Turbines placed on rooftops can take advantage of the increased wind speeds that occur as altitude increases. Data collected from the New York State Wind Resource Explorer will be normalized and compared to data collected by anemometers to calculate the wind speed at certain heights on campus.

Small vertical axis turbines positioned between buildings take advantage of the increased wind speeds caused by wind funneling. Data suitable for examining wind funneling on campus are not readily available. Data will thus be directly collected using anemometers.

Claire Lochner, Erin Jacklin, Andrew Koonce, Earl Manning, Avinasch Sankar, Dan Snitzer, Nick Catalino, Carl Eckhardt, Julia Foy, Rob Cruz
School of Engineering and Applied Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260

- In accordance with the President’s Climate Commitment, decrease UB’s carbon footprint
- Create an on-campus sustainable energy source
- Inspire the increased use of wind power
- Explore new methods to harness wind power in campus or city environments.
- Reduce cost of electricity for the University at Buffalo
- Incorporate wind turbines that do not detract from aesthetics of campus

Objective

Wind Power on Campus

Case One: Rooftop Turbine

Turbines placed on rooftops can take advantage of the increased wind speeds that occur as altitude increases.

Methods

Data collected from the New York State Wind Resource Explorer will be normalized and compared to data collected by anemometers to calculate the wind speed at certain heights on campus.

Data Collection

Findings:

- Low speed “Roof top turbines” could be supported at UB

Case Two: Wind Funneling

Small vertical axis turbines positioned between buildings take advantage of the increased wind speeds caused by wind funneling.

Methods

Data suitable for examining wind funneling on campus are not readily available. Data will thus be directly collected using anemometers.

Findings:

- The new Engineering Building scheduled for 2011 completion will incorporate “Roof top turbines” in its design

Turbine Design

- Versatile - can be set up on a horizontal or vertical axis to best fit its surroundings
- Inexpensive - built on a budget under $500

Closing Statement

- It is hoped that the findings of this project will be used in similar settings in other university campuses and cities.
- The core belief of this project is that every little bit helps and that any positive offset of carbon emissions or reduction in electricity cost is a step in the right direction and will have a greater effect when combined with other sustainable energy production methods.

Resources:

Chairperson, WNY Wind Action Group, Engineering Committee.

NOAA - National Oceanic and Atmospheric Administration.
United States Department of Commerce. 3 Mar. 2008

