtained from that shown in Fig. 4.11 by raising two and lowering two of the

lobes even further. Despite the fact that the downfolded bands do not accurately describe just the

occupied bands, placing the Cs-IV Wannier-like function on all of the active sites and squaring

it yields a charge density which is almost identical to that calculated with TB-LMTO,39 giving

further validation that our method works. At first it may appear unintuitive that the maximum of

charge density occurs where the lobes of two different orbitals meet, however Fig. 4.13 reveals

that this is indeed the case. Thus, we have shown that N MTOs may be used to give a chemical

picture of the pressure induced electronic phase transition in cesium yielding results which are

in-line with those obtained from standard electronic structure calculations.
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Figure 4.12: As in the previous figure, but for Cs-IV with v=v0 D 0:316, and 2 atoms per unit cell.

4.3.5 Bonding in Cs-IV

Fig. 4.5 illustrates that a substantial amount of the occupied bands in Cs-IV have primarily

d-character in agreement with previous theoretical results indicating a valence occupation of

s0:2d0:8.55–57 The fat bands near the N -point show that the xz and yz bands split yielding one

occupied and one unoccupied band. In fact, the stability of the Cs-IV structure is due to the

splitting of these bands and within this section we will analyze the bonding between the xz=yz

orbitals at the N -point. Fig. 4.15 displays the Bloch sums of these orbitals for both the lower
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Region of maximal orbital overlap

Figure 4.13: One of the lobes of the Cs-IV N MTO placed on nine cesium atoms

in a single plane. The lobe which points in the other direction and lies in a different

plane has been omitted for clarity. The maximum electron density occurs where

the orbitals overlap, in the center of the prisms.

Cs IV orbital

isosurface = +/- 0.03
Cs IV electron density

Calculated by placing a Cs IV orbital 

on every white atom and squaring it.

Cs IV electron density

Obtained using TB-LMTO.

Figure 4.14: The N MTO obtained for Cs-IV (v=v0 D 0:316) with 2 atoms per

unit cell. An s orbital was placed on all of the white atoms (active), whereas the

partial waves on the black atoms were downfolded (passive). Also shown is the

charge density obtained by placing the N MTO on every white atom and squaring

it, along with the charge density obtained from a TB-LMTO calculation. The

latter charge density is colored by the ELF. The isosurface taken is 0.0063 a�3
B

.
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and upper band. The black cesium atoms and solid bonds are within the plane of the page. The

dashed bonds point towards the brown cesium atoms which are in the next layer, behind the

plane of the page. The charge density displayed a maximum in the interstitial regions where

the white circles, corresponding to center of the prisms are located (Fig. 4.14). For both the

upper and lower band, dd�-bonding between neighbouring cesium atoms within a single xz

or yz plane is found. Moreover dd�-bonding and anti-bonding interactions between cesium

atoms within a given plane forming the face of a single prism is evident. However, since both

bonding and anti-bonding interactions are present, this does not raise or lower the energy of

the band. The main difference between the upper and lower bands is that the former display

a ddı�-bonding (something in between a ı and a � bond) and the latter ddı�-anti-bonding

interactions between cesium atoms found within two different layers. Note that the maxima in

the charge density run along the direction of these ddı�-bonds. It is also interesting to note

that the lobes of the Wannier-like orbital shown in Fig. 4.14 point in the same direction as the

lobes of the xz=yz orbitals which undergo ddı� and dd�-bonding (see Fig. 4.15(c)) and not

in the direction where dd�-bonding and anti-bonding interactions are found. Thus, the splitting

of the xz=yz bands near the N -point is due to ddı�-bonding/anti-bonding along the zig-zag

regions displaying maximum electron density.

π

δπ

σ

π

x/y

z

δπ

σ

(a) (b) (c)

Figure 4.15: The xz=yz orbitals in Cs-IV at the N -point for the (a) lower and

(b) upper band. The black and brown Cs atoms are located in and behind the plane

of the page, respectively. The white circles correspond to the center of the prisms.

(c) The Cs-IV N MTO on the central cesium atom.
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4.4 Summary and Conclusions

The structural phase transitions for Cs-I!Cs-II, Cs-II!Cs-III and Cs-IV!Cs-V are experi-

mentally found near volumes where a Lifshitz transition is calculated to occur. For Cs-II, it

was shown that the transition brings about the softening of the TŒ1N10�Œ��0� phonon mode which

becomes imaginary at � D 0:25 around v=v0 D 0:40. For this volume, a large electron phonon

coupling was calculated at � D 0:375 and 0:25. Fermi surface nesting between purely d-like

pockets and those containing sd character was found to occur. The nesting was between regions

of the Fermi surface which arose due to the Lifshitz transition and the vector connecting the two

nested regions corresponded to the q DTŒ1 N10�Œ1=4; 1=4; 0� soft phonon mode. The pocket around

the X -point had a relatively small Fermi velocity, implying that the nesting function might be

quite large. However, further calculations are necessary in order to validate this conjecture.

Thus, the instability of Cs-II arises due to a purely d-like and an sd band crossing the Fermi

level. These regions of the Fermi surface nest onto each other, yielding a soft phonon mode.

Possible future work could be to determine if the same phenomena is observed for the other

structural transitions in cesium under pressure.

We have also shown that it is possible to generate Wannier-like functions for just the oc-

cupied bands in a metal and applied the method to study the electronic s ! d transition in

high pressure cesium. In order to do this, it was first necessary to find an appropriate super-

cell so that cusps just touch the Fermi level. In practice, it was found that smaller unit cells

can reproduce the rough shape of the orbital and are sufficiently accurate to give results in-line

with standard electronic structure calculations. The orbitals for Cs-I, Cs-II (v=v0 D 0:6; 0:4)

and Cs-IV have been calculated and the latter was shown to yield an electron density which

reproduces that obtained from standard electronic structure calculations. At high isosurfaces

the Cs-I orbital was found to be completely s-like, whereas for lower values it showed the onset

of sd -hybridization. An obvious progression between the orbitals at high isosurface values for

the different structures was evident. The completely spherical orbital (bcc Cs) turns into four

lobes (fcc Cs, 0:60v0) two of which are lowered and two of which are raised at higher pressures

(0:40v0). The orbital for Cs-IV can be constructed by a further lowering and raising of the lobes

so that they touch.

The stability of Cs-IV was analyzed and attributed to the splitting of the xz=yz bands near

the N -point. For the occupied band, these orbitals lead to ddı�-bonding along the direction

of the regions of high electron density in the structure. Moreover, it was noted that the lobes

of the calculated Wannier-like orbital point in the same direction as the lobes which undergo

ddı�-bonding.





Chapter 5

The Electronic Structure of ˛-ThSi2
and ˇ-ThSi2

5.1 Introduction

ThSi2 is dimorphic and can exist in one of two structures, depending upon the temperature of

preparation.68,69 In the low temperature allotrope, ˛-ThSi2 shown in Fig. 5.1(a), the silicon

sublattice forms a three-dimensional connected net, with a set of zig-zag chains running in the

x-direction (Si1 and Si3) and a set running in the y-direction (Si2 and Si4). The two sets are

connected by bonds along the z-direction. The high temperature allotrope, ˇ-ThSi2, has the

AlB2 structure and is shown in Fig. 5.1(b). Here, the silicon sublattice forms a graphite-like,

honeycomb structure with the thorium atoms in a triangular lattice halfway between the silicon

layers. In both cases, silicon is found to be threefold coordinate. The transformation between

the two structures occurs when ˛-ThSi2 is heated above 1400 ıC.68

The aforementioned structures are both superconducting with a Tc of 3.16 K and 2.41 K

for ˛-ThSi2 and ˇ-ThSi2, respectively.70 Substitution of silicon by iridium,71,72 rhodium,72

and cobalt, nickel and platinum73 has led to the preparation of other superconducting materials.

X-ray photoemission spectroscopy (XPS) on ˛-ThSi2 has been performed (see Fig. 5.11).71

The Fermi level (set to 0 eV) was shown to have predominantly thorium 6d character. A peak

appearing at � -2.5 eV was attributed to thorium 6d and silicon 3p bonding states, whereas a

peak located at � -6 eV was found to be a mixture of silicon 3s and 3p. Finally, at � -8 eV

a peak corresponding to almost pure silicon 3s was found. The results were also thought to

indicate charge transfer from thorium to silicon. To the best of our knowledge, there have not

been any XPS studies on ˇ-ThSi2.

Previous theoretical work has focused on calculating the band structure of the ˛-ThSi2 sil-

icon sublattice and comparing it with that of a graphite-like silicon sheet.74 The � interaction

between p orbitals of adjacent silicon atoms was found to be weaker for the connected net. As a
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Figure 5.1: The unit cells of (a) ˛-ThSi2 and (b) ˇ-ThSi2.

consequence, the energy of the �� level was also lowered. This led to the conclusion that when

there are more than 4.5 electrons per silicon (filling of the ��-band is underway), the ˛-ThSi2
sublattice should be stabilized over the ˇ-ThSi2 sublattice.

The interesting pressure induced structural transitions which occur in cesium have been

previously outlined in Chapter 4. It has been noted that some of these high pressure structures

are similar to those found in other solids, leading to the idea that perhaps the bonding within

different systems is of a similar nature. For example, Cs-V and Si-VI have the same space group

and nearly identical axial ratios and axial coordinates. However, theoretical investigations have

shown that Si-VI is nearly free-electron-like, whereas Cs-V was found to exhibit multi-center

d-electron bonding.53 As can be seen from Fig. 5.2, the thoriums in ˛-ThSi2 are located in the

same positions as the atoms in Cs-IV. Curiously, band structure calculations revealed that the

maximum of electron density for both structures is found along the zig-zag chains, see Fig. 5.2,

which correspond to the region along the electronegative silicon atoms in ˛-ThSi2. However,

there are no atoms located in the regions of maximum electron density in Cs-IV. This was first

pointed out by von Schnering and Nesper, who suggested that Cs-IV should therefore be viewed

as a cesium electride, CsCe�, where one electron occupies the position of two silicon atoms in

˛-ThSi2.75

In this chapter we calculate the band structure of ˛-ThSi2 and ˇ-ThSi2 using the linear

muffin-tin orbital (LMTO) method7,39 and newly developed N MTO methods (MTOs of order

N ).17,27 The main goal of this investigation is to gain an understanding of the chemical bonding
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Figure 5.2: TB-LMTO three-dimensional occupied valence electron density sur-

face for Cs-IV and ˛-ThSi2 colored by the value of the electron localization func-

tion (ELF). The isosurfaces were taken as 0.0063 a�3
B

and 0.06 a�3
B

, and the

number of valence electrons are one and twelve per formula unit for Cs-IV and

˛-ThSi2, respectively. Cesium atoms are red, thorium atoms are black, silicon

atoms are white.

in ˛-ThSi2 and ˇ-ThSi2 and to present how the N MTO method may be used to this end. In

particular, we will show that a complex bonding situation can be analyzed by using an appro-

priate N MTO minimal basis set to pick out groups of bands and that the orbitals obtained from

this minimal basis can be used to visualize chemical bonding in the solid state. We will first

consider ˇ-ThSi2 since it has a simpler structure. Next, it will be shown that a similar analy-

sis can be used to understand the bonding in ˛-ThSi2. Finally, we will provide an alternative

interpretation for ˛-ThSi2, based upon the analysis for Cs-IV presented in Chapter 4.

5.2 Computational Details

Structure of ˛-ThSi2 and Cs-IV

Both Cs-IV and ˛-ThSi2 have the space group I41/amd (141), with the thorium, cesium and

silicon atoms located in the 4a, 4a and 8e Wyckoff positions, respectively. The primitive cell

contains two formula units and has dimension a � a � c=2. Further computational details for

Cs-IV can be found in Sec. 4.2. For ˛-ThSi2, the lattice constants a and c were taken from ex-

perimental data as being 4.126 Å and 14.346 Å.76 Expressed in Cartesian coordinates, the prim-
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itive translation vectors are: T1=.a; 0; 0/, T2=.0; a; 0/ and T3=.a=2; a=2; c=2/. The primitive

reciprocal lattice vectors are G1=.2�=a; 0; 2�=c/, G2=.0; 2�=a; 2�=c/ and G3=.0; 0; 4�=c/.

Fig. 5.3(a) shows the high symmetry points in the Brillouin zone (primitive cell of recipro-

cal lattice): � D .0; 0; 0/, Z D .G3=2/ D .0; 0; 2�=c/, N D .G1=2/ D .�=a; 0; �=c/,

P D .2G1C2G2�G3/=4 D .�=a; �=a; �=c/ and X D .G1CG2�G3/=2 D .�=a; �=a; 0/.

Structure of ˇ-ThSi2
The ˇ-ThSi2 structure is hexagonal and has the space group P6/mmm (191) with thorium and

silicon located in the 1a and 2d Wyckoff positions. Its primitive cell contains one formula

unit and has dimensions
p

3a=2 � a � c. The lattice constants a and c were obtained from

experimental data68 as being 3.985 Å and 4.220 Å, respectively. The primitive translation vec-

tors, expressed in Cartesian coordinates are: T1=.a; 0; 0/, T2=.�a=2;
p

3a=2; 0/, T3=.0; 0; c/.

The primitive reciprocal lattice vectors are G1=.2�=a; 2�=
p

3a; 0/, G2=.0; 4�=
p

3a; 0/

and G3=.0; 0; 2�=c/. Fig. 5.3(b) shows the high symmetry points in the Brillouin

zone: � D .0; 0; 0/, A D .G3=2/ D .0; 0; �=c/, M D .G2=2/ D .0; 2�=
p

3a; 0/,

L D .G2CG3/=2 D .0; 2�=
p

3a; �=c/, K D .G1CG2/=3 D .2�=3a; 2�=
p

3a; 0/ and

H D .2G1C2G2C3G3/=6 D .2�=3a; 2�=
p

3a; �=c/.

LMTO Calculations

The Vosko-Wilk-Nusair (VWN)40 local exchange correlation potential (LDA) was used along

with Perdew-Wang41 generalized gradient approximation (GGA). Scalar relativistic effects

were included. In order to gain a chemical understanding of the bonding in ˛-ThSi2 and ˇ-

ThSi2, it was not necessary to take spin-orbit coupling into account, since it’s effect was found

only to split degenerate bands by an amount not exceeding� 0.2 eV. The basis set consisted of

spd LMTOs on silicon and sd LMTOs on thorium, with p and f LMTOs downfolded. Inclusion

of the thorium f orbitals in the basis was found to have a negligible effect on the band structure.

For silicon and thorium, the sphere radii employed were 131.0 pm and 216.0 pm in the case of
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Figure 5.3: The Brillouin zones of (a) ˛-ThSi2, Cs-IV and (b) ˇ-ThSi2.
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˛-ThSi2 and 125.4 pm and 214.8 pm in the case of ˇ-ThSi2. In both cases, it was not necessary

to insert empty interstitial spheres. The calculations utilized 961 and 980 irreducible points in

the tetrahedron k-space integrations42 for ˛-ThSi2 and ˇ-ThSi2, respectively. For ˛-ThSi2 and

ˇ-ThSi2 3101 and 3501 points were used to generate the density of states.

N MTO Calculations

The present version of the N MTO program is not self-consistent and requires the output files

of the self-consistent potential from the TB-LMTO program. The screening radii, aR, were

chosen to be as large as possible and non-overlapping. Therefore defining � D aR=sR where

sR is the potential sphere radius, led to a choice of � D 0:7 for silicon and � D 0:8 for thorium.

In general, the aR should be taken as 0.9 times the tabulated covalent, atomic or ionic radii. Our

choice of � gives aSi=121.5 pm, aT h=138.8 pm for ˛-ThSi2 and aSi=119.1 pm, aT h=136.1

pm for ˇ-ThSi2. In comparison, the covalent radii for silicon and thorium are 117 pm and

165 pm. The calculations showed a transfer of electrons from thorium to silicon, hence the

screening radii should be compared with the ionic radii for Si�/Th2C or Si2�/Th4C. Data for

these particular ionic radii were not available, but for silicon the value should be larger than

the covalent radius, whereas for thorium it should be smaller. Thus, the screening radii used

are appropriate for negatively charged Si and positively charged Th atoms. The downfolding

schemes and energy meshes employed for particular calculations will be stated in the results

and discussion section of this chapter.

5.3 Results and Discussion

5.3.1 Gross Features of the Band Structure of ˇ-ThSi2

Silicon and thorium have a [Ne]3s23p2 and [Rn]6d27s2 electronic configuration, yielding 12

valence electrons per unit cell in ˇ-ThSi2. The total and projected density of states is given in

Fig. 5.4. A line crossing the right hand side of the y-axis corresponds to the integrated density

of states at the Fermi energy. The projected density of states for silicon 3d , thorium 7p and

thorium 5f have been summed and given the label ‘Downfolded’. Experimental XPS data for

ˇ-ThSi2 could not be found, however the calculated density of states compares reasonably well

to that reported for ˛-ThSi2.71 The region between -12 to -8 eV has primarily Si s character; that

between -6 eV and -4 eV consists mostly of Si p; between -4 eV to -2 eV the major contributions

arise from Si p and Th d states. Later on we will show that the features in the calculated density

of states for ˛-ThSi2 are very similar to those for ˇ-ThSi2, giving an indication that the chemical

bonding within these two structures is similar in origin.

Fig. 5.5 shows the band structure of ˇ-ThSi2 decorated with eigenvectors in an orthogonal
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Figure 5.4: Calculated projected and total density of states for ˇ-ThSi2. The

integrated density of states at the Fermi energy is given by a tick on the right hand

side of the y-axis.

representation (fat bands). The lowest three bands display primarily � -bonding character, in-

line with the observation that the angle between adjacent silicon atoms is exactly 120o, suggest-

ing sp2-hybridization. Some of the sp2 anti-bonding states are also occupied and they hybridize

with thorium d -orbitals near the Fermi level, for example along A � L and M �K � � . The

� orbitals are the pz on each silicon atom and the � and �� bands are almost full, except for a

pocket around � . Despite the fact that character from thorium s and all five thorium d orbitals

may be found under the Fermi level, that arising from s and dz2 appears to be predominant,

hybridizing with the silicon � bands along � �A�L. Within the next section we will employ

the N MTO method to create a truly minimal basis set which accurately describes most of the

occupied bands. The Wannier-like functions obtained from this basis will prove to be useful in

understanding and visualizing the chemical bonding within the system.

5.3.2 N MTO Wannier-like Functions for ˇ-ThSi2

In Sec. 3.4.1 we have shown that it is possible to generate Wannier-like functions for only the

occupied � -bonding bands in graphite by placing an sp2 basis on every second carbon atom,

choosing an appropriate energy mesh, and letting the method shape the orbitals accordingly.

This same procedure may be followed to obtain a basis set which describes the three lowest

sp2 bands in ˇ-ThSi2. Thus, the three N MTOs which span the Hilbert space of the three � -
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Figure 5.5: Energy bands of ˇ-ThSi2 with orthogonal LMTO characters (fat bands).
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bonds are simply the s, px and py N MTOs on every second silicon. The partial waves on

all other atoms, the other silicons in particular, are downfolded into the tails of these orbitals.

Symmetrical orthogonalization of these orbitals yields three congruent �-bonding orbitals. In

Fig. 5.6 we show the calculated band structure of ˇ-ThSi2 obtained using this minimal basis

in red, along with the bands obtained from a full (spd on silicon and sd on thorium) basis set

in black. The two are almost identical on the scale of the figure. It should be noted that the

energies of the N MTO bands do not correspond exactly to those of the LMTO bands shown

in Fig. 5.5 due to the fact that the former are inherently more accurate and therefore lower in

energy (variational principle).

Fig. 5.6 also gives the s, px and py Wannier-like functions for silicon, along with one of

the three congruent � -bonding orbitals. The boundary conditions imply that the orbitals may
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Figure 5.6: The band structure of ˇ-ThSi2 calculated with a full (spd on Si, sd on

Th) basis set in black. The red bands have been calculated with a �-bonding basis

set (s, px and py N MTO on every second silicon atom). Also shown are the three

N MTOs along with one of the three congruent sp2-bond orbitals. The energy

meshes used for each calculation are given to the right of the band structure.
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spread out onto their nearest neighbour silicon atoms but are confined not to have any s, px or

py character on the second nearest neighbours, where orbitals have been placed. They may have

any character on the thorium atoms and examination reveals s and d -like tails in-line with the

fat bands which showed that the � -bonding bands also contain some thorium character. They

are comparable, but not identical, to the sp2 orbitals obtained for graphite in Fig. 3.4. Thus,

the lowest three bands arise primarily due to � -bonding between adjacent atoms in the silicon

sublattice. A small amount of hybridization between the sp2-orbitals and the thorium s and d

orbitals is found to occur.

It is also possible to calculate a Wannier-like function which just describes the lower bonding

�-band in ˇ-ThSi2, in the same manner as was done for graphite in Sec. 3.4.1. Here, we place

a pz orbital on every second silicon atom and choose an energy mesh which spans the energy

range of the bonding band. The downfolded band structure, given in red in Fig. 5.7, agrees well

with that obtained using a full basis set, the only deviation being along the A�L high symmetry

line. The �-bonding N MTO spreads out onto the adjacent silicon atoms where orbitals have

not been placed. It is very similar to that obtained for graphite in Fig. 3.2, except that it has

sd -like tails on the six neighbouring thorium atoms. This is in agreement with the fat bands in

Fig. 5.5 which show hybridization between the silicon � and thorium orbitals, for example the

Th dz2 and Th s along ��A�L and Th dyz along ��M �K�� . Hence, it can be concluded

that the Si �-bonding band is full and that it hybridizes with the s and d orbitals on the nearest

neighbour thorium atoms.
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Figure 5.7: The black bands are the same as in Fig. 5.6. The red bands have

been calculated with a �-bonding basis set (pz N MTO on every second silicon

atom, which is also shown).

So far we have constructed Wannier-like functions for three �-bonding and one �-bonding

band in ˇ-ThSi2. In order to obtain a truly minimal basis set, that is one with as many orbitals
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as occupied bands, it is necessary to add two more orbitals per ThSi2 unit to the basis. Since ˇ-

ThSi2 is an inter-metallic compound, some regions of the Brillouin zone do not contain exactly

six occupied bands. Therefore, unless a supercell approach is used, as was done for cesium in

Sec. 4.3.4, complete agreement between the two band structures cannot be obtained. However,

the band structure of ˇ-ThSi2 contains many cusps where the bands cross the Fermi level and

therefore it should be possible to generate a truly minimal basis which describes most of the

occupied bands accurately. The two highest occupied bands contain primarily Si ��/�� and Th

dz2 character, suggesting that two of these five orbitals might be an appropriate choice. The

bands obtained with an s and pz basis on every second silicon atom using an energy mesh

which lies just below the Fermi level are given in Fig. 5.8. They agree reasonably well to those

calculated with a full basis, except for a few regions. Further examination reveals that the bands

which are not fully reproduced are those containing Th dz2 character, for example along ��M

and K � � . At these points they jump and try to reproduce those bands having primarily Si s

character. These orbitals hybridize yielding two s��� N MTOs, one which points towards the

lower and the other towards the upper triangular thorium sublattice. The Wannier-like orbital

in Fig. 5.8 shows substantial hybridization with the dz2 orbitals on the three nearest neighbour

thoriums.
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calculated with a ��, s� basis set (s, pz N MTO on every second silicon atom).

Also shown is one of the two congruent s��� hybrid orbitals.

This analysis suggests that the Si � , � , �� and s� orbitals may be able to yield a truly

minimal basis for ˇ-ThSi2. The bands calculated in this manner do a good job of describing

the bands under the Fermi level, see Fig. 5.9. Surprisingly, even the bands which were not so

well reproduced in Fig. 5.8 are now in good agreement with the full band structure. The reason
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for this might be that a larger basis is more flexible than a smaller one. Another possibility is

that in Fig 5.9 it was possible to use an energy mesh which did not span the uppermost bands,

contrary to Fig. 5.8. In the latter case the method may not know which bands to “pick” since

many of the bands display the same orbital character.
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Figure 5.9: The black bands are the same as in Fig. 5.6. The red bands have

been calculated with a � , � , ��, s� basis set (s, pz N MTO on every silicon atom

and a px and py N MTO on every second silicon atom).

This truly minimal basis yields orbitals which are somewhat different from those presented

previously. Comparison of the s, px , py N MTOs and the � -bonding orbital in Fig. 5.6 with

that given in Fig. 5.10 shows that for the same isosurface the latter display larger tails on

the neighbouring silicon atoms. Moreover, they are no longer symmetrical with respect to the

crystal lattice since we have specifically broken the symmetry in our choice of the basis. As

was shown in Sec. 3.2.1, Wannier functions which are maximally localized and not symmetry

breaking can be obtained in a further step. This however is currently not implemented within

the program and is an area which should be worked on in the future. We also show the two

s��� hybrids obtained from this basis. Both of their lobes point between one of the triangular

faces of the thorium sublattice which lie below or above the plane of the silicons. Clearly, the

larger lobe displays a substantial amount of dz2 character on the neighbouring three thoriums.

The smaller lobe is seen to also contain contributions from orbitals on the Th atoms since it is

no longer almost completely spherical, like the � non-bonding orbital, but rather triangular in

shape. It thus becomes obvious why the red bands in Fig. 5.9 were able to reproduce even those

bands which showed primarily Th dz2 character: the Th dz2 orbitals point towards the silicons
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and bond with the s��� hybrids. The most notable difference between the orbitals obtained

using the truly minimal basis and those which describe only a single band or group of bands is

that a � non-bonding orbital on each silicon is obtained since both the � and �� orbitals are

included within the basis. This also affects the appearance of the s��� hybrid which is now

localized around a single Si.

Si1 s-orbital Si1 px-orbital Si1 py-orbital Si1 sp2-bond orbital

  isosurface = +/-0.02 isosurface = +/-0.02 isosurface = +/-0.02 isosurface = +/-0.045

isosurface = +/-0.05

Si1 π-orbital

isosurface = +/-0.02

Si2 s*π* hybrid orbital

isosurface = +/-0.02

Si2 s*π* hybrid orbital

Figure 5.10: The s, px and py N MTOs, along with one of the three congru-

ent �-bonding orbitals obtained from the downfolded (red) band structure in Fig.

5.9. Also shown is the � non-bonding orbital and the two congruent s��� hy-

brids. A � /� and a s�/�� basis was placed on the white and yellow silicon atoms,

respectively.

In conclusion, we have used the newly developed N MTO method to analyze a complex

bonding situation in an inter-metallic compound, ˇ-ThSi2. We have shown that three of the

bands, which contain six electrons, arise from sp2 �-bonding within the silicon sublattice. An-

other band (two electrons) can be described by a Si �-bonding orbital. These N MTOs hybridize

slightly with Th s and d states. The remaining two bands (four valence electrons) can be con-

structed from Si s��� anti-bonding N MTOs which hybridize strongly with the neighbouring

thorium atoms, in particular with the dz2 orbitals. The Wannier-like functions show a bonding

interaction between the s��� hybrids and the thorium atoms lying in a triangular lattice above

and below the plane of the graphite-like silicon sheet.
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5.3.3 Gross Features of the Band Structure of ˛-ThSi2

Each primitive unit cell of ˛-ThSi2 contains two ThSi2 formula units and therefore 24 valence

electrons. The total and projected density of states in Fig. 5.11 is similar to that presented

previously for ˇ-ThSi2 in Fig. 5.4 and agrees well with the experimental XPS data.71 In

particular, the region between -12 to -8 eV has primarily Si s character; that between -8 to -5

eV consists mostly of Si s and p; from -5 to 0 eV the major contributions arise from Si p and

Th d .
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Figure 5.11: Calculated projected and total density of states for ˛-ThSi2. The

integrated density of states at the Fermi energy is given by a tick on the right hand

side of the y-axis. aPosition and assignment of the peaks in the experimental XPS

data of Ref. 71

Fig. 5.12 displays the TB-LMTO band structure for ˛-ThSi2 decorated with eigenvectors

in an orthogonal representation. The fat bands are identical for Th1 and Th2, Si1 and Si3, Si2
and Si4. The only difference between Si1/Si3 and Si2/Si4 is that the features in the x and y

directions are interchanged due to the fact that the zig-zag chains in the silicon sublattice run in

the x-direction for Si1/Si3 and in the y-direction for Si2/Si4. Each atom in the silicon sublattice

is found in a trigonal planar environment and the bond angles between adjacent silicons are

119.99o and 120.01o, suggesting sp2-hybridization along the zig-zag chains. The lowest six

bands are primarily sp2 � -bonding and one distinct doubly degenerate �� band sits slightly

above the Fermi energy along P � X . In other regions of the Brillouin zone, the �� band

crosses below the Fermi level where it hybridizes with other bands, in particular the Si ��
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and Th d states. Thus, the sp2-bonding bands are full, and the sp2 anti-bonding bands are

partially occupied, in complete agreement with what was previously shown for ˇ-ThSi2. Four

distinct silicon � bands lie almost completely under the Fermi level, suggesting that both the

�-bonding and anti-bonding bands are almost full. Only a pocket, somewhat smaller than that

for ˇ-ThSi2, around the �-point is empty. The occupied bands exhibit character from all five

thorium d orbitals, however it appears that dx2�y2 character is predominant. The similarities

in the densities of states and the fat bands for the two allotropes indicates that the chemical

bonding in ˛-ThSi2 may be understood by a similar analysis as was presented for ˇ-ThSi2.

5.3.4 N MTO Wannier-like Functions for ˛-ThSi2

In Sec. 5.3.2 it was shown that the three � -bonding bands in ˇ-ThSi2 were almost perfectly

described by an sp2 basis on every second silicon atom. For ˛-ThSi2 the N MTOs which span

the six � -bands are the s and pz on Si1 and Si4, the px on Si1 and the py on Si4. Fig. 5.13 gives

a comparison between the bands calculated using this minimal basis (red) with those calculated
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Figure 5.13: The band structure of ˛-ThSi2 calculated with a full (spd on Si, sd

on Th) basis set in black. The red bands have been obtained with a �-bonding

basis set (s, px , pz N MTO on Si1 and an s, py and pz N MTO on Si4). Also

shown are the three Si1-centered N MTOs along with the three sp2-bond orbitals.

The energy meshes used for each calculation are given to the right of the band

structure.
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using a full basis. The agreement for the five lowest bands is good, however slight deviations

for the highest band, at around -5 eV, may be seen. This is a result of hybridization between

the silicon sp2 and �-bands which occurs due to the z-connections between the zig-zag chains

running in the x and y directions. For example, the Si4 py orbital interacts not only with the

Si3 py but also with the Si2 py . This is in contrast to the lack of such hybridization in ˇ-

ThSi2. Also given are the three s, px and py Wannier-like functions on Si1 along with the

three sp2 bond-orbitals obtained from symmetrical orthonormalization of these N MTOs. The

bond orbital pointing in the z-direction is not equivalent to the other two due to the fact that the

silicon-silicon bond lengths are not exactly the same. The orbitals display tails on the Th atoms,

in-line with the fat bands which revealed that the lowest six bands also contained some thorium

s and d character. They are quite similar to those for ˇ-ThSi2 in Fig. 5.6.

It is not possible to calculate a Wannier-like function which describes only the lower �-

bonding band, as was done for ˇ-ThSi2 in Fig. 5.7, due to the fact that it hybridizes with the

uppermost � -bonding band. It is on the other hand possible to construct a basis for the � and

�-bonding bands, as Fig. 5.14 demonstrates. Now, all six of the lowest sp2-bands are identical,

on the scale of the figure, to those obtained with a full basis set. Since the �-bands overlap with

others, an energy mesh spanning the whole range of the bands could not be used. Therefore,

the downfolded �-bands deviate slightly from the black bands in Fig. 5.14. The �-bonding

N MTO is very similar to that obtained for ˇ-ThSi2 in Fig. 5.7. Hybridization with the six

nearest neighbour thorium atoms is evident in the d -like tails and is in-line with the fat bands

which show regions of hybridization with for example, the Th dz2 band along P � X � � and
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the Th s band along ��N �P �X . Thus, in analogy with ˇ-ThSi2, it can be shown that the Si

�-bonding band is full and that it hybridizes with the s and d orbitals on the nearest neighbour

thorium atoms. In contrast to ˇ-ThSi2, it also hybridizes with the highest lying Si � -bonding

band.

It was not possible to choose an appropriate energy mesh which spanned just the s�/��

bands due to the fact that the s� bands overlap with the � . Thus a calculation similar to that

performed for ˇ-ThSi2 in Fig. 5.8, could not be done. However, in analogy to ˇ-ThSi2, we

have constructed a truly minimal basis consisting of the Si � and �-bonding and the Si ��

and s� anti-bonding orbitals for ˛-ThSi2. Fig. 5.15 shows that this basis describes most of the

occupied bands quite well. Again, it is surprising that even the bands displaying primarily Th

dx2�y2 character are reproduced accurately by a basis which does not contain thorium centered

orbitals. Provided that the situation is the same throughout the Brillouin zone, the agreement

between the full and downfolded band structures is somewhat worse for ˛-ThSi2 than for ˇ-

ThSi2, especially around the �-point where the truly minimal basis picks the �� bands above,

and does not adequately describe the �� bands below, the Fermi level. It is not clear whether

a supercell approach would improve agreement between the two band structures, since the ��

bands are degenerate and the �� bands are non-degenerate at � .
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been calculated with a � , � , ��, s� basis set (s, px , py and pz orbitals on Si1
and Si4, s, px orbital on Si2 and an s, py orbital on Si3).

In complete agreement with the results for ˇ-ThSi2, the individual sp2 orbitals and the � -

bonding N MTOs calculated with the truly minimal basis (Fig. 5.16) display larger tails on
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from the downfolded (red) band structure in Fig. 5.15. A � /� and a s�/�� basis

was placed on the white and yellow silicon atoms, respectively.

the neighbouring silicon atoms than those obtained using only a � basis (Fig. 5.13). In fact,

they appear very similar to those for ˇ-ThSi2 in Fig. 5.10. The same holds true for the two

s��� hybrids which point between the triangular faces in the thorium sublattice. For ˛-ThSi2
these faces lie in the yz and xz plane, whereas for ˇ-ThSi2 they are found in the xy plane. It

thus becomes clear why the major thorium contribution to the fat bands is the dx2�y2 and dz2

orbitals for ˛-ThSi2 and ˇ-ThSi2, respectively. In both cases, Th dz2-like orbitals point towards

the silicons and bond with the larger lobe of the s��� hybrids, however they are located along

different axes for the two structures.

In conclusion, we have used the N MTO method to show that the bonding in ˛-ThSi2 and ˇ-

ThSi2 can be understood in the same manner. The lowest bands arise due to � -bonding between

atoms in the silicon sublattice and the Si � bands are full. The highest bands result from Si s���

hybrid orbitals which bond strongly to Th dz2 orbitals lying on the triangular faces above and

below the silicon atoms. Within the next section we will consider an alternative interpretation

of the bonding in ˛-ThSi2, based upon its structural similarity with Cs-IV.
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5.3.5 Comparison of ˛-ThSi2 and Cs-IV

Cs-IV and ˛-ThSi2 have the same space group, with the thorium and cesium atoms located in

equivalent positions. Band structure calculations have revealed that for both structures the max-

imum of electron density is found along the zig-zag chains which correspond to the positions

of the silicon atoms in ˛-ThSi2. The analysis presented in Sec. 5.3.4 shows that the bonding in

˛-ThSi2 can be explained in the same fashion as that in ˇ-ThSi2, however it does not display

any obvious connection to Cs-IV. In Sec. 4.3.4, we have constructed a truly minimal basis for

Cs-IV by placing an s N MTO on every second cesium atom, and letting the method shape

the orbital accordingly. Examination of the orbital, given in Fig. 4.14, revealed a high degree

of sd -hybridization. It consisted primarily of two lobes which pointed towards the regions of

maximum electron density and yielded a density in-line with that obtained from standard LMTO

calculations. The fat bands for ˛-ThSi2 also show a mixture of Th s and d character, suggesting

that perhaps a similar approach may be used.

From the analysis presented in Sec. 5.3.4 it is obvious that the six � -bonding bands in ˛-

ThSi2 are full and the four �-bands (bonding and anti-bonding) are almost full. This yields ten

bands which may be filled with twenty valence electrons. Placing an s orbital on every thorium

atom leads to a Th 6s2 Si 3s23p3 (Si�/Th2C) electronic configuration. This basis differs from

that used for Cs-IV since now an s-like orbital is centered on every thorium atom. The band

structure calculated using a Si � , � /��, Th s/s� basis, along with the thorium s-like orbital is

shown in Fig. 5.17. Provided that the situation is similar throughout the whole Brillouin zone, it

does only a slightly worse job in describing just the occupied bands than the truly minimal basis

in Fig. 5.15. Previously it was shown that the shape of the orbital is more robust than the bands.

For example, for bcc Cs, even small supercells were found to reproduce the rough shape of the

orbital obtained from large ones, see Sec. 4.3.4. Thus, we do not expect that better agreement

between the two sets of bands will affect the orbital nor the interpretation substantially.

The basis yields three Si � -bonding N MTOs, very similar to those shown in Fig. 5.13,

however they are once again not completely symmetric with respect to the crystal lattice since

our choice of orbitals has specifically broken the symmetry of the system. It also yields a

� non-bonding orbital, similar to that shown for graphite in Fig. 3.1, on every silicon atom.

Finally, a thorium s-like non-bonding orbital on every thorium atom, shown in Fig. 5.17, is

obtained. It spreads out onto those nearest neighbour silicons where the sp2-orbitals have been

downfolded and is symmetry breaking and not maximally localized. As we have shown in Sec.

3.2.1, it is possible to achieve maximal localization and to restore the symmetry of the system,

however this feature is currently not implemented in the present version of the program. Future

work should focus on this issue, since it will help to distinguish if the results obtained have a

chemical significance or if they are just artifacts of the calculation. Clearly, the orbital shows

sd hybridization and appears to be similar to half of the Cs-IV Wannier-like function in Fig.
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Figure 5.17: The black bands are the same as in Fig. 5.13. The red bands have

been calculated with a Si � , � , ��, and Th s, s� basis (s, px , py , pz orbitals

on Si1 and Si4, px orbital on Si2, py orbital on Si3 and an s orbital on every Th

atom). The sp2-orbitals were placed on the white silicon atoms. Also shown is

the s-like orbital on the central thorium atom.

4.14. It contains one and not two lobes which are directed along the center of the prisms and

point towards the silicons. However, now we have two electrons per Th whereas previously we

had one electron per Cs.

Fig. 5.18 illustrates the charge density of ˛-ThSi2 decomposed into contributions arising

from the different sets of N MTOs obtained using the truly minimal basis in Fig. 5.17. Clearly,

the density obtained from the � -bonding orbitals is not symmetric with respect to the silicons,

since those atoms on which an sp2 basis has been placed (white) have a greater charge density

directly surrounding the atom as compared to those where the � -orbitals have been downfolded

(yellow). The � non-bonding orbitals yield a density which is almost identical for the two types

of silicon atoms, however at the isosurface chosen the lobes on two white atoms separated by

a translation in the x or y direction just touch, whereas those of the yellow silicons do not.

Interestingly, the density obtained from the thorium s-like non-bonding orbital has a maximum

around the yellow silicons and very little density surrounding the thoriums. Moreover, the

regions of high electron density are perpendicular to those in Fig. 4.14 for Cs-IV. This excess

of charge around the silicons where the sp2-orbitals have been downfolded, compensates for

the deficiency of charge which was seen in the density arising from the � -bonding orbitals, so

that when all of the contributions are summed, the density is nearly symmetric with respect

to the crystal lattice. The dissymmetry in the densities shown in Fig. 5.18 (a)-(d) does not

have any chemical significance and is an artifact of the method which arises due to breaking the
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α-ThSi2 electron density obtained using:

a) Si sp2 NMTOs;

d) Si sp2, Th s and s* NMTOs;  

b) Si π and π* NMTOs; c) Th s and s* NMTOs; 

e) Si sp2, π, π*, Th s and s* NMTOs. 

 

Figure 5.18: The charge density of ˛-ThSi2 obtained by: (a) placing the �-

bonding orbitals on each white silicon atom and squaring them; (b) placing a �

non-bonding orbital on each silicon atom and squaring it; (c) placing a thorium

s-like non-bonding orbital on each thorium atom and squaring it; (d) sum of (a)

and (c); (e) sum of (a), (b) and (c). The orbitals used were obtained from the truly

minimal basis employed in Fig. 5.17. The isosurfaces were taken as 0.014, 0.007,

0.002, 0.014 and 0.023 a�3
B

, respectively. The corresponding TB-LMTO charge

density calculated in the conventional way by summing over all Bloch states is

given in Fig. 5.2.

symmetry in the choice of the basis. The total density obtained from the N MTOs is very similar

to that calculated by TB-LMTO in Fig. 5.2. Thus, despite the fact that the orbitals obtained may

break the symmetry of the system, we have shown that they yield a charge density in-line with

that obtained from standard electronic structure calculations.

We have also considered a symmetric basis which is not truly minimal, that is it contains

more basis functions than occupied bands. Specifically, it consists of Si � /��, Si � /�� and Th

s/s� N MTOs. It differs from that used in Fig. 5.17, since we have added the Si �� orbitals

to the basis. The bands and orbitals obtained from this calculation are given in Fig. 5.19. The

two band structures are identical, on the scale of the figure, up until around 1.5 eV and the
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downfolded bands reproduce all of the occupied ones accurately. At the isosurface chosen, the

�-orbital appears similar to that obtained with the truly minimal basis. However, the � and

thorium s-like orbitals differ from those calculated using the basis in Fig. 5.17, in particular

since they now retain the symmetry of the crystal lattice.

The N MTO fat-bands for the Si � , Si � /��, Th s/s� and the Si � /��, Si � /��, Th s/s�

basis sets have been calculated and are given in Fig. 5.20. The fatness arising from the �-

bands is similar for both, in agreement with the observation that the �-orbitals appear to be

identical. Moreover, in both calculations the �-bands are nearly full. A comparison of the

smaller and larger basis reveals that in the former the fatness from the thorium s-orbital is found
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Figure 5.20: Energy bands of ˛-ThSi2 with orthogonal N MTO characters (fat bands).



92 Chapter 5. The Electronic Structure of ˛-ThSi2 and ˇ-ThSi2

mostly in the occupied bands and in the latter it is situated primarily in the unoccupied bands.

This implies that the sp2 orbitals of the larger basis exhibit character which was attributed to

the thorium orbitals in the smaller basis. Along � � N and � � Z fatness arising from the

thorium s orbital splits into bands below and above the Fermi level for the larger basis. These

bands also reveal sp2-character indicating that Th s - Si �� hybridization is at least partially

responsible for the stability of the system. In Sec. 4.3.5 it was shown that the stability of Cs-IV

could be attributed to the splitting of the xz/yz bands near the N -point. The Bloch functions

at N for the occupied and unoccupied bands differed primarily in that they displayed ddı�-

bonding/anti-bonding interactions, respectively, along the zig-zag regions of maximum electron

density (silicon positions in ˛-ThSi2).

The bandwidth for the occupied bands in Cs-IV is approximately 1.8 eV, whereas the oc-

cupied silicon sp2 and � bands have a spread of around 13 eV, indicating that the bonding in

Cs-IV and the silicon sublattice is very different. However, the bandwith of the thorium bands

is about 3 eV, suggesting a greater similarity with cesium. Indeed, both elements occupy the

same positions in the unit cell and for both the fat bands revealed s and d character under the

Fermi level. Moreover, it was possible to describe both sets of bands via an s-like N MTO.

Since cesium has one valence s electron, this orbital was placed on every second atom in Cs-IV.

As we have shown earlier, the thorium atoms in ˛-ThSi2 have a valence electronic 6s2 config-

uration so it was necessary to place an orbital on every atom. For the truly minimal basis set

describing just the occupied bands, the cesium and thorium N MTOs displayed two and one

lobe, respectively, directed along the center of the prisms. Thus, the Th s-like orbital appears to

be similar to half of a Cs-IV s-like orbital. However, the former is not symmetrical with respect

to the lattice and it is difficult to determine what a maximally-localized N MTO would look like

without performing explicit calculations. Perhaps future work could help to clarify this point.

The Wannier-like orbital for Cs-IV consisted primarily of two lobes describing two electrons

and thus each lobe could be associated with a single electron (a small amount of the orbital was

located around the central and nearest neighbour cesium atoms). These lobes were not found

in the same positions as the silicon atoms in ˛-ThSi2 but instead pointed towards them. From

this it can be concluded that Cs-IV is an electride, however the single electron lies between two

planes of cesium atoms and not on the interstitial Wyckoff 8e sites, (positions of the silicon

atoms in ˛-ThSi2) as was suggested by von Schnering and Nesper.75

5.4 Summary and Conclusions

Within this chapter we have shown that the N MTO method can be used to generate Wannier-

like functions for a band, or groups of bands. These orbitals can be useful to gain a chemical

understanding of bonding in the solid state. It is even possible to apply the method to study a
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metallic or inter-metallic system and to generate a truly minimal basis set which describes most

of the occupied bands accurately. The current version of the program may yield orbitals which

are symmetry breaking and it would be useful to implement a maximal localization scheme

which restores the symmetry of the system.

The method has been specifically applied to ˛-ThSi2 and ˇ-ThSi2. The analysis revealed

that bonding in both systems can be understood in a similar way. The bands lowest in energy

arise from � -bonding within the silicon sublattice. Since the unit cells consist of one and two

formula units for ˇ-ThSi2 and ˛-ThSi2, the �-bonding bands contain six and twelve electrons,

respectively. Another two (ˇ-ThSi2) and four (˛-ThSi2) electrons are found within the filled

�-bonding bands. Both of these sets of orbitals hybridize slightly with the s and d orbitals

on the nearest neighbour thorium atoms. The remaining four and eight valence electrons, in

ˇ-ThSi2 and ˛-ThSi2, are located within Si s��� orbitals which hybridize strongly with the

thorium atoms. Specifically, the lobes of the Th dz2 orbitals point towards the silicon atoms

and form a bonding interaction with the Si s��� hybrids. The occupied bands were quite well

reproduced by a Si � , � , �� and s� basis.

Another interpretation of the bonding in ˛-ThSi2, based upon the analysis presented for Cs-

IV in Sec. 4.3.4, was also considered. A truly minimal basis composed of Si � , � , �� and Th s,

s� orbitals gave quite good agreement with the band structure calculated using a full basis set.

Comparison of the occupied silicon bands in ˛-ThSi2 with the band structure of Cs-IV revealed

that the two had very different energy scales. The energy range of the occupied Cs-IV bands

was, on the other hand, more similar to that of the thorium bands and the Wannier-like orbitals

obtained for both metals also resembled each other showing a high degree of sd hybridization.

In particular, the Th s-like orbital contained one lobe pointing along the center of the prisms,

whereas the Cs-IV s-like orbital consisted primarily of two such lobes. However the former is

not symmetric with respect to the lattice and the generation of a maximally localized, symmetric

orbital is necessary in order to make any definite conclusions. The Wannier-like function for

Cs-IV indicated that the compound is indeed an electride with a single electron lying between

two planes of cesium atoms, along the center of the prisms.
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Chapter 6

The 13C NMR Chemical Shifts in (9,0)
Carbon SWNTs

6.1 Introduction

The discovery of carbon nanotubes77 has sparked intense research activity within the last

decade. These novel materials have a wide range of potential applications ranging from the

fields of nano-electronics to nano-scale biotechnology. For example they may be used as mole-

cular field-effect transistors,78,79 electron field emitters,78,80 artificial muscles78,81 or even in

DNA-sequencing.82 The wide horizon of applications stems from the fact that carbon nanotubes

may have a diverse range of weights, electronic structures, helicities, etc. Individual classes of

tubes exhibit very different physical and chemical properties. From a molecular design per-

spective, it is important to understand the experimental conditions necessary to produce tubes

with a given subset of properties and considerable effort has been placed into determining the

parameters affecting the molecular architecture of the tubes.80,83–85 Recently, advances in the

separation of metallic and semiconducting tubes,86,87 as well as tubes with different diame-

ters,87 have been made.

One of the reasons why it is so difficult to control the properties of the synthesized tubes

is that there is no stand–alone method available by which they may be fully characterized.

The length and diameter of an individual tube may be determined by AFM, STM or TEM. If

information about the bulk sample is sought then SEM, X-ray diffraction, optical absorption

and Raman scattering may be used. Unfortunately, even a combination of the aforementioned

techniques does not fully characterize a given sample.78

The large decrease in price-to-performance ratio of modern CPUs, along with the imple-

mentation of favorably scaling density functional algorithms has recently made it possible to

perform quantum-chemical calculations on the electronic structure of large single-walled nan-

otube (SWNT) fragments.88–94 Most computational solid-state and quantum-chemical studies
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of SWNTs have so far focused on geometric and electronic structure as well as mechanical

properties. It is of high importance to study electric and magnetic response properties as well,

since they are the observables of some of the most powerful and frequently applied spectro-

scopic methods used for characterizing molecules. Among those, NMR is of high practical

importance. Previous theoretical work proposed that separation of metallic from semiconduct-

ing SWNTs may be possible using high resolution 13C NMR, based on a predicted 11 ppm

difference in their chemical shifts.95,96 However, from the computations it was also concluded

that NMR could not resolve the structural properties of SWNTs.95 Values for the chemical shifts

with respect to a standard reference were not reported in Ref. 95 because of neglected terms in

the calculated shielding tensors (which were argued to be the same for different nanotube struc-

tures). It was indicated that the dependence of the NMR spectra on tube diameter and helicity

might be weak among members of the metallic and semiconducting classes, respectively. So

far only a few groups have used NMR to study the properties of nanotubes. The main diffi-

culties arise from the large magnetic inhomogeneity in the samples caused by residual catalyst

from the growth process. Before purification and annealing, very broad lines with about 1500

ppm anisotropy are observed.96,97 MAS spectra measurements have yielded isotropic shifts of

124 ppm,98 116 ppm99 and 126 ppm with side-bands ranging over 300 ppm.96,97 Recently, the

NMR of functionalized nanotubes in solution have been partially resolved into two overlapping

peaks corresponding to semiconducting (128 ppm) and metallic tubes (144 ppm).100 In all of

these experiments, the exact composition of the sample was not determined.

In this chapter, we present the first “molecular” density functional calculations of the 13C

NMR chemical shift in SWNTs. We also report the principal components of the shielding ten-

sors and indicate their orientation. Eventually, it will be desirable to perform a systematic study

on nanotubes with different diameters, helicities and electronic properties, the results of which

could aid experimental characterization of nanotube samples. However, first it is necessary to

determine suitable theoretical methods and structural models which must be used in order to

obtain meaningful results. We believe that the chemical shift for the (9,0) SWNT reported here

might already be useful in order to confirm that the aforementioned experimental estimates for

the chemical shifts are within the same range as first–principles theoretical predictions. Within

this chapter we will in particular focus on the following two issues:

� Are short SWNT fragments capped with hydrogen atoms good models for the electronic

and magnetic response properties of closed SWNTs which are capped with half of a C60

fragment?

� How do the the SWNT’s electronic and magnetic properties depend upon the size of the

tube? In particular, do these properties converge with increasing tube length, indicating

that calculations on finite sized tubes are able to give any insight into a system of infinite

length?
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6.2 Computational Details

The computations were performed with the Amsterdam Density Functional (ADF) code.101,102

In all calculations we have applied the revised Perdew–Burke–Ernzerhof (revPBE) non–hybrid

density functional.65,103–105 Full geometry optimizations of all SWNT fragments as well as C60

and the NMR reference tetramethylsilane (TMS) were carried out employing a valence triple–�

Slater–type basis set with polarization functions for all atoms (TZP) from the ADF basis set

library. The 1s shells of the carbon atoms were kept frozen for the geometry optimizations.

NMR chemical shift calculations were carried out with the all–electron TZP basis set (which

is of double–� quality for the carbon 1s shells) and the revPBE functional, employing the non-

relativistic GIAO (gauge–including atomic orbitals) methodology developed by Schreckenbach

and Ziegler106–109 as implemented in the “NMR” program of the ADF package. NMR chemical

shifts are reported with respect to TMS whose shielding was calculated as being 185.10 ppm at

this level. Because of the computational expense for the two largest molecules studied here (the

204 and 222 carbon atom fragments), not all possible chemical shifts from symmetry inequiv-

alent atoms could be calculated. However, a representative subset which includes a number of

atoms from the end to the middle of each tube fragment has been considered. We believe that

this is sufficient in order to yield conclusions about the trends which are of interest here. For

the other systems, the chemical shifts for all symmetry inequivalent carbons were calculated.

In order to assess the accuracy of our results, calculations with various basis sets and another

functional were performed on a subset of systems studied here. The results of these calculations

are discussed in Sec. 6.3.2.

Due to the fact that ADF does not support D9h/D9d symmetry, calculations on the

hydrogen–capped tubes were carried out in the D3h/D3d subgroups. This also facilitates com-

parisons with the C30–capped SWNT fragments. For the C30–capped tubes D3h/D3d symmetry

was employed with the exception of one D3 tube which was considered for comparison. For

both the smallest hydrogen and C30–capped SWNT fragments single-point calculations without

symmetry constraints were also performed. Within the numerical accuracy of the computations,

the results showed identical orbital occupancies, orbital energies and total energies to those us-

ing symmetry constraints. However, the calculations without symmetry needed a larger number

of SCF cycles in order to reach charge density convergence.

The authors of Ref. 88 have applied a correction to the HOMO–LUMO energy difference

when reporting estimated band gaps for the (5,5) and the (9,0) SWNTs. The correction was

obtained from considering Koopmans’ theorem for the C60 fullerene, under the assumption

that errors of similar magnitudes may be present for the C30–capped SWNTs. The average of

available experimental values for the IP of C60 is 7.56 eV,110–113 the average of experimentally

determined EAs is 2.68 eV.114,115 Our calculated orbital energies of 6.05 eV (HOMO) and

4.40 eV (LUMO) are of similar magnitude as the 6.40 and 3.66 eV, respectively, from the DFT
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(B3LYP hybrid functional) calculations in Ref. 88. If calculated HOMO–LUMO gaps are to be

identified with IP � EA and with the band gap of the SWNT it is seen that the calculated value

for C60 is too large. Correction terms of 1.51 eV and -1.72 eV might therefore be added to the

HOMO and LUMO energies, as was done previously in Ref. 88. However, it was noted there

that such a correction leads to a clear overestimation of the band gap. For DFT calculations,

the HOMO–LUMO gap serves as a zeroth–order estimate of the lowest excitation energy of the

system116 rather than IP � EA which could explain why the application of the correction term

leads to the aforementioned overestimation. For comparison with the results of Ref. 88, in the

following both the corrected and uncorrected values are given for the C30–capped SWNTs.

A subset of the graphics were prepared using the XCRYSDEN program.117 The orbital

isosurface plots were created with the program MOLEKEL.118 Fig. 6.8 was prepared using

MATHEMATICA.

6.3 Results and Discussion

6.3.1 The Electronic Structure of (9,0) SWNTs

A SWNT can be constructed from the rolling of a graphene sheet. It can be uniquely classified

by a vector, or more conveniently a pair of numbers .n1; n2/, connecting the two points which

meet upon rolling. This results in three classes of tubes: armchair, zig-zag and helical (chi-

ral) characterized by .n; n/, .n; 0/, .n1; n2/, respectively. Early tight-binding calculations on a

graphene sheet model showed that SWNTs should exhibit metallic characteristics if and only

if:

n1 � n2 D 3q; (6.1)

where q is an integer.119,120 However, models which considered hybridization between �-

orbitals perpendicular to the tube’s surface and sp2-� orbitals, showed that tubes satisfying Eq.

(6.1), but for which n1 ¤ n2, were found to be narrow-gap semiconductors.119–121 The band

gap was predicted to decrease as the diameter of the tube increased, due to the reduction of hy-

bridization.119,120 Tubes for which n1 D n2, were found to be metallic due to symmetry.119–122

Hybridization between �� and �� orbitals has also been shown to have an effect on the elec-

tronic structure of small-radius nanotubes.123 Low temperature STM investigations revealed

band gaps of 0.080 ˙ 0.005, 0.042 ˙ 0.004 and 0.029 ˙ 0.004 eV for the (9,0), (12,0) and

(15,0) SWNTs, respectively.124 In a recent paper studying the electronic structure of (9,0) and

(5,5) SWNTs capped by half of a fullerene, Cioslowski and co-workers showed that the former

have a finite HOMO-LUMO gap which appears to converge well with increasing tube length.88

These results have been confirmed by another group.90

Due to the absence of periodic boundary conditions in molecular calculations, it is necessary
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to saturate the carbon dangling bonds in the nanotube fragments. Often, hydrogen is assumed

to be a good choice.89,93,94,125 Each ring segment of the (9,0) tube is made up of 18 atoms and

therefore such hydrogen–capped tube fragments consisting of N segments contain 18N carbon

atoms. This results in fragments with D9h or D9d symmetry for even and odd N , respectively.

The HOMO-LUMO gaps and difference between HOMO-LUMO gaps for successively larger

fragments of the hydrogen–capped tubes are presented in Fig. 6.1(a) and 6.1(b). The number

of atoms given along the abscissa also includes the capping hydrogens, thus N D (number of

atoms)=18 � 1. The symmetry of the tubes changes with increasing N and we have indicated

in Fig. 6.1 (b) the differences for each symmetry separately. They are either given by

��ED9h
D �E.D9h/ ��E.next shorter fragment of D9d symmetry/ ; (6.2)

or by

��ED9d
D �E.D9d/ ��E.next shorter fragment of D9h symmetry/ : (6.3)

A hydrogen–capped (9,0) tube is predicted to be metallic starting with N � 6. This result

appears to be well converged with respect to the length of the SWNT studied here. The HOMOs

and LUMOs for the H–capped SWNT fragments are found to be of E symmetry and therefore

doubly degenerate. This agrees with previous calculations on hydrogen capped .n; 0/ tubes

showing that n D 6; 8; 10 afforded nondegenerate and n D 7; 9; 11 yielded doubly degenerate

HOMOs and LUMOs.125
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Figure 6.1: (a) The HOMO-LUMO energies, and (b) the difference between suc-

cessive HOMO-LUMO gaps in hydrogen–capped D9h/D9d (9,0) SWNTs. The

lines do not represent a fit to the data but were added to guide the eye. See also

Eqs. (6.2), (6.3). The total number of atoms in the tube is given along the abscissa.

It is also possible to cap a (9,0) zig-zag SWNT with half of a C60 fullerene, yielding two sets

of C60C18j tubes.88,126 In the first set even/odd j gives D3d /D3h symmetry. Rotation of one of
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the C30 caps by 40 degrees produces members from the second set which possess D3 symmetry.

It has previously been shown that the members of the former are energetically more stable and

have larger HOMO-LUMO gaps than those of the latter88 and therefore the focus of this study is

on SWNTs possessing D3d /D3h symmetry. The HOMO-LUMO gaps and difference between

HOMO–LUMO gaps for successively larger C30–capped tubes are displayed in Fig. 6.2 (a)

and 6.2 (b). The uncorrected HOMO-LUMO gaps are approximately half the size which were

previously calculated using the B3LYP functional.88,90 The corrected ones are approximately

1.1 times larger than those reported in previous work,88 due to the fact that the computational

methodology employed here produced a smaller HOMO–LUMO gap for C60 and therefore a

larger correction was added. These differences are not surprising since it is known that for many

compounds containing C, H, N, O, the B3LYP hybrid functional applied in Ref. 88 results in

HOMO-LUMO gaps which are larger than those calculated with non–hybrid density functionals

such as the one applied here (revPBE). Regardless of the addition of a correction term, the

results are seen to converge to a finite HOMO–LUMO gap. This can be seen most clearly in

Fig. 6.2 (b) which shows that the difference between successive HOMO-LUMO gaps, ��E,

approaches zero with increasing length of the tube. The symmetry of the tubes changes with

increasing j which leads to an oscillatory behavior of the HOMO–LUMO gap when comparing

SWNT fragments of different symmetry. In order to avoid this we have indicated in Fig. 6.2

(b) the differences for each symmetry separately. These ��E values converge rapidly to zero

without displaying further oscillatory behavior. A rough estimate of the lengths of the tubes for

which ��ED3h
and ��ED3d

approach zero was obtained through a linear fit of the two sets
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Figure 6.2: (a) The HOMO–LUMO energies, and (b) the difference between

successive HOMO-LUMO gaps in C30–capped D3h/D3d (9,0) SWNT fragments.

The lines do not represent a fit to the data but were added to guide the eye. See

also Eqs. (6.2), (6.3), but with D9h/D9d replaced by D3h/D3d . The total number

of atoms in the tube is given along the abscissa.
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of ��Es and extrapolation to ��E D 0. The first series is predicted to converge at � 276

and the second at � 312 carbon atoms. It must also be noted that the HOMOs and LUMOs of

these species are spatially non–degenerate, unlike the frontier orbitals for the H–capped SWNT

fragments.

The results indicate that hydrogen–capped (9,0) SWNT fragments are metallic, whereas

ones capped with a C30 hemisphere are small-gap semiconductors. Moreover, the HOMOs and

LUMOs of the former are doubly degenerate whereas those of the latter are non-degenerate.

These findings clearly indicate that in this case a hydrogen–capped tube is not a good model

for a C30–capped tube. It is also not a good model for an infinite tube which is predicted to be

a small-gap semiconductor by band structure calculations119–121,123 and experimental measure-

ments.124

For the D3d /D3h C30–capped tubes the HOMOs are of A1u/A001 symmetry and the LUMOs

are of A2u/A002 symmetry. For the D9h hydrogen–capped tubes which were calculated in D3h

symmetry, these frontier orbitals have either E01 or E001 symmetry. For the D9d hydrogen capped

tubes which were calculated in D3d symmetry, they are of either E1u or E1g symmetry. Due

to the fact that these orbitals are so close in energy, the order of their population is sometimes

reversed. Band structure calculations which did not take into account �-� hybridization and

hence predicted metallic behavior for the zig–zag fibers showed that the highest occupied and

lowest unoccupied bands were twofold degenerate of E symmetry.120

In Figs. 6.3, and 6.4 the HOMOs and LUMOs for the smallest and largest tubes with each

capping are presented in the form of isosurface plots. All of these frontier orbitals have carbon

� character however in case of the hydrogen–capped SWNTs they are localized at each end of

the tube, whereas for the C30–capped SWNTs they are delocalized over the whole fragment. At

the same time, it can be seen from Figs. 6.3 (b) and 6.4 (b) that the HOMO–1 of A1u symmetry

of the H–capped fragment resembles the HOMO of the C30–capped 222 atom fragment. Since

the HOMOs and LUMOs of the H–capped systems are localized at the ends of the fragments

it is obvious that they do not represent an occupied orbital of an infinite system. As the length

of the fragment increases, these orbitals do not yield a contribution to the electron density

along the tube (except at the ends) and must therefore be regarded as artifacts due to treating

the finite–sized systems. On the other hand, the HOMOs and LUMOs of the C30–terminated

fragments indeed seem to yield a good representation of the infinite systems. We expect that for

very long H–capped fragments the HOMO-1 and LUMO+1 shape and energy become similar

to the HOMOs and LUMOs of the corresponding C30–capped fragments. It appears that the

H–capped SWNTs are not well converged in this respect. Both the (HOMO-1)s and HOMOs

of the H–capped fragments have contributions at the tube ends which means that there should

be comparatively large Coulomb interactions present between these orbitals which are slowly

vanishing with increasing length.
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Figure 6.3: The doubly degenerate HOMO and LUMO orbitals for the (a) D9h,

90 atom, and the (b) D9d , 180 atom, hydrogen–capped SWNTs. Also shown is

the (HOMO-1) A1u orbital. The isosurfaces are ˙0:03 a.u. for the HOMOs and

LUMOs and˙0:025 a.u. for the (HOMO-1).
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Figure 6.4: The HOMO and LUMO orbitals for the (a) D3d , 132 atom, and the

(b) D3h, 222 atom, C30–capped SWNTs. The isosurfaces are ˙0:03 a.u. and

˙0:025 a.u., respectively.
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6.3.2 The NMR Chemical Shifts of (9,0) SWNTs

Our calculated value of the 13C NMR chemical shift of C60 is 145.84 ppm. It compares well

with the experimental value of 142.68 ppm.127 In order to assess the dependence of our results

on basis set and approximate density functional we have carried out additional calculations

for C60 and some of the smaller nanotube fragments. The data for C60 are collected in Tab.

6.1. As can be seen certain combinations of functionals and basis sets, such as VWN/DZP,

offer fortuitous error compensation. For instance, using the more flexible TZP with the VWN

functional instead results in a sizeable change of the chemical shift of about 9 ppm away from

the experimental value, which is to a large extent compensated when switching to the more

accurate revPBE density functional. Compared to TZP, the TZ2P basis includes an additional set

of 4f functions for each carbon and is thus prohibitively expensive for the larger systems studied

here. The effect of the additional polarization functions on the carbon shift is not completely

negligible, but also not expected to be larger than additional correlation effects as well as self–

interaction corrections that are not covered by the revPBE functional. The basis set and DFT

trends obtained for C60 are also found for the nanotube fragments that could be studied with the

TZP basis, see tables 6.2, 6.3, 6.4, and 6.5. Also, the trends obtained when using smaller basis

sets than TZP are similar for C60, the H–capped, and the C30–capped tubes. Previous experience

with NMR calculations shows that other non–hybrid gradient–corrected standard functionals

do not offer significantly better results in a systematic fashion. In summary, the revPBE/TZP

level offers a reasonably accurate description of the systems covering the main effects from

structure and electron correlation, with currently neglected correlation, self–interaction, basis

set, vibrational and temperature, and intermolecular interaction effects adding up to acceptable

Table 6.1: Dependence of the 13C nuclear shielding and chemical shift in C60 on basis set and

density functional.a

Basis EXC
b �C60

c �TMS
d Shift Basis EXC

b �C60

c �TMS
d Shift

DZ revPBE 57.654 203.96 146.31 DZ VWN 51.706 202.32 150.61

DZP revPBE 53.506 192.07 138.56 DZP VWN 46.950 190.57 143.62

TZP revPBE 39.265 185.10 145.84 TZP VWN 29.835 182.71 152.88

TZ2P revPBE 38.723 185.63 146.91 TZ2P VWN 29.144 183.28 154.14

a experimental chemical shift: 142.68 ppm
b functional
c calculated shielding constant for C60

d calculated shielding constant for TMS
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deviations between theory and experiment estimated to be about 5 ppm.

Table 6.2: Dependence of the calculated 13C chemical shift in the 90 atom H–capped (9,0)

SWNT fragment on the basis set (revPBE functional).

Nucleus a Basis Shift b Nucleus a Basis Shift b

1 DZ 128.51 3 DZ 136.37

DZP 121.20 DZP 129.11

TZP 128.69 TZP 136.87

TZ2P 130.22 TZ2P 138.16

2 DZ 143.69 4 DZ 136.20

DZP 137.64 DZP 129.60

TZP 147.14 TZP 137.99

TZ2P 148.35 TZ2P 139.28

a The numbers refer to the numbering scheme chosen in Fig. 6.5
b With respect to TMS. The calculated 13C shielding constants for TMS are listed in Tab. 6.1

Table 6.3: Dependence of the calculated 13C chemical shift in the 108 atom H–capped (9,0)

SWNT fragment on the basis set (revPBE functional).

Nucleus a Basis Shift b Nucleus a Basis Shift b Nucleus a Basis Shift b

1 DZ 127.40 3 DZ 133.90 5 DZ 141.32

DZP 119.84 DZP 127.62 DZP 135.29

TZP 127.12 TZP 135.50 TZP 144.34

TZ2P 128.66 TZ2P 136.83 TZ2P 145.61

2 DZ 134.01 4 DZ 133.37

DZP 128.00 DZP 126.35

TZP 136.38 TZP 133.87

TZ2P 137.61 TZ2P 135.10

a The numbers refer to the numbering scheme chosen in Fig. 6.5
b With respect to TMS. The calculated 13C shielding constants for TMS are listed in Tab. 6.1
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Table 6.4: Dependence of the calculated 13C chemical shift in the 132 atom C30–capped (9,0)

SWNT fragment on the basis set (revPBE functional).

Nucleus a Basis Shift b Nucleus a Basis Shift b Nucleus a Basis Shift b

1 DZ 152.18 6 DZ 132.49 11 DZ 132.05

DZP 146.16 DZP 125.63 DZP 125.15

TZP 153.77 TZP 133.84 TZP 131.99

2 DZ 151.26 7 DZ 145.03 12 DZ 131.62

DZP 144.66 DZP 137.40 DZP 124.98

TZP 152.67 TZP 145.22 TZP 132.48

3 DZ 134.87 8 DZ 147.94 13 DZ 139.71

DZP 128.40 DZP 140.42 DZP 133.51

TZP 135.62 TZP 148.20 TZP 140.68

4 DZ 133.85 9 DZ 141.06 14 DZ 147.09

DZP 126.75 DZP 134.94 DZP 140.05

TZP 134.57 TZP 142.52 TZP 147.79

5 DZ 129.14 10 DZ 133.05

DZP 122.62 DZP 126.46

TZP 130.19 TZP 134.31

a The numbers refer to the numbering scheme chosen in Fig. 6.6
b With respect to TMS. The calculated 13C shielding constants for TMS are listed in Tab. 6.1
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Table 6.5: Dependence of the calculated 13C chemical shift in the 150 atom C30–capped (9,0)

SWNT fragment on the basis set (revPBE functional).

Nucleus a Basis Shift b Nucleus a Basis Shift b Nucleus a Basis Shift b

1 DZ 152.64 7 DZ 139.72 13 DZ 129.59

DZP 146.85 DZP 133.27 DZP 123.16

TZP 154.65 TZP 140.54 TZP 130.76

2 DZ 151.45 8 DZ 131.89 14 DZ 140.74

DZP 144.86 DZP 125.40 DZP 134.56

TZP 152.93 TZP 133.10 TZP 141.92

3 DZ 135.35 9 DZ 133.15 15 DZ 134.38

DZP 128.86 DZP 126.47 DZP 127.96

TZP 135.96 TZP 134.12 TZP 135.39

4 DZ 134.18 10 DZ 148.57 16 DZ 129.32

DZP 127.04 DZP 141.23 DZP 122.61

TZP 134.76 TZP 149.02 TZP 129.87

5 DZ 129.15 11 DZ 145.29

DZP 122.43 DZP 137.88

TZP 130.02 TZP 145.65

6 DZ 146.63 12 DZ 132.31

DZP 139.59 DZP 125.50

TZP 147.28 TZP 133.21

a The numbers refer to the numbering scheme chosen in Fig. 6.6
b With respect to TMS. The calculated 13C shielding constants for TMS are listed in Tab. 6.1
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Figure 6.5: The 13C NMR chemical shifts of hydrogen–capped D9h/D9d (9,0)

SWNTs, with respect to TMS. revPBE functional, TZP basis.

All computed chemical shifts for the nanotube fragments are listed in Figs. 6.5 and 6.6

besides graphics of the SWNT fragments to allow for an easy comparison of the chemical shifts

with the position of the respective carbon atom in the tube.

We note a number of trends: For the H–capped fragments, the chemical shifts at the ends

are smaller than in the tube’s center if the carbon is directly bound to a hydrogen, otherwise

it is larger. The values in the middle of the tube seem to approach a value of about 133 ppm

from above for increasing length of the tubes. For the C30–capped fragments, the shifts of the

carbons in the middle of a fragment are always smaller than at the end. The carbon shifts in

the tips of the caps exceed the one for C60 by about 14 ppm for the longest members. The

carbon shifts in the middle of the fragments approach a value between 129 and 130 ppm, also

from above. This chemical shift is in surprisingly good agreement with the experimental values

of 126, 124 and 128 ppm quoted previously. It should be remembered that the experimental

sample was certainly not consisting of only one type of tube. Nevertheless, the agreement is

encouraging, in particular when considering — by comparison with our C60 results — that the

computed values are likely to overestimate experimental results by about 3 ppm.
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Figure 6.6: The 13C NMR chemical shifts of C30–capped D3h/D3d (9,0)

SWNTs, with respect to TMS. revPBE functional, TZP basis.
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The discrepancy between the central chemical shifts for the H–capped and the C30–capped

systems must be attributed to the different nature of the frontier orbitals. It cannot be expected

that an orbital which is mainly localized at the tube’s ends has a considerable direct contribution

to the chemical shift of a carbon residing in the middle of a tube. However, from the preceding

discussion it is obvious that there is a large effect of the HOMO on the energies of the HOMO-1

etc. which will have an influence on the 13C chemical shifts (the expression for the paramagnetic

shielding tensor contains .�Evo/
�1, the inverse of the energy differences between virtual (v)

and occupied (o) orbitals). As long as there is a noticeable interaction between the HOMO and

the HOMO-1, say, with the latter yielding an important contribution to the shielding of one

of the central carbons, the chemical shift is not converged. From our analysis of the frontier

orbitals in the H–capped and the C30–capped fragments we believe that the chemical shifts of

the latter are closer to the converged values for an infinite semiconducting (9,0) SWNT than

the former. For longer fragments, improved agreement with experimental estimates should be

expected, in particular for the H–capped systems. This is due to the fact that in both cases the

central carbon atoms should afford the same chemical shifts as the fragments approach infinite

length, unless capping effects prove to have a substantial influence on the properties of the

tubes. In order to verify this conjecture, further computational studies on longer tube fragments

are necessary.

In order to determine if the chemical shifts are dependent upon the symmetry of the C30–

capped SWNTs, a computation on the smallest tube possessing D3 symmetry was made. Com-

parison of the results, shown in Figure 6.7, with the 132 atom tube of D3d symmetry reveals

that the shifts at the end of the tube are 3.45 and 6.11 ppm larger for the former than for the

latter. Moreover for the D3 tube, shifts in the middle range from � 124-136 ppm, whereas

for the D3d tube the shifts near the middle are 131.99 and 130.19 ppm. Under the assumption

that the shifts are converged for the 132 atom D3 member, we can conclude that the D3 set

1) 157.22  9)   156.33  16) 143.34   
2) 148.71  10)  145.96  17) 127.74
3) 135.40  11)  135.48  18) 136.54 
4) 129.26   12)  124.12  19) 131.69
5) 130.83   13)  138.45  20) 137.92
6) 133.43   14) 132.36  21) 154.62
7) 140.09  15) 143.60  22) 159.88
8) 148.27      

1 2 3 4 5 6 7 8
9 10 11 12 13 14

2221201918171615

132 atoms;  D3 symmetry

Figure 6.7: The 13C NMR chemical shifts of a 132 atom, C30–capped D3 (9,0)

SWNT, with respect to TMS. revPBE functional, TZP basis.
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will have a larger chemical shift range than the D3h=D3d series, however the average of this

range will not be significantly different than the shift predicted for the energetically more stable

species. However, once again calculations on longer fragments must be made in order to verify

the influence of the caps on the electronic structure and properties of the tubes. The 132 atom

D3 tube is predicted to be 4.85 kcal/mol less stable than the D3d tube in our calculations. This

is in agreement with other DFT calculations.88

σ
33

σ
33

σ
33

σ
33

Figure 6.8: Orientation of the calculated shielding tensors for C60 and the largest

H– and C30–capped nanotube fragments. The arrows indicate the principal axes.

The arrows’ lengths reflect the magnitude of the principal shielding components.

For reasons of clarity of presentation they are not exactly proportional. The large

diamagnetic �33 component is indicated. See Tables 6.6 and 6.7 for numerical

data (180–atom H–capped tube: atom no. 5; 222–atom C30–capped tube: atoms

no. 1 and 7). See Figs. 6.5 and 6.6 for numbering.

For completeness, we also report the calculated principal components of the shielding ten-

sors. From the data collected in Tables 6.6 and 6.7 it can be seen that the shielding tensor

components converge in a similar way as the chemical shifts when increasing the tube length,

albeit not as smoothly as the isotropic shieldings. The shielding tensors are strongly anisotropic.

For C60, the shielding tensor affords a large positive component perpendicular to the “bucky-

ball’s” surface, and two negative components within the surface that are an order of magnitude

smaller (Fig. 6.8). The shielding tensors for the H–capped and C30–capped SWNTs are very
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Table 6.6: Principal components of the shielding tensors � for the H–capped (9,0) SWNT

fragments and C60, calculated at the TZP/revPBE level.

System noa �11 �22 �33 System noa �11 �22 �33

C72H18 1 -24.405 50.914 142.713 C144H18 1 -13.690 46.971 144.448

2 -40.630 -13.914 168.437 2 -31.942 -15.694 163.420

3 -27.934 -2.098 174.733 3 -14.133 -3.864 174.103

4 -30.549 -6.258 178.126 4 -15.511 -9.376 172.281

C90H18 1 -18.707 49.133 143.517 5 -11.593 -7.296 175.816

2 -20.692 -6.646 173.485 6 -13.771 -9.037 170.827

3 -20.229 -6.692 175.736 7 -9.290 -7.679 172.799

4 -18.645 -0.252 172.589 8 -8.945 -7.971 171.168

5 -32.893 -13.607 168.796 C162H18 1 -17.362 46.889 142.440

C108H18 1 -20.894 47.942 143.183 2 -12.926 -7.625 170.714

2 -34.514 -14.917 163.249 3 -8.869 -6.359 173.275

3 -14.445 -2.182 171.804 4 -8.973 -7.237 170.824

4 -15.442 -7.009 172.367 5 -9.193 -5.344 170.698

5 -13.117 -6.253 175.824 6 -7.621 -5.613 171.483

6 -13.694 -7.533 174.305 7 -10.231 -8.320 172.018

C126H18 1 -18.815 47.253 143.320 8 -12.137 -2.022 171.460

2 -14.525 -7.711 171.556 9 -30.190 -14.732 162.479

3 -10.663 -6.005 173.922 C60 -26.037 -21.053 164.885

4 -10.649 -7.638 172.019

5 -12.225 -8.094 172.502

6 -13.418 -1.923 172.117

7 -32.624 -14.784 164.328
aThe atom numbers refer to the numbering scheme chosen in Fig. 6.5
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Table 6.7: Principal components of the shielding tensors � for the C30–capped (9,0) SWNT

fragments, calculated at the TZP/revPBE level.

System noa �11 �22 �33 System noa �11 �22 �33

C132 1 -54.855 -20.547 169.399 12 -19.462 -7.134 173.223

2 -73.399 -0.788 171.485 13 -13.832 9.002 173.568

3 -13.618 -9.476 171.543 14 -19.553 2.325 177.229

4 -17.825 -5.531 174.944 15 -19.036 -11.280 177.393

5 -16.680 1.469 179.943 16 -18.627 3.486 180.745

6 -13.085 -3.738 170.601 17 -40.240 -15.727 186.494

7 -48.568 -3.745 171.960 18 -64.258 -29.661 208.347

8 -48.570 -18.930 178.213 C186 1 -73.066 -17.124 177.621

9 -51.820 19.884 159.685 2 -96.614 -7.141 200.386

10 -17.923 -3.517 173.797 3 -25.874 -6.052 178.183

11 -10.121 -4.780 174.218 4 -20.331 -8.597 182.744

12 -21.016 -0.573 179.455 5 -6.833 -4.280 177.579

13 -28.048 -15.425 176.717 6 -9.418 -4.732 177.226

14 -42.689 -28.806 183.416 7 -71.798 -29.117 207.319

C150 1 -63.216 -18.600 173.169 8 -65.714 -11.482 197.203

2 -72.678 -16.578 185.763 9 -17.876 -1.005 174.905

3 -18.683 -16.252 182.339 10 -19.904 0.733 182.108

4 -19.226 -3.985 174.222 11 -12.951 -0.791 179.374

5 -8.204 -6.767 180.216 12 -75.458 -28.498 221.134

6 -53.602 -28.239 195.313 13 -46.757 -14.467 192.941

7 -33.637 -14.688 182.012 14 -20.697 0.037 181.970

8 -21.776 -2.541 180.317 15 -17.668 -12.479 177.875

9 -13.536 -12.552 179.037 16 -16.954 -0.016 178.575

10 -55.645 -31.505 195.389 17 -54.980 17.439 173.554

11 -52.994 -11.019 182.348 18 -18.688 -8.950 172.359

12 -16.291 -0.831 172.776 19 -14.420 14.389 172.525

13 -18.489 0.746 180.770 20 -18.306 -1.153 176.089

14 -54.870 21.436 162.962 C204 1 -75.801 -19.414 182.100

15 -17.792 -4.290 171.203 2 -105.626 -10.218 211.382

16 -15.776 8.056 173.419 3 -30.247 -8.991 186.153

C168 1 -65.426 -20.424 175.059 4 -19.657 -7.014 182.098

2 -88.549 -6.774 191.149 5 -7.091 -5.820 179.295

3 -21.624 -9.277 177.436 6 -9.927 -3.326 176.71

4 -16.061 -5.150 176.648 7 -10.009 0.781 176.925

5 -11.231 -5.494 178.138 C222 1 -82.120 -16.480 185.153

6 -6.959 3.786 176.016 2 -114.918 -10.313 221.639

7 -15.480 3.244 179.219 3 -36.064 -6.003 187.021

8 -9.917 1.730 169.453 4 -22.210 -10.705 188.240

9 -59.091 -7.026 186.617 5 -7.639 -4.958 178.661

10 -65.415 -21.775 194.876 6 -9.607 -2.196 177.682

11 -53.849 20.352 167.893 7 -9.012 -2.062 176.789
aThe atom numbers refer to the numbering scheme chosen in Fig. 6.6
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similar in the tube’s center. These, as well as the shielding tensors at the tip of the caps in

the C30–capped systems are qualitatively comparable to C60 in the sense that the large diamag-

netic component is perpendicular to the carbon framework. Generally, in the middle of the tube

fragments, the negative components within the surface are significantly smaller in magnitude

than for C60. The smaller chemical shift for the (9,0) SWNT compared to C60 is seen to result

both from an increase of the magnitude of the positive �33 component and a decrease of the

magnitude of the negative �11 and �22 components.

6.4 Summary and Conclusions

In this chapter we have presented the results of density functional calculations on the NMR

chemical shifts of single-walled carbon nanotube (SWNT) fragments. The study was carried

out for the nonhelical (9,0) system. In agreement with recent computational and experimental

studies, the (9,0) SWNT is predicted to have a finite band gap. The analysis of the energies and

the nature of the frontier orbitals indicates that hydrogen–capped tube fragments are not neces-

sarily good models for the infinite systems, at least not at sizes which are currently accessible

to first–principles molecular calculations. The HOMO and LUMO themselves need to be con-

sidered as artifacts when making attempts to compare with the infinite systems. In contrast, the

C30–capped SWNT fragments appear to represent good models for the infinite systems. Their

properties converge reasonably fast with increasing length of the fragments. The chemical shift

for the (9,0) SWNT is estimated from our calculations to be around 130 ppm which is in en-

couraging agreement with experimental estimates. Comparison between a tube of D3d and one

of D3 symmetry indicates that tubes in the latter set may have a broader chemical shift range,

whose average lies near the value predicted for the D3d=D3h series. When taking the theoretical

predictions by Latil et al.95 for the difference between semiconducting and metallic SWNTs

into consideration (metallic systems were found to be 11 ppm less shielded), and assuming that

the result for the (9,0) tube is typical for a semiconducting system, metallic tubes’ chemical

shifts can be expected to be close to that of C60. Future work needs to address the influence of

the caps, diameter and helicity on the properties of SWNTs.





Chapter 7

Magic (C60)n–Metal Compound
Clusters

7.1 Introduction

Experimental work on fullerenes coated with alkali-metal atoms,128 alkaline-earth metal

atoms129 and transition-metal atoms,130 has revealed that each metal-C60 cluster displays very

different behaviour and properties. The thermal stability of such clusters can be measured by

Time of Flight (TOF) mass spectrometry. Particularly stable structures may be identified by

a set of pronounced, commonly dubbed as magic peaks, in the mass spectra. The enhanced

stability of Ba32C60 was attributed to so-called geometrical shell filling.129 It was postulated

that each Ba atom lies on top of one of the 12 pentagonal or 20 hexagonal faces of the fullerene

and completion of this first metallic layer leads to increased stability. On the other hand, sim-

ilar experiments showed that (K6C60)nKC is magic due to electronic shell filling.128 The C60

LUMO is triply degenerate and can therefore accommodate six electrons. Thus, a transfer of the

valence [4s1] electrons from 6 K atoms would yield a particularly stable structure. Recent work

using a novel experimental set-up has revealed a different set of magic peaks for potassium and

barium fullerene clusters,131 which cannot be explained by either one of the aforementioned

arguments.

In the experiments of Martin et al.,128,129 the clusters were produced in a low-pressure,

inert gas condensation cell cooled by liquid nitrogen. After being transported to a high vac-

uum chamber they were photoionized. In order to enhance the intensity of the magic peaks

it was necessary to heat the clusters either with the same laser pulse used for ionization, or

by a second pulse which arrived after the ionizing laser. The new experimental set-up con-

tained a novel heating/cooling stage mounted directly after the cluster source.131–133 Here,

the clusters attained a temperature varying between 150 K to 1800 K via thermalization with

a He bath for a time span on the order of 6 1ms. Afterwards, they were cooled to 150 K
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then photoionized and measured by TOF mass spectrometry. The heating method had a sig-

nificant effect on the experimental results. For Ban(C60)m, the magic peaks corresponded

to .m; n/ D .2; 3/; .3; 5/; .4; 7/; .5; 10/; .6; 13/ and .7; 14/, whereas for Kn(C60)m they were

found to be .m; n/ D .2; 4/; .3; 6/; .4; 8/; .5; 11/; .6; 14/ and .7; 17/, neither of which is in

agreement with geometrical nor with electronic shell filling.131 The TOF mass spectra of the

two systems can be found in Fig. 7.1. Since photon absorption occurs within nanoseconds, it

was postulated that the clusters produced previously may not be the most energetically stable

configurations. The new experimental set-up overcomes this: the longer annealing times allow

the clusters to explore the potential energy surface, thereby increasing the probability to reach

the global energy minima.
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Figure 7.1: TOF mass spectra of (a) Ban(C60)m compound clusters after an-

nealing to 1780 K, and (b) Kn(C60)m compound clusters after annealing to 900

K.131

Despite the fact that theoretical work on exohedral fullerene clusters is abundant, only a

few papers specifically consider a single C60 with a varying amount of K atoms. Electronic

structure calculations have been performed on KnC60 with n D 1; 2; 3;134,135 n D 6; 12135 and

n D 32.136 To the best of our knowledge, there has not been any previous computational work

on Ba containing clusters, however DFT has been used to study CanC60, with n D 12; 20137

and n D 32.136,137

The goal of this study was to determine the nature of the stability of the newly observed

magic clusters. First, we present some preliminary calculations on MnC60 (M D K, Ba) clus-

ters in order to gauge if the computational methodology used gives results consistent with pre-

vious literature. Moreover, this preliminary study reveals the preferred bonding mode of potas-

sium and barium to a single C60 and suggests how the metals may complex with more than one

fullerene. Due to the formidable computational cost the ab initio calculations were limited to

clusters containing two C60s. First, the energetically most stable species are determined and the

bonding for both metals is analyzed. Secondly, the finite temperature contributions to the Gibbs
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free energies are obtained and their effect on the cluster stability is determined. The entropic

contributions are shown to be important in determining the cluster stability. Due to the compu-

tational expense, they are usually not considered despite the fact that at finite temperatures the

most stable clusters minimize the free energy.138 Finally, singly and doubly charged species are

considered briefly.

7.2 Computational Details

The computations were performed with the Amsterdam Density Functional (ADF)101,102 and

the Turbomole139 program packages. In the ADF calculations we have applied the revised

Perdew–Burke–Ernzerhof (revPBE) non–hybrid gradient density functional65,103–105 along

with the Vosko-Wilk-Nusair140 (VWN) local density approximation (LDA). Full geometry opti-

mizations were carried out employing a valence triple–� Slater–type basis set with polarization

functions for all atoms (TZP) from the ADF basis set library. The core shells up to 1s, 4p, and

2p of carbon, barium and potassium, respectively, were kept frozen. Despite the fact that car-

bon and potassium are not heavy nuclei, all geometry optimizations with ADF were performed

using the zeroth-order regular approximation (ZORA) Hamiltonian141–143 in order to facilitate

comparison with the “relativistic” barium containing clusters. The ADF code was used to obtain

geometries and bonding energies of high quality, and to perform the bonding energy analysis in

terms of fragment orbitals. Additional finite temperature enthalpic and entropic contributions to

the Gibbs free energy were calculated with the Turbomole code at a somewhat lower accuracy.

The Turbomole calculations employed the PBE65,144–146 functional since the revPBE functional

was not available. We have used the “resolution–of–identity” (RI)147,148 technique along with

the polarized split–valence SV(P) basis set augmented with the default auxiliary (RI) basis sets

from the Turbomole basis set library in order to reduce the computational effort. Relativistic

effects were considered in these calculations via a scalar relativistic (6s6p5d) / [4s3p3d] ECP

basis with 46 core electrons.139,149 A subset of the graphics were prepared using the XCRYS-

DEN program.117

For the systems containing an even number of electrons, when a given symmetry constraint

arose in a half-filled HOMO, a symmetry breaking distortion was applied to the cluster, resulting

in a geometry with a closed-shell electronic configuration, unless otherwise stated. When an

odd number of electrons were present, the structures presented here afford a single unpaired

valence electron (doublet) and unrestricted DFT calculations were performed.

It was computationally too expensive to carry out numerical–derivative frequency calcula-

tions with ADF. Therefore, the ADF geometries were reoptimized with Turbomole, using the

less flexible SV(P) basis set and the RI technique in order to keep the computational effort

manageable. The same computational settings were used to perform analytical calculations of
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the vibrational frequencies150,151 and finite temperature contributions to the Gibbs free energy

based thereupon. At times, it was necessary to lower the symmetry and re-optimize the cluster

geometry in order to obtain minima. However, the energy changes were much smaller than the

bonding energy differences obtained from ADF and Turbomole and are most likely explained

by the different basis sets applied and the use of the RI technique. These cluster geometries

were not reoptimized with ADF due to the immense computational cost involved. The BEM

and GFM presented in the main text were obtained by using the ADF energies (which must

be considered more accurate than those obtained with Turbomole because of the higher quality

basis set applied), augmented with the finite temperature corrections obtained from the Tur-

bomole frequencies calculations. Thermochemical properties were calculated, using standard

expressions, at the experimental temperature (150 K) and pressure (10�6 Torr).

Within this chapter we will consider the general reaction

nM CmC60 �!Mn.C60/m; (7.1)

where M D K, Ba and m D 1; 2. It will prove useful to compare thermochemical quantities

divided by the number of metal atoms, n, in the above reaction. Thus, if E.x/ is the energy of

species x, we will define the bonding energy per metal atom, BEM , as

BEM D E.Mn.C60/m/ � n �E.M / �m �E.C60/

n
: (7.2)

The change in the: Gibbs free energy per metal atom, GFM , finite temperature enthalpy cor-

rection per metal atom, HEC M , and the entropy per metal atom multiplied by the temperature,

TSM , will be defined similarly to the BEM in Eq. 7.2 for the reaction given in 7.1.

To understand why it is the BEM and GFM which determine the stability of a cluster

consider, for example, a mixture of 6 fullerene molecules and 3 Ba atoms. This could lead to

the formation of: (i) three Ba(C60)2 clusters; (ii) one Ba3(C60)2 cluster and four C60 molecules;

(iii) one Ba2(C60)2 and one Ba(C60)2 cluster along with two C60 molecules. The total Gibbs

free energy change for the formation of these clusters from C60 molecules and Ba atoms would

then be (using the computed values from Sec. 7.3.2): (i) 3�-53.24 kcal/mol = -159.72 kcal/mol;

(ii) 3 �-60.90 kcal/mol = -182.70 kcal/mol; (iii) 2 �-55.73 kcal/mol - 53.26 kcal/mol = -164.72

kcal/mol. Thus, (ii) results in the most negative Gibbs free energy for the system showing that

the preferred reaction yields Ba3(C60)2. The difference between the Gibbs free energy changes

for two reactions per metal atom is then equal to the difference between the average GFM

for a given system. For example, the average GFM for (ii) and (iii) are -60.90 kcal/mol and

.2 � �55:73 � 53:24/=3 D -54.90 kcal/mol, respectively. Subtracting (ii) from (iii) gives 6

kcal/mol. The difference between the respective total Gibbs free energy changes per metal

atom is .�164:72C 182:7/=3 D 6 kcal/mol. The same holds true for the bonding energies. It

can thus be seen that the BEM and GFM reflect the stabilities of the clusters.
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In order to clarify the nature of the bonding, we performed a fragment orbital analysis,

using the distorted fullerenes (as found in the optimized clusters) and the free metal atoms,

as fragments.102 This yielded the composition of the molecular orbitals of the metal-fullerene

cluster in terms of the occupied and unoccupied orbitals of Ba/K and C60.

7.3 Results and Discussion

7.3.1 BanC60 and KnC60 Clusters

The geometries of five possible isomers of M C60 (M D K, Ba) were optimized. The metal

atom may lay on top of: a hexagonal face (M C60
hex), a pentagonal face (M C60

pent ), a carbon

atom (M C60
atom), a bond belonging to two hexagonal faces (M C60

b1) or a bond belonging

to one hexagonal and one pentagonal face (M C60
b2), of the fullerene. Table 7.1 gives the

BEM and Mulliken charges for these different structures. For both potassium and barium,

the M C60
hex isomer had the lowest BEM , in accordance with previous theoretical calcula-

tions for KC60.134,135 M C60
b2 .M D K, Ba) and BaC60

atom are not minima on the potential

energy surface, and optimized to yield M C60
pent and BaC60

b1 , respectively. Examination of

the charges revealed an almost full transfer of the [4s1] valence electron from potassium to the

fullerene LUMO. A full charge donation between the barium atom and C60 does not occur, as

can be seen in the Mulliken charges of � 1.3.

Hamamoto et al., have found that for the most stable isomers of KnC60 (n D 1; 2; 6) and

K3C60
�, the potassium atoms are located on top of the hexagonal fullerene faces. Moreover, in

order to reduce the Coulombic repulsion, the positively charged potassiums are as far apart from

each other as possible.135 With this in mind, we have optimized possible structures for KnC60

(1 � n � 6), shown in Fig. 7.2. Since it was not the main goal of this work to study clusters

Table 7.1: The BEM and Mulliken charges for different isomers of M C60 (M D K, Ba). All

energies given in kcal/mol.

M D K M D Ba

Isomer Symmetry BEM Charge BEM Charge

M C60
hex (Cs) -38.87 0.92 -43.75 1.31

M C60
pent (Cs) -36.98 0.93 -38.14 1.31

M C60
atom (Cs) -34.44 0.93 - -

M C60
b1 (C2v) -33.47 0.93 -40.78 1.27

M C60
b2 (Cs) - - - -
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containing one fullerene, different geometrical alternatives were not considered. Nonetheless,

we can examine the BEM and average Mulliken charges per potassium for the optimized clus-

ters, given in Fig. 7.3(a) and 7.3(b), respectively. In agreement with previous work,134,135 the

BEM becomes less negative and the charge per atom decreases, with increasing n. In order to

decrease the Coulomb repulsion between potassium atoms, progressively less charge is donated

to the C60 unoccupied orbitals as n increases. This implies a weaker ionic bonding, and more-

over a decrease in the amount of energy gained upon cluster formation for larger n. However, as

will be shown later, it is not the BEM , but the GFM , which determines the most stable cluster.

KC60; Cs K2C60; Cs
K3C60; Cs

K4C60; C2h K5C60; C2
K6C60; C2h

Figure 7.2: Optimized geometries and symmetries of the KnC60 (1 � n � 6) clusters.

We have also optimized possible isomers of BanC60 (n D 2; 3), with the same configuration

as the potassium clusters shown in Fig. 7.2. The BEM and average Mulliken charges per bar-

ium can be found in Fig. 7.3(c) and 7.3(d), respectively. The BEM for the barium clusters are

�5 kcal/mol lower than for the potassium, indicating stronger C60–Ba bonding. Once again, the

average charge on the metal decreases with increasing n. However, in contrast to the potassium

clusters, the structure with the lowest BEM contains two, not one, metal atoms.

From this initial study on potassium and barium interaction with C60, the following conclu-

sions can be made. First of all, both prefer to bond to a hexagonal fullerene face. However,

the nature of the metal–C60 interaction is different in each case. For potassium, the bonding

appears to be purely ionic with a decreasing amount of charge transfer to the C60 per K (and

therefore a decreasing BEM ), with increasing n. In the case of barium, the bonding cannot be

completely ionic, otherwise charges of �2 should be calculated. Another mechanism must be
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Figure 7.3: (a) BEM and (b) average Mulliken charges per K atom, of the

KnC60 (1 � n � 6) clusters. (c) BEM and (d) average Mulliken charges per Ba

atom, of the BanC60 (1 � n � 3) clusters.

considered which also explains the minima in the BEM occurring for Ba2C60.

7.3.2 Bonding and Stability of Ban(C60)2 (1 � n � 6) Clusters

The optimized geometries and BEM of possible Ban(C60)2 (1 � n � 6) isomers are given in

Fig. 7.4. Due to the fact that irradiation of solid C60 with visible or ultra-violet light induces

a [2+2] cycloaddition leading to the formation of C60 dimers,152,153 we have considered struc-

tures containing a (C60)2 carbon framework, 7.4.1 and 7.4.4. Examination of the most stable

n D 1; 2 clusters (7.4.2 and 7.4.5) shows that their BEM is much lower (40-45 kcal/mol),

indicating that a C60—bridging-Ba bond is much stronger than the bond between two C60s.

Moreover, comparison of 7.4.6 and 7.4.8 reveals that the C60—bridging-Ba bond is also more

favourable than a Ba-Ba bond. The most stable structures for a given n all have a C60-Ban-C60

arrangement, with the barium atoms sandwiched between the two fullerenes (Set A). However,

as n increases, the BEM of clusters with a Ba-C60-Ba.n�2/-C60-Ba configuration (Set B) be-

comes comparable. For example, the BEM of 7.4.11 is only 1.3 kcal/mol less negative than

that of 7.4.12. It must be noted that for the Ba(C60)2 cluster belonging to Set A, we consid-

ered geometries where the barium atom was situated between: two hexagonal rings (with D3d ,

D3h, C2v and C2h symmetries); two hexagonal rings rotated 30ı with respect to each other
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BEM = -29.42 kcal/mol

Symmetry: D2h

BEM = -38.60 kcal/mol

Symmetry: D3d

BEM = -69.48 kcal/mol

Symmetry: D2h

BEM = -56.76 kcal/mol

Symmetry: C2h

BEM = -73.23 kcal/mol

Symmetry: C2v

BEM = -47.75 kcal/mol

Symmetry: C2h

BEM = -68.78 kcal/mol

Symmetry: C2h

BEM = -59.00 kcal/mol

Symmetry: C2h

BEM = -63.89 kcal/mol

Symmetry: C2

BEM = -62.59 kcal/mol

Symmetry: C2v

BEM = -61.90 kcal/mol

Symmetry: D3d

BEM = -57.92 kcal/mol

Symmetry: C2h

BEM = -28.28 kcal/mol

Symmetry: C2v

BEM = -73.43 kcal/mol

Symmetry: C2h

7.4.1 7.4.2

7.4.3 7.4.4 7.4.5

7.4.6 7.4.7 7.4.8

7.4.9 7.4.10

7.4.11 7.4.12

7.4.13 7.4.14

Figure 7.4: Optimized geometries and symmetries of the Ban(C60)2 (1 � n � 6) clusters.
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(D3 and C2 symmetries); two pentagonal rings (D5h and C2v symmetries) and two pentagonal

rings rotated 27ı with respect to each other (D5d and C2h symmetries). Singlet and triplet con-

figurations were computed for all isomers with D5h;D5d ;D3h;D3d and D3 symmetries. The

energies of all of the structures were within � 7.5 kcal/mol of each other. However, the iso-

mer lowest in energy contained a barium atom between two hexagonal rings and C2h symmetry

(7.4.2). Hence, in all of the subsequent starting geometries (except 7.4.1 and 7.4.4) the two

hexagonal faces of C60 were chosen to point towards each other. Configurations containing �h

or �v symmetry operations were considered, and only the clusters with the lowest energy are

shown in Fig. 7.4.

In order to clarify the nature of the bonding for the most stable structural alternatives for a

given n (7.4.2, 7.4.5, 7.4.8, 7.4.10, 7.4.12 and 7.4.14) we first of all reoptimized these geome-

tries with a higher integration accuracy and then performed a fragment orbital analysis, using the

distorted fullerenes (as found in the optimized cluster) and the free Ba atoms, as fragments.102

This yielded the composition of the molecular orbitals of the metal-fullerene clusters in terms of

the occupied and unoccupied orbitals of Ba and C60. In Ba(C60)2, all of the occupied orbitals,

with the exception of the HOMO, were composed of occupied orbitals of the two distorted

fullerenes and the Ba core and semi–core orbitals. The HOMO itself, on the other hand, was

made up primarily of unoccupied C60 orbitals and contained some Ba 5dz2 and 5dx2�y2 charac-

ter (6% total). This clearly shows that an important component of the bonding in the Ba(C60)2

cluster originates from an electron transfer from the Ba 6s orbital to the LUMOs of the two

fullerenes. However, despite the fact that one might expect a Ba2C ion to be strongly stabilized

when placed between the two negatively charged C60 moieties, a complete transfer of the two

valence 6s electrons to the C60 unoccupied orbitals does not occur. This finding is supported

by a calculated Mulliken charge of 1.603 on the Ba atom. Instead, we find back donation into

the empty Ba 5d orbitals leading to Ba 5d–C60-�� bonding, which is seen clearly in Figure

7.5. Thus, our results support the classification of Ba as an “honorary d-element” by Pyykkö et

al.154–156 A similar analysis revealed that for 2 � n � 6, the occupied orbitals, except for the n

highest, were composed primarily of occupied C60 and Ba core and semi–core orbitals (in some

cases a small amount of Ba 5d character was also present). The n highest orbitals, on the other

hand, were composed primarily of the C60 LUMOs, other unoccupied fullerene orbitals and

also contained barium 5d character. For n D 5; 6, some Ba 6s character could also be found.

As n increases the Ba atoms become close enough to each other so that they may also form

Ba-Ba bonds, leading to the formation of a metal cluster between the C60s. For example, � -

bonding between nearest neighbor Ba atoms is evident in the HOMO-3 of Ba6(C60)2, shown in

Figure 7.6.

The aforementioned analysis illustrates that the Ban(C60)2 clusters exhibit ionic bonding due

to a transfer of the Ba 6s electrons to the unoccupied fullerene molecular orbitals (BEMionic),
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Figure 7.5: The Ba(C60)2 HOMO, isosurface = ˙0.023 a.u. It is composed

primarily of the LUMOs of the two fullerenes and contains some Ba 5dz2 and

5dx2�y2 character. The Ba atom is purple, C atoms are black.

Figure 7.6: The Ba6(C60)2 HOMO-3, isosurface = ˙0.031 a.u. It contains

primarily Ba 5dyz , 6s and some C60-�� character. The Ba atoms are purple,

C atoms are black.

covalent bonding between the Ba 5d and C60-�� orbitals (BEMcovalent ) and metal-metal bond-

ing between the Ba atoms (BEMBa�Ba). Moreover, the fullerenes undergo small geometrical

distortions from icosahedral symmetry in the formation of the clusters, (BEMgeo). Thus, we

assumed that:

BEM D BEMionic C BEMcovalent C BEMBa�Ba C BEMgeo: (7.3)

BEMgeo is easy to calculate exactly and varied between 2.3 to 6.6 kcal/mol. A systematic trend

could not be observed. The Ba 5d orbitals are involved in both the Ba-Ba and covalent Ba–C60

bonding. Hence, a single-point energy calculation where the Ba 5d orbitals have been removed
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from the basis set should yield approximately the ionic bonding energy. For large n however,

the 6s orbitals also participate in Ba-Ba bonding, thus this approximation becomes less valid as

n increases. In order to estimate BEMBa�Ba separately, we performed energy calculations on

Ban clusters whose coordinates were fixed to be equivalent to those in the Ban(C60)2 clusters.

The BEMBa�Ba varied between -1.8 to -6.0 kcal/mol and once again no systematic trend could

be found. BEMcovalent was obtained by subtracting the geometrical, Ba-Ba and ionic bonding

energies from the total bonding energy. Our approximations include various small reorganiza-

tion effects. For instance, the BEMBa�Ba term as it is calculated here refers to a neutral Ba

cluster whereas in the metal–C60 systems charge is transferred to the C60 moieties which will

affect BEMBa�Ba to some extent. Likewise, the BEMcovalent term also contains the change

of the bonding within each Ban cluster upon removal of some electronic charge due to the Ba

�! C60 donation and other electronic reorganization effects. There is obviously no unique way

how the total bonding energy may be split up into different contributions. We believe that our

analysis is meaningful within its limitations posed by the approximations that were made, and

that it offers insight into the different modes of bonding present in the Ban(C60)2 clusters.

Fig. 7.7 shows the important BEMionic and BEMcovalent contributions, along with the

average Mulliken charge per Ba. Note that the BEM are slightly different than those shown

in Fig. 7.4 since they were obtained using a higher integration accuracy. For 1 � n � 3,

the dominant interaction is ionic bonding. The magnitude of BEMionic decreases steadily
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Figure 7.7: (a) average Mulliken charge per Ba and (b) relevant contributions to

BEM , for the most stable Ban(C60)2 (1 � n � 6) clusters.
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with increasing n, as does the average charge per metal atom. However, the magnitude of

BEMcovalent increases with increasing n, being the dominant interaction for n D 5; 6. For

n D 4, BEMionic v BEMcovalent . This can be understood by considering the following.

For large n, full electron donation to the unoccupied fullerene orbitals cannot occur, since the

electrostatic repulsion between the Ba2C ions would be too large for the cluster to be stable.

Instead, as n increases so does the back donation to the Ba 5d orbitals, stabilizing clusters where

all of the Ba atoms are located between the two fullerenes. Thus, the d-element character of Ba

is essential when attempting to rationalize the structural features of these clusters.

The BEM data confirm that the Ba3(C60)2 cluster is the most stable. Its stability results

from a balance mainly between two reverse trends: on the one hand a decreasing cluster stabi-

lization from the Ba! C60 electron transfer and on the other hand an increasing stability from

C60! Ba back donation, as n increases. However, the BEM of Ba2(C60)2 is only 1.1 kcal/mol

higher. In order to explain the magic character of Ba3(C60)2, one needs to take the entropic and

enthalpic contributions at 150 K into consideration. This will be done in the following section.

7.3.3 The Gibbs Free Energy of Ban(C60)2 (1 � n � 6) Clusters

In an equilibrium mixture at constant temperature T and pressure p, it is ultimately the Gibbs

free energy of a species x, G.x/, which determines the stability of a given structure. The Gibbs

free energy is defined as

G.x/ D H.x/ � TS.x/: (7.4)

Here H.x/ and S.x/ are the enthalpy and entropy at the given temperature and pressure. The

former is a sum of the energy of the species at 0 K plus the finite temperature enthalpy contri-

bution,

H.x/ D E.x/CHEC .x/: (7.5)

Both HEC .x/ and S.x/ are a sum of terms arising from rotational, translational, vibrational

and electronic degrees of freedom. Upon defining HEC M and �TSM as the change in the

finite temperature enthalpy correction per metal atom and the change in entropy per metal atom,

multiplied by the temperature, for reaction 7.1, then GFM may be written as

GFM D BEM CHEC M � TSM: (7.6)

In the previous section we considered the first term of Eq. 7.6, BEM . Within this section we

will analyze the last two terms and finally the GFM itself.

Fig. 7.8(a) shows that �TSM decreases with increasing n, implying that the entropic

contribution to the GFM destabilizes larger clusters to a lesser extent than smaller ones. To

understand why this should be the case consider a reaction between 2n C60 molecules and n Ba

atoms. The two limitting cases would be the production of the largest and the smallest possible
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clusters. The former would yield Ban(C60)2 and .2n�2/C60, a total of 2n�1 molecules, and the

latter n(Ba(C60)2), a total of n molecules. Clearly, the formation of the largest possible cluster,

along with .2n � 2/ free fullerenes is entropically more favourable, since a greater amount of

molecules are produced. In general HEC M becomes less negative with increasing n, as can be

seen in Fig. 7.8(b). The only exception is that HEC M (Ba3(C60)2)� HEC M (Ba(C60)2). The

finite temperature enthalpy correction stabilizes smaller clusters, however it is about an order of

magnitude smaller than the entropic term and therefore has little effect on the total GFM .
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Figure 7.8: (a) �TSM and (b) HEC M , at the experimental temperature (150

K) and pressure (10�6 Torr) for the most stable Ban(C60)2 (1 � n � 6) clusters.

In full agreement with experimental data, the total GFM given in Fig. 7.9 shows that at

150 K and 10�6 Torr, Ba3(C60)2 is magic. The BEM alone indicates that this is also the most

stable structure. However, the finite temperature corrections change the order of stability. In

particular, the GFM of Ba4(C60)2 and Ba2(C60)2 are less than that of Ba(C60)2, whereas the

opposite is true when only the BEM data is taken into consideration. This clearly underlines

the importance of calculating the enthalpic and, even moreso, entropic contributions to the

Gibbs free energy when determining absolute cluster stability. Calculations of the GFM at 300

K and 600 K (not shown) predict that the n D 3 cluster remains magic up to at least these

temperatures. Unfortunately, a small error in the calculated entropies propagates to a large error

in the GFM at high temperatures (S is multiplied by T ). Therefore we cannot predict which

cluster is the most stable at 1780 K, the temperature of the heating stage.

The calculations show that the Ban(C60)2 clusters have many local minima, which are all

very close in energy to each other, differing only in a rotation of the C60s around the metal core.

This suggests that perhaps configurational entropy is also important in determining the absolute

stability of the clusters. Since the configurational entropy for the free C60s and metal atoms is

zero, the change in configurational entropy per metal atom, SconfM , for reaction 7.1 is given

as

SconfM D .kB ln W /=n; (7.7)
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Figure 7.9: GFM at the experimental temperature (150 K) and pressure (10�6

Torr) for the most stable Ban(C60)2 (1 � n � 6) clusters. The n D 3 cluster, also

shown, has the lowest GFM .

where W is the number of configurations and kB is the Boltzmann constant. It is unclear how

one may determine W , and instead we will calculate the amount of configurations necessary to

have a noticeable impact on the total entropy. We find that W should be approximately equal

to 29, 821 and 3.73 � 1014 in order to change the entropy by 1, 2 and 10 kcal/mol, respectively.

With this in mind, it is unlikely that inclusion of SconfM would affect the total GFM by more

than a couple of kcal/mol. For the Ba clusters at 150 K this will not change the order of stability.

7.3.4 Bonding and Stability of Kn(C60)2 (1 � n � 6) Clusters

In Section 7.3.1 it was shown that the favoured bonding mode for potassium and barium to

a single C60 was the same (configurations where the metal atom lay on top of a hexagonal

fullerene face had the lowest BEM ). This indicates that the two metals may also prefer the

same geometries when bonding with two C60s. Thus, for the Kn(C60)2 clusters we have not

optimized species which were found to be much higher in energy than the most stable Ban(C60)2

clusters (7.4.1, 7.4.3, 7.4.4, 7.4.6 in Fig. 7.4). Instead, we have primarily focused on structures

belonging to Set A and Set B defined in Section 7.3.2. We have optimized clusters containing

�h or �v symmetry operations, and only those lowest in energy are shown in Fig. 7.10, along

with the BEM . Clearly, for .1 � n � 4/ potassium bonds in a similar fashion as barium to the

two C60s. However, for n D 5; 6, geometries belonging to Set B are preferred. For n D 5, the

BEM difference between the two Sets is quite small, but it is seen to increase substantially for

K6(C60)2.

In order to clarify the nature of the bonding we reoptimized the most energetically stable

moieties, then performed a fragment orbital analysis, using the distorted C60s and the K atoms as

fragments. This showed that the bonding is purely of an ionic nature, with an almost full transfer
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BEM = -50.67 kcal/mol

Symmetry: C2h

BEM = -47.27 kcal/mol

Symmetry: C2h

BEM = -46.57 kcal/mol

Symmetry: C2

BEM = -43.73 kcal/mol

Symmetry: C2h

BEM = -46.64 kcal/mol

Symmetry: C2v

BEM = -43.69 kcal/mol

Symmetry: C2h

BEM = -39.99 kcal/mol

Symmetry: C2h

BEM = -44.28 kcal/mol

Symmetry: C2v

BEM = -43.65 kcal/mol

Symmetry: C2

BEM = -43.74 kcal/mol

Symmetry: C2

BEM = -41.52 kcal/mol

Symmetry: C2h

7.10.1 7.10.2

7.10.3 7.10.4

7.10.5 7.10.6

7.10.10 7.10.11

7.10.7 7.10.8 7.10.9

Figure 7.10: Optimized geometries and symmetries of the Kn(C60)2 (1 � n � 6) clusters.

of the valence potassium Œ4s1� electron to the LUMO of the C60s. For n D 1; 2 analysis of the

cluster orbitals confirmed that the HOMOs were composed solely of the fullerene LUMOs. For

n D 4; 6 the highest n=2 orbitals and for n D 3; 5 the highest doubly occupied .n�1/=2 orbitals

plus the singly occupied HOMO (SOMO), consisted only of contributions from the unoccupied

orbitals of the fullerenes.
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As one might have expected, for large n the electron transfer from the potassium atoms to

the C60 moieties is not complete because of the increasing Coulomb repulsion between the KC

ions, see Fig. 7.11. The same trend was observed for KnC60 clusters as shown in Section 7.3.1.

We roughly estimated the purely electrostatic energy for the different clusters by assigning each

atom the calculated Mulliken charge. We found that for n D 3; 4, the total electrostatic energy

was more negative for the clusters from Set A, whereas Set B afforded lower electrostatic ener-

gies for n D 5; 6, indicating that the preferred geometries tend to minimize the total electrostatic

energy. For large amounts of K, the clusters from the first Set are less stable than those from

the second due to the fact that the close proximity of the positively charged K atoms results

in an increased Coulomb repulsion. For the Ba clusters, on the other hand, the Ba d–element

character compensates for this effect by allowing for a C60! Ba back donation of charge such

that the clusters of Set A remain the most stable at least up to n D 6.
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Figure 7.11: (a) average Mulliken charge per K and (b) BEM , for the most

stable Kn(C60)2 (1 � n � 6) clusters.

Fig. 7.11 illustrates that in general the BEM decreased in magnitude as n increased. These

numbers are slightly different than those shown in Fig. 7.10 since the geometries were reopti-

mized with a higher integration accuracy. A certain amount of energy is gained by transferring

a valence K Œ4s1� electron to the fullerene unoccupied orbitals. At the same time, the addi-

tion of more and more K atoms also results in an increase of the Coulomb repulsion between

them. Hence, overall the energy gained by adding a K atom to the cluster decreases as n in-
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creases. Once again this finding correlates with those in Section 7.3.1. It must be pointed out

that K4(C60)2 and K6(C60)2 were slightly more stable than K3(C60)2 and K5(C60)2, respec-

tively. This is due to the fact that clusters with n D 4; 6 afford an even number of electrons and

hence a full electronic shell whereas the valence shells for clusters with n D 3; 5 are only half

full. Our calculations and those of others134,135 show that for clusters containing one and two

fullerenes, the K atoms prefer to be located on top of hexagonal faces. Thus, K(C60)2 is more

stable than K2(C60)2, despite the fact that it has only a half full valence shell, due to the fact

that the K sits directly between two hexagonal fullerene faces.

7.3.5 The Gibbs Free Energy of Kn(C60)2 (1 � n � 6) Clusters

The vibrational frequencies for the most stable potassium clusters of a given n were calculated.

This yielded the entropic, Fig. 7.12(a) and enthalpic, Fig. 7.12(b) contributions to the GFM . In

general, the same trends were observed as for the barium clusters: the entropic term destabilized

larger clusters to a lesser extent than smaller ones and the enthalpic term stabilized smaller

clusters. However, the latter term was about an order of magnitude smaller than the former and

therefore did not substantially affect the total GFM .
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Figure 7.12: (a) �TSM and (b) HEC M , at the experimental temperature (150

K) and pressure (10�6 Torr) for the most stable Kn(C60)2 (1 � n � 6) clusters.

In full agreement with experimental data, the total GFM given in Fig. 7.13 shows that at

150 K and 10�6 Torr, K4(C60)2 is magic. Here, even more so than for the Ba clusters, it is

vital to take into account finite temperature effects when determining absolute stability. The

most energetically stable configurations were: K(C60)2 < K2(C60)2 < K4(C60)2 < K3(C60)2

< K6(C60)2 < K5(C60)2. The GFM , on the other hand, revealed a different order of stability:

K4(C60)2 < K3(C60)2 < K2(C60)2 < K6(C60)2 < K5(C60)2 < K(C60)2. In fact, calculations of

the GFM at different temperatures (not shown) predict that K(C60)2, K4(C60)2 and K6(C60)2

are magic at 75 K, 300 K and 600 K. It was shown previously that at 150 K the configurational
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entropy may contribute around 1-2 kcal/mol to the total GFM . For the Ba clusters such changes

were deemed unimportant in determining the order of stability, however this might not be the

case for the K clusters since the GFM are all very close in energy. Nonetheless, the calculated

results are in-line with experiment, suggesting that configurational entropy does not have a

major influence on the total Gibbs free energies, or that SconfM is approximately the same for

the different clusters.
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Figure 7.13: GFM at the experimental temperature (150 K) and pressure (10�6

Torr) for the most stable Kn(C60)2 (1 � n � 6) clusters. The n D 4 cluster, also

shown, has the lowest GFM .

7.3.6 Energetics of Doubly and Singly Charged Clusters

We have also calculated the energy difference between Mn(C60)2 (M D K, Ba) and the cor-

responding singly or doubly charged clusters, shown in Table 7.2. If these values are to be

associated with the energy needed to singly or doubly ionize the clusters, then it can be con-

cluded that the ionization energy decreases as n increases for both metals. Moreover, the laser

pulse used (7.9 eV� 182.2 kcal/mol) had enough energy to singly ionize the clusters. The pulse

could also ionize a singly charged species, yielding a doubly charged cation. However, the laser

was not strong enough to create Mn(C60)2C
2 from Mn(C60)2. The cations are highly unstable

compared to the neutral clusters. It is also interesting to note that the ionization of a barium

cluster with a given n requires approximately the same energy as the potassium analogue. The

first and second ionization energies for K5(C60)2 and K6(C60)2 reveal that it is somewhat easier

to ionize a structure belonging to Set B as opposed to Set A.



7.4. Summary and Conclusions 135

Table 7.2: The energy differences between (a) Mn(C60)2 and Mn(C60)C2 , (b) Mn(C60)2 and

Mn(C60)2C
2 (M D K, Ba) clusters. All energies given in kcal/mol.

n Ban(C60)C2 Ban(C60)2C
2 Kn(C60)C2 Kn(C60)2C

2

1 125.48 302.96 123.85 -

2 125.38 299.96 119.12 285.47

3 116.90 286.63 115.84 280.08

4 113.85 281.50 112.69 278.47

5 109.53 270.80 94.11 240.66

6 111.15 271.88 94.24 236.04

7.4 Summary and Conclusions

The preliminary study on M C60 (M D K, Ba) clusters indicated that the preferred bonding

mode for both metals is to lie on top of a hexagonal fullerene face. The Mulliken charges

revealed an almost full transfer of the potassium [4s1] valence electron to the fullerene, however

for barium a transfer of both valence [6s2] electrons was not observed. Geometries for possible

KnC60 (1 � n � 6) and BanC60 (n D 1; 2; 3) structures were also optimized. The Mulliken

charges on the metals decreased as n increased, in accordance with previous computational

studies.134,135 KC60 and Ba2C60 afforded the lowest BEM .

An extensive study of different possible Ba(C60)2 isomers showed that the barium atom

prefers to lie between two hexagonal C60 faces. The most stable structural alternatives for

Ban(C60)2 (1 � n � 6) all belonged to Set A, with the Ba atoms sandwiched between the two

fullerenes. Ionic bonding, arising from an incomplete transfer of the valence [6s2] electrons

to the unoccupied fullerene orbitals, was found to be the dominant bonding mechanism for

small n. As n increased, covalent bonding between the Ba 5d and C60-�� orbitals increased,

being the dominant bonding mechanism for n D 5; 6. This occurred as a result of C60 �! Ba

back donation into the empty 5d orbitals. Metal-metal bonding between the Ba atoms was also

found, however it was about an order of magnitude smaller than the aforementioned bonding

mechanisms. Thus, for the barium clusters the energetically most stable structures and their

geometries are determined by an interplay between ionic and covalent bonding. On the other

hand, the Kn(C60)2 (1 � n � 6) clusters exhibited only ionic bonding arising from a transfer

of the [4s1] valence electrons into unoccupied C60 orbitals. The most stable geometries were

found to minimize the total electrostatic energy. For 1 � n � 4 isomers from Set A were the

most stable, whereas for n D 5; 6, Set B afforded structures with lower energies.

An analysis of the finite temperature contributions to the GFM revealed that the entropic
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term tends to destabilize larger clusters to a lesser extent than smaller ones. This is due to

the fact that a reaction yielding a single large cluster and many free fullerene molecules has

greater entropy than one forming many small clusters and no or few free C60s. The enthalpic

term was seen to stabilize small clusters, however it was about ten times smaller compared

to the entropic term. In full agreement with experimental results, the GFM indicated that

Ba3(C60)2 and K4(C60)2 are the most stable structures, and therefore appear as magic clusters,

at the experimental temperature and pressure. Calculation of thermodynamic quantities was

shown to be essential in determining which of the potassium containing clusters are magic:

different temperatures changed the order of stability. Due to the formidable computational cost

of calculating vibrational frequencies for such large systems, currently only a few studies, for

example Refs. 157–159, are available which specifically consider the Gibbs free energies in

determining absolute cluster (oligomer) stability.

Despite the fact that the theoretical and experimental results agree, there are many open

questions as to what actually occurs in the experiment. For example, is the measured cluster

distribution formed during the heating or the cooling stage and does the ionization procedure

affect the distribution? The calculations strongly suggest the following interpretation of the

experiment. A certain cluster distribution forms at the source. In the heating stage it is necessary

to provide enough energy so that the clusters can overcome the activation barrier to break bonds

in these initial meta-stable structures. If the temperature and dwell time in the heating stage are

not high and long enough then clusters formed at the source will be present when they enter

the cooling stage. The clusters must first overcome the activation barrier necessary in order to

reach the structure which is the global minimum on the PES at the given temperature. Next,

it is presumed that the clusters reach an equilibrium distribution for the temperature found in

the heating stage. The intensities show that few clusters survive this heating stage suggesting

that the heating temperature is close to the threshold where all of the clusters decompose, ie.

where GFM becomes positive for all of the clusters. After exiting the heating stage the clusters

are cooled to 150 K, then photoionized and measured by TOF mass spectrometry. Unless the

clusters are much more kinetically stable than we expect, the cooling stage should yield clusters

which are thermodynamically stable at that temperature and not at the temperatures obtained

during the heating. The calculations show that at low temperatures clusters with a smaller

amount of metal atoms are more stable. Thus, it is likely that the clusters formed at high

temperatures emit some metal atoms upon cooling. We do not know the activation barrier for

this process but predict it to be relatively small. This is due to the fact that the clusters exit the

heating stage with a high energy and with all of the atoms vibrating quickly. It is likely that these

vibrations will yield enough energy to emit a few metal atoms from the cluster. Unfortunately,

we are unable to make any predictions about the cluster distribution within the heating stage due

to the fact that at high temperatures a small error in the entropy would propagate to a large error
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in the GFM (S is multiplied by T ). For such systems ab initio molecular-dynamics (MD)

simulations would be prohibitively expensive and MD would be unreliable since it requires

as an input interaction potentials, which are unknown in this case. Thus, the computational

method employed is the most sophisticated possible. One way to experimentally determine if

this interpretation is correct would be to determine if varying the temperature of the cooling

stage changes the distribution of the K clusters, as the calculations predict.





Part III

Summary





Chapter 8

Conclusions and Outlook

Within this thesis density functional calculations have been carried out on a variety of different

systems of chemical and physical interest. Band structure calculations on insulators, semi-

metals and metals have been performed. It was shown how one may construct Wannier-like

orbitals for a number of compounds and how these orbitals may be used for analysis purposes.

The bonding and properties of metal-C60 clusters and SWNT fragments was examined via

molecular calculations. In particular, the 13C NMR chemical shifts for a number of finite nan-

otube fragments were calculated and the geometries and stability of Ban(C60)2 and Kn(C60)2

(1 � n � 6) clusters was investigated. The application of DFT based periodic and quantum

chemical codes to study the electronic structure and properties of various systems shows that

DFT is a versatile and useful tool in both solid state physics and theoretical chemistry.

Part I: Solids
An Introduction to N MTO Wannier-like Functions

The N MTO method has been employed to generate Wannier-like functions for the � and �

bands of graphite and boron nitride. We have shown that it may be used to design a basis of

atom-centered localized orbitals, which span the wave function in a given energy range. The

energy mesh determines which bands, bonding or anti-bonding, are described by the method.

This was demonstrated by constructing Wannier-like orbitals for just the occupied or unoccu-

pied �-bands in graphite. The orbitals are seen to be in-line with a chemical picture of bonding

in the solid state and may therefore be useful as a tool for analysis. Currently the orbitals are not

maximally localized, but we have shown how this may be achieved by performing tight-binding

calculations on the benzene �-bond.

Theoretical Studies of High Pressure Cesium

The band structures of Cs-I (bcc), Cs-II (fcc) and Cs-IV (tetragonal) were calculated. The

pressure induced electronic s ! d transition was confirmed. It was noted that near the
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experimental vicinity of the Cs-I ! Cs-II, Cs-II ! Cs-III and Cs-IV ! Cs-V transitions, a

Lifshitz transition (change in the topology of the Fermi surface) is predicted computationally.

FP-LMTO calculations revealed a softening of the TŒ1 N10�Œ��0� phonon mode which becomes

imaginary around � D 1=3 for Cs-II at a volume of approximately 0:40v0. A large electron-

phonon coupling was also calculated for this wave vector. It was postulated that Fermi surface

nesting between pockets arising from the Lifshitz transition are at least partially responsible

for the structural instability. Future work could include calculation of the nesting function

in the manner described within Ref. 66. Moreover, the phonon spectra and electron-phonon

coupling for the other structural transitions occurring near a calculated Lifshitz transition could

be computed in order to determine if all of the structural instabilities have a similar origin.

A procedure by which one may generate Wannier-like functions for only the occupied bands

in a metal was proposed. In principle, it is necessary to find an appropriate supercell where

the bands have cusps touching the Fermi level. However, much smaller cells were found to

reproduce the rough shape of the orbital. The N MTOs for Cs-I, Cs-II (v=v0 D 0:6; 0:4) and Cs-

IV have been calculated in order to visualize the pressure induced s ! d electronic transition.

For Cs-I the orbital is completely spherical and in Cs-II (v=v0 D 0:6) four d -like lobes are seen

to develop. Two of these lobes are raised and two are lowered upon increasing pressure. Raising

and lowering of these lobes even further yields the orbital calculated for Cs-IV. This N MTO

was found to reproduce the charge density calculated by standard electronic structure methods.

Further work could include calculation of the Cs-III N MTOs. Due to the fact that the unit

cell contains 84 atoms, it would not be necessary to construct a supercell in order to create a

Wannier-like function for only the occupied bands. The main difficulty would be to determine

where the orbitals should be placed and where they should be downfolded. Currently the calcu-

lated orbitals are symmetry breaking. The implementation of a scheme in which the N MTOs

are symmetrized through a maximal localization procedure could provide further insight on the

pressure induced electronic transition.

The stability of the Cs-IV structure was explained via the splitting of the xz=yz bands near

the N -point. At this wave vector the orbitals show ddı�-bonding/anti-bonding interactions

for the occupied and unoccupied band, respectively, along the direction of maximum electron

density. The lobes of the calculated Wannier-like orbitals were also found to point in the same

direction as the lobes of the orbitals which form ddı�-bonds.

The Electronic Structure of ˛-ThSi2 and ˇ-ThSi2
The band structures of ˛-ThSi2 and ˇ-ThSi2 have been studied using TB-LMTO and the newly

developed N MTO method, which was used to generate Wannier-like functions for selected

groups of bands. Even for these intermetallic compounds, it was possible to generate a truly

minimal basis set which described most of the occupied bands correctly. It was shown that the
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bonding within both systems could be understood in a similar way. The lowest bands arose from

� -bonding within the silicon sublattice. The sp2 N MTOs were similar to those obtained for

graphite, however a small amount of hybridization with the Th atoms was found. In ˇ-ThSi2
the next set of bands higher in energy could be described by a Si �-bonding orbital which

hybridized strongly with the dz2 orbitals on the nearest neighbour Th atoms. For ˛-ThSi2 the

�-bonding bands also hybridized with the uppermost � -bonding band due to the z-connections

between the zig-zag chains running in the x and y directions. For both structures, the occupied

band structure could be quite well described by a basis consisting of Si � -bonding, �-bonding

and s��� orbitals. The latter hybridize forming two s��� N MTOs which have large dz2-like

tails on the six neighbouring Th atoms. This interpretation shows that for ˛-ThSi2/ˇ-ThSi2,

there are 12/6 electrons in the Si � -bands, 4/2 electrons in the Si �-bonding bands and 8/4

electrons in the Si s��� orbitals (since ˛-ThSi2 and ˇ-ThSi2 contain 2 and 1 formula units in

the unit cell, respectively). Formally, this leads to a Th4C/Si2� valence electronic configuration.

However, the Si �-bonding and especially the Si s��� orbitals show large tails on the thorium

atoms implying that not all of the charge is completely transferred to silicon.

For ˛-ThSi2 an alternative truly minimal basis set was proposed, based upon the calcu-

lations for Cs-IV. The thorium atoms are located in the same positions as the cesiums and

the band width for both elements is similar. A basis composed of Si �-bonding, �-bonding

and anti-bonding N MTOs as well as an s-like orbital on every thorium atom (Th s=s� basis)

reproduced the occupied bands quite well. This formally yields a Th2C/Si� valence electronic

configuration. The Th Wannier-like function resembled the s-like orbital calculated for Cs-IV,

except that it had one and not two lobes which pointed along the center of the prisms. However,

this orbital was not symmetric with respect to the lattice and it would be necessary to construct

a maximally localized symmetric N MTO in order to make a definite comparison of the orbitals

and bonding present in the two metals. Future work should therefore focus on the implementa-

tion of an automatic maximal localization scheme.

Part II: Molecules
The 13C NMR Chemical Shifts in (9,0) Carbon SWNTs

Density functional calculations on the electronic structure and 13C NMR chemical shifts of

finite (9,0) SWNTs were performed. Two different models for the finite systems were consid-

ered: the dangling bonds were saturated (capped) with either hydrogen or with half of a C60.

Computations on progressively longer fragments were carried out in order to determine if the

properties converge with respect to increasing length. In agreement with computational and

experimental work, the C30–terminated tubes were predicted to have a finite band gap. The

HOMOs and LUMOs were delocalized over the whole fragment. In contrast, the H–capped

SWNTs were found to be metallic, even at relatively short lengths. Analysis of the frontier
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orbitals showed that they need to be considered as artifacts when comparing with the infinite

systems. Thus, it was concluded that the latter are not necessarily good models for infinite

SWNTs, whereas the former appear to yield results in-line with experiments and theoretical

work on periodic systems. Moreover, the convergence of the HOMO and LUMO energies, band

gaps and chemical shifts appeared to be somewhat faster for structures capped by fullerene

hemispheres. Thus, it was proposed that the chemical shift of an infinite (9,0) SWNT should

be approximately equivalent to the shift of a central carbon atom in the longest C30–terminated

system considered, about 130 ppm. Previous theoretical work suggested that metallic SWNTs

should be 11 ppm less shielded than semiconducting ones.95 Therefore, under the assumption

that the (9,0) tube yields a shift typical of other semiconducting tubes, it was predicted that the

chemical shift of metallic tubes should be close to that of C60. These results indicate that NMR

may be a useful tool in the characterization of a heterogeneous mixture of SWNTs.

The results of Latil et al. suggest that the chemical shifts of the semiconducting nanotubes

should not be very sensitive to the helicity and diameter of the tube.95 However, the calcula-

tions employed a tight-binding model with one � electron per site and in order to verify this

conjecture density functional calculations on finite and infinite systems should be performed.

For finite tubes, one would first need to construct appropriate caps composed of fullerene

hemispheres. Next, the electronic structure of the capped tubes must be investigated in order to

determine if the results agree with predictions from periodic calculations, or if the capping has

a large influence on the properties. Recently DFT calculations have examined how fullerene

hemispheres influence the geometry and vibrational structures of finite nanotubes.90,160,161 It

would also be interesting to use solid state codes to calculate the shifts of infinite systems. The

effect of functionalization could be another topic of investigation. Finally, metallic tubes may

be studied and it should be verified if the Knight shift is indeed negligible, as was previously

suggested.95

Magic (C60)n–Metal Compound Clusters

Geometry optimizations of a number of possible structures for Ban(C60)2 (1 � n � 6)

showed that in all cases the most stable isomer affords Ba atoms sandwiched between the two

fullerenes. The main bonding mechanisms were determined to be ionic and covalent, for n � 3

and n D 5; 6, respectively. The former arises from an incomplete transfer of the valence [6s2]

electrons into the empty fullerene orbitals. The latter is due to C60! Ba back donation into the

empty Ba 5d orbitals which undergo covalent bonding with the fullerene MOs. Due to the close

proximity of the Ba atoms, metal-metal bonding was also present, however its contribution to

the total bonding energy was about an order of magnitude smaller than the aforementioned

mechanisms. Thus, the geometries of the energetically most stable isomers were found to be

determined primarily by an interplay between covalent and ionic bonding. On the other hand,
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a simple model showed that the most energetically favourable Kn(C60)2 (1 � n � 6) clusters

tend to minimize the total electrostatic energy. Accordingly, they only exhibited ionic bonding

due to a transfer of the [4s1] valence electrons into unoccupied C60 orbitals. For n � 4, and

n D 5; 6 the preferred geometries had a C60–Kn–C60 and a K–C60–Kn�2–C60–K configuration,

respectively.

For both metals, the entropic contribution to the Gibbs free energy was found to destabilize

larger clusters to a lesser extent than smaller ones. This was explained by noting that Reaction

8.1 produces more molecules than Reaction 8.2 and therefore is entropically more favourable:

nM C 2n.C60/!Mn.C60/2 C .2n � 2/C60; (8.1)

nM C 2n.C60/! n.M.C60/2/; (8.2)

with M D K, Ba. It was argued that the configurational entropy should not affect the order of

stability of the Ba clusters at 150 K and probably have little influence for the K clusters as well.

The enthalpic contribution to the Gibbs free energy was found to be an order of magnitude

smaller than the entropic one. In full agreement with experiment Ba3(C60)2 and K4(C60)2

were found to be magic at the experimental temperature (150 K) and pressure (10�6 Torr).

Inclusion of finite temperature effects was found to be crucial in determining which of the K

clusters is the most stable. It was found that K(C60)2, K4(C60)2 and K6(C60)2 are magic at 75

K, 300 K and 600 K. In contrast, the Ba3(C60)2 cluster was the preferred structure within the

temperature range of 0 K-600 K. Nonetheless, inclusion of finite temperature corrections was

found to change the order of stability for clusters with n ¤ 3.

The agreement between experiment and theory suggests that the measured cluster distribu-

tion is formed in the cooling stage. However this is still unclear and further experiments which

vary not only the heating temperature, but also that of the cooling stage could be performed

to verify if this interpretation is correct. It would also be interesting to calculate the activation

energy and find the transition state for a cluster emitting a metal atom. Since C60 and SWNTs

have very similar structures it is conceivable that nanotube-metal clusters may also be highly

stable. One could perform such calculations using the finite (9,0) fragments capped by half of

a fullerene as models. The electronic structure and properties of these clusters could also be

investigated.
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[6] Andersen, O. K.; Jepsen, O.; Glötzel, D. Canonical Description of the Band Structures

of Metals. In Highlights of Condensed-Matter Theory; Bassani, F.; Fumi, F.; Tosi, M.,

Eds.; North-Holland: New York, 1985.

[7] Andersen, O. K. Phys. Rev. B. 1975, 12, 3060.

[8] Weyrich, K. H. Phys. Rev. B. 1988, 37, 10269.

[9] Wannier, G. H. Physical Review 1937, 52, 191.

[10] Kohn, W. Physical Review 1959, 115, 809.

[11] Wannier, G. H. Rev. Mod. Phys. 1962, 34, 645.

[12] Kohn, W. Phys. Rev. B. 1973, 7, 4388.

[13] Koster, G. F. Phys. Rev. 1953, 89, 67.

[14] Marzari, N.; Vanderbilt, D. Phys. Rev. B. 1997, 56, 12847.

[15] Boys, S. F. Revs. Modern Phys. 1960, 32, 296.

[16] Souza, I.; Marzari, N.; Vanderbilt, D. Phys. Rev. B. 2002, 65, 035109.



148 Bibliography

[17] Andersen, O. K.; Saha-Dasgupta, T. Phys. Rev. B. 2000, 62, R16219.

[18] Savrasov, S. Y. Phys. Rev. B. 1996, 54, 16470.

[19] Savrasov, S. Y.; Savrasov, D. Y. Phys. Rev. B. 1996, 54, 16487.

[20] Autschbach, J.; Ziegler, T. Coord. Chem. Rev. 2003, 238/239, 83-126.

[21] Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital

Theory; John Wiley and Sons: New York, 1986.

[22] Car, R.; Parrinello, M. Phys. Rev. Lett. 1997, 55, 2471.

[23] Silvestrelli, P. L.; Marzari, N.; Vanderbilt, D.; Parrinello, M. Solid State Communica-

tions 1998, 107, 7.
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2000.

[26] Tank, R. W.; Arcangeli, C. Phys. Stat. Sol.(b) 2000, 217, 89.

[27] Andersen, O. K.; Saha-Dasgupta, T.; Ezhov, S. Bull. Mater. Sci. 2003, 26, 19.

[28] Pavarini, E.; Biermann, S.; Poteryaev, A.; Lichtenstein, A. I.; Georges, A.; Ander-

sen, O. K. Phys. Rev. Lett. 2004, 92, 176403.

[29] Pavarini, E.; Yamasaki, A.; Nuss, J.; Andersen, O. K. New J. Phys. 2005, 7, 188.

[30] Müller, T. F. A.; Anisimov, V.; Rice, T. M.; Dasgupta, I.; Saha-Dasgupta, T. Phys. Rev.

B. 1998, 57, R12655.

[31] Valenti, R.; Saha-Dasgupta, T.; Alvarez, J. V.; Požgajčić, K.; Gros, C. Phys. Rev. Lett.
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[56] Glötzel, D.; McMahan, A. K. Phys. Rev. B 1979, 20, 3210.



150 Bibliography

[57] McMahan, A. K. Phys. Rev. B 1984, 29, 5982.

[58] Christensen, N. E.; Boers, D. J.; van Velsen, J. L.; Novikov, D. L. Phys. Rev. B. 2000,

61, R3764.

[59] Christensen, N. E.; Boers, D. J.; van Velsen, J. L.; Novikov, D. L. J. Phys. Condens.

Matter 2000, 12, 3293.

[60] Kong, Y.; Jepsen, O. Phys.: Condens. Matter 2000, 12, 8973-8982.

[61] Osorio-Guillén, J. M.; Ahuja, R.; Johansson, B. ChemPhysChem 2004, 5, 1411-1415.

[62] Katzke, H.; Tolédano, P. Phys. Rev. B. 2005, 71, 184101.

[63] Tse, J. Z. Kristallogr. 2005, 220, 521-530.

[64] Anderson, M. S.; Gutman, E. J.; Packard, J. R.; Swenson, C. A. J. Phys. Chem. Solids

1969, 30, 1587.

[65] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.

[66] Kasinathan, D.; Kunes, J.; Lazicki, A.; Rosner, H.; Yoo, C. S.; Scalettar, R. T.; Pick-

ett, W. E. Phys. Rev. Lett. 2006, 96, 047004.

[67] Kohn, W. Phys. Rev. Lett. 1996, 76, 3168.

[68] Jacobson, E. L.; Freeman, R. D.; Tharp, A. G.; Searcy, A. W. J. Am. Chem. Soc. 1956,

78, 4850-4852.

[69] Brown, A. Acta. Cryst. 1961, 14, 860-865.

[70] Hardy, G. F.; Hulm, J. K. Phys. Rev. 1954, 93, 1004-1016.

[71] Chevalier, B.; Zhong, W. X.; Buffat, B.; Etourneau, J.; Hagenmuller, P. Mat. Res. Bull.

1986, 21, 183-194.

[72] Lejay, P.; Chevalier, B.; Etourneau, J.; Tarascon, J. M.; Hagenmuller, P. Mat. Res. Bull.

1983, 18, 67-71.

[73] Zhong, W. X.; Ng, W. L.; Chevalier, B.; Etourneau, J.; Hagenmuller, P. Mat. Res. Bull.

1985, 20, 1229-1238.

[74] Zheng, C.; Hoffmann, R. Inorg. Chem. 1989, 28, 1074-1080.

[75] Von Schnering, H. G.; Nesper, R. Angew. Chem. Int. Ed. Engl. 1987, 26, 1059.



Bibliography 151

[76] Brauer, G.; Mitius, A. Zeitschrift fuer Anorganische und Allgemeine Chemie 1942, 249,

325-339.

[77] Iijima, S. Nature 1991, 354, 56-58.

[78] Minett, A.; Atkinson, K.; Roth, S. Carbon nanotubes. In Handbook of porous solids;
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1993, 99, 4210-4212.
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