
Selectively maintained paleoviruses in Holarctic water fleas reveal
an ancient origin for phleboviruses

Matthew J. Ballinger a,n, Jeremy A. Bruenn a, Alexey A. Kotov b, Derek J. Taylor a

a Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
b A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia

a r t i c l e i n f o

Keywords:
Paleovirology
Daphnia
Virus co-option
Purifying selection
Gene duplication
Pseudogenes

a b s t r a c t

The ecological model, Daphnia pulex (Cladocera: Daphniidae), is broadly distributed in Holarctic fresh-
water habitats and has been the subject of multidisciplinary study for over half a century, but never has a
natural RNA virus infection been reported in daphnids. Here we report on a group of paleoviruses related
to RNA dependent RNA polymerase in the genome of D. pulex. Phylogenetic analysis suggests that these
paleoviruses are derived from a viral lineage within the genus Phlebovirus. Comparison of the genomic
sequences flanking individual paleoviruses reveal that some are orthologous viral insertions having been
present in the common ancestor of the D. pulex species complex, which is millions of years old. Still, we
detected some sites that have the signature of purifying selection. In contrast, other paleoviruses in this
group seem to be unique to specific host lineages and even contain undisrupted open reading frames,
suggesting either more recent acquisition, or selective maintenance.

& 2013 Elsevier Inc. All rights reserved.

Introduction

Our understanding of the deep evolutionary history of viruses
and their host interactions is restricted by the absence of fossil
records for viruses and the limited evolutionary reach of molecular
clock estimates when based on the rapid nucleotide substitution
rates of viruses (Holmes, 2003). Paleovirology, the study of endo-
genous viral elements (EVEs), including endogenous retroviruses
(ERVs) and non-retroviral integrated RNA viruses (NIRVs), offers a
needed glimpse into the deeper history of virus–host interactions.
Analyses of individual ERVs and NIRVs in fungal, arthropod and
vertebrate genomes have extended the minimum age of RNA viruses
and their host associations, e.g. Filoviruses (Taylor et al., 2010),
Bornaviruses (Horie et al., 2010) and Lentiviruses (Gifford et al., 2008),
revealed genes of viral origin that have been selectively maintained
or co-opted in host genomes (Malik et al., 2000; Mi et al., 2000;
Taylor and Bruenn, 2009; Katzourakis and Gifford, 2010; Taylor et al.,
2011; Fort et al., 2012), explained how viruses lacking reverse-
transcriptase have integrated into DNA genomes (Katzourakis and
Gifford, 2010; Ballinger et al., 2012), and supported a case of
coevolution between viruses and hosts with a modified nuclear
genetic code (Taylor et al., 2013). Yet, few attempts have been made
to unravel the evolutionary history of what appear to be virally-
derived gene families in eukaryotic genomes. In CTG-clade yeast,
a family of totivirus capsid-like NIRVs are tandemly structured,

suggesting host duplication, and some copies are expressed as
proteins (Taylor and Bruenn, 2009; Taylor et al., 2013). Several
arthropod genomes harbor a dozen or more NIRVs showing
sequence similarity to a single viral gene (Katzourakis and Gifford,
2010; Fort et al., 2012), but many of these sequences are divergent
pseudogenes, and little evidence remains to differentiate between
an origin as a single ancient integration followed by duplication
within the host, or multiple integrations of relatively closely related
exogenous viruses. The ability to support one hypothesis over the
other with statistical bioinformatics methods is further hindered by
the incomplete representation of the ancient virosphere.

Phleboviruses (Bunyaviridae) are segmented, single-stranded,
negative and ambisense RNA viruses. Bunyavirids display an exten-
sive host range across vertebrates, invertebrates and plants. However,
the arthropod-borne members of the genus Phlebovirus, appear to be
curiously limited to unrelated blood-sucking dipterans and ticks. It is
presently unknown if this distribution in arthropods is a sampling
bias, or a real association with hematophagous arthropods. The
arthropod-borne phleboviruses are subdivided into the Sandfly
group, vectored by sand flies of the genera Phlebotomus and
Lutzomyia, and mosquitoes (Tesh, 1988), and the Uukuniemi group,
vectored by ticks (Saikku and Brummerk, 1973; Eley and Nuttall,
1984; Palacios et al., 2013). Some viruses in the Sandfly group, e.g.
Toscana virus, have been shown to establish persistent, vertically
transmitted infection in their vectors (Tesh and Modi, 1987; Bilsel
et al., 1988). The bunyavirus genome is distributed across three
segments (L, M, and S) and codes for up to five genes: a nucleopro-
tein (N), a glycoprotein (Gn-Gc), an RNA-dependent RNA polymerase
(RdRp) and one or two nonstructural proteins, NSs and NSm, named
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for the segment onwhich they are coded (Elliott, 1990). As with most
RNA viruses, little is known about the age of the phleboviruses.
Several authors have used molecular clock and coalescent dating
methods calibrated with empirically determined mutation rates to
estimate the ages of extant lineages, e.g. severe fever with thrombo-
cytopenia syndrome virus (Lam et al., 2013) and Rift Valley fever
virus (Bird et al., 2007), and they have concluded that these viruses
diversified within the past 200 years. The age of the genus has not
been estimated, though there is some evidence to suggest that it is
indeed ancient. For example, a clade of BEL retroelements (Cer7, 13
and 14) in Caenorhabditis elegans contains an envelope glycoprotein
gene with unique ancestry compared to related BEL elements; it
seems to have been co-opted from a phlebovirus glycoprotein (Malik
et al., 2000), though the date of its acquisition is not known.
Uukuniemi virus-like nucleoprotein and RdRp sequences have also
been identified in the genome of the tick, Ixodes scapularis, but their
age also remains unresolved (Katzourakis and Gifford, 2010).

The ecological model species, Daphnia pulex (Crustacea: Clado-
cera: Daphniidae), is a key member of freshwater communities
worldwide. Cladocerans occupy a crucial trophic position, and
have been extensively studied in ecotoxicology (Baird et al., 1991;
Barata et al., 1998). Fungal and bacterial parasites of Daphnia are
known, and their effects and coevolution have been described in
detail (Ebert, 2008), while examples of natural viral infection in
Daphnia are conspicuously absent. Indeed, until recently there
have been no well-described cases of any viral infection in
daphnids; the newly discovered ssDNA virus infection in Daphnia
mendotae and Daphnia retrocurva populations represents the only
confirmed case (Hewson, et al. 2013), to our knowledge, since the
description of Chloriridovirus-like (Iridoviridae) particles in one
population of Daphnia magna (Bergoin, et al. 1984). The sparsity of
reported Daphnia-virus associations is especially surprising in light
of the habitat overlap between Daphnia and one of the most
widely-studied arbovirus vectors, mosquitoes.

The genus Daphnia is believed to have emerged at least 145
Mya (Colbourne and Hebert, 1996; Kotov and Taylor, 2011). Here,
we describe an unexpected association between phleboviruses
and daphnids based on the presence of phlebovirus RdRp-like
NIRVs (PRNs) in the D. pulex genome. The PRNs form a mono-
phyletic clade sister to the Uukuniemi virus group, firmly estab-
lishing this crustacean-infecting virus as a phlebovirus. We set the
minimum age of this virus-host association as at least as ancient as
the D. pulex species complex. We also consider evidence for co-
option of these sequences by the host and we discuss the possible
implications for the evolutionary history of the PRNs as well as
this virus-host association.

Results

We discovered and assembled a dataset of 21 PRNs (Supple-
mentary Table S1) by performing BLAST (Altschul et al., 1990)
tBLASTn searches to the Joint Genome Institute′s D. pulex (strain:
The Chosen One [TCO]) genome assembly (Colbourne et al., 2011)
available on GenBank using phlebovirus RdRp amino acid
sequences as queries. An amino acid alignment of the 21 PRNs
and four representative phleboviruses is available as Supplemen-
tary Fig. S1. In this alignment, the conserved motifs of exogenous
phlebovirus RdRps (Muller et al., 1994) are labeled and are present
in many of the PRNs. We used MAFFT 7 (Katoh and Standley, 2013)
to create a codon alignment of the PRNs alone, and screened them
for evidence of recombination using the single break point (SBP)
and Genetic Algorithm Recombination Detection (GARD) methods
(Pond et al., 2006) on the Datamonkey webserver (Delport et al.,
2010). A single recombination breakpoint was identified with high
support by SBP, but the GARD analysis identified a second

breakpoint. We also performed a similar analysis for the same
RdRp region of exogenous viruses in the Uukuniemi virus group
and found significant support for at least one breakpoint, though
KH tests did not support topological incongruence at any specific
position (Supplementary Fig. S2).

Our phylogenetic analysis places all 21 PRNs in a well-
supported monophyletic clade within the genus Phlebovirus
(Fig. 1A). With regard to the evolutionary history of the PRNs,
there are at least two interpretations of this tree topology. The first
is that monophyly is the natural result of a single ancestral host
integration event, which has subsequently undergone extensive
duplication (illustrated by Fig. 1B), while the second is that this
clade is the result of multiple, independent integrations of related,
exogenous phleboviruses (Fig. 1C). We attempted to disqualify the
multiple integration scenario by identifying homologous flanking
sequences at the PRN sites in the D. pulex TCO genome, but the
majority of such flanking regions lack evidence for homology.

To determine whether these D. pulex TCO PRNs are present in
other species of Daphnia, we performed PCR on taxa throughout
the genus. We consistently found taxa within the D. pulex species
complex to be positive for PRNs, while those outside of this
complex were universally negative (Fig. 2). We also blasted TCO
PRNs to the Daphnia pulicaria hybrid genomic sequence database
(dubbed the rejected one [TRO]) available at http://wfleabase.org/
blast and found distinct matches for most PRNs that are present in
D. pulex TCO (Supplementary Fig. S3). We tested whether indivi-
dual PRNs are orthologous or lineage-specific by PCR amplifying
from the PRN flanking regions. Importantly, some PRNs, e.g. PRN5
(Fig. 3), were successfully amplified from the flanking sequences
across all D. pulex species complex taxa screened, indicating that
such viral inserts were present in the common ancestor of the
studied species. Other copies amplified only from reactions in
which the primers targeted the interior PRN sequences. Still
others, e.g. PRN1, could not be amplified in any lineage other than
D. pulex TCO, regardless of the primer target.

We next performed tests for site-specific detection of selection
in the D. pulex TCO PRN sequences using the Fast Unconstrained
Bayesian Approximation (FUBAR) (Murrell et al., 2013) and the
Mixed Effects Model of Evolution (MEME) (Murrell et al., 2012)
methods of the HyPhy package (Pond et al., 2005) available on the
Datamonkey webserver (Delport et al., 2010). We removed PRN1
from the alignments prior to performing these analyses as our
inability to amplify any orthologous copy of this PRN suggested a
more recent, independent integration. Of the 855 codon positions
in the alignment, FUBAR identified 367 positions under purifying
selection (43% of sites) and none under diversifying selection
(Fig. 4), though MEME did detect evidence of episodic diversifying
selection at 25 sites (Supplementary Fig. S4). We also performed
these analyses on orthologous and putatively orthologous (i.e.
those that amplified from internally-primed sequences only, but
showed very high sequence identity) interspecific PRNs and found
reduced, though still significant evidence of purifying selection at
specific sites in these sequences (Fig. 4). We found no statistical
support for pervasive or episodic diversifying selection between
interspecific PRN sequences.

Discussion

Our results support the hypothesis that the association of
phleboviruses with blood-sucking arthropods is a sampling arti-
fact. Daphniid crustaceans are neither bloodsucking nor closely
related to dipterans or to ticks. Yet, we find evidence of prior
association of a unique clade of phleboviruses with Daphnia in the
form of at least 21 paleoviruses. It is unknown if the phleboviruses
that infected Daphniawere transmitted to other animals—certainly
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viral infection does occur via ingestion and many types of animals
ingest Daphnia. There is a need to expand discovery efforts of some
RNA viruses beyond blood-sucking arthropods (Junglen and
Drosten, 2013). Paleoviral knowledge of prior host associations
can aid in targeting viral discovery (Taylor et al., 2013).

Our phylogenetic and flanking region analysis reveal that the
association of phleboviruses with Daphnia is at least as old as the
common ancestor of the species in the complex. Clear resolution of
the relationships within the D. pulex species complex is an ongoing
effort, but work to the present has been substantial and supports
at least three major clades within the complex, one containing the
North American (NA) D. pulex and D. pulicaria lineages, a second
containing Daphnia tenebrosa and the Eurasian (EU) D. pulicaria
lineage, and a third, well-supported as the most basal lineage of
the complex, containing only the EU D. pulex lineage (Colbourne
and Hebert, 1996; Colbourne et al., 1998; Crease et al., 2012). As
shown in Fig. 2, there are other accepted members of the complex,
e.g. Daphnia melanica, which consistently group within the NA D.
pulex/pulicaria clade. Our PCR screens included taxa from each of
these major clades and, for those reactions that targeted PRN
flanking regions, establish conclusively that the oldest PRNs pre-
date the divergence of the D. pulex species complex. Well-
calibrated divergence dates for the entire D. pulex species complex
have not been estimated, though estimations have been made for
some of the younger clades. For example, the ages of the NA D.

pulex/D. pulicaria and the D. tenebrosa/EU D. pulicaria clades are
estimated at 2.2 and 3.2 Myr old, respectively, but the divergence
of EU D. pulex from these clades is outside the reach of the
calibration used for these estimates (see Colbourne et al., 1998
for further reading). Based on these estimations, other authors
have proposed that extension of the divergence patterns suggests
that the age of the entire species complex is likely 8–10 Myr old
(Ambrose and Crease, 2011). Our results, therefore, highlight a
surprising phlebovirus–crustacean relationship that is ancient.

The exact number of independent insertions for the phlebo-
virus-Daphnia association is unknown. Several PRNs were ampli-
fied successfully from internal sequences but not from flanking
sequences. A lack of flanking sequence similarity can result from
the PRN duplication process (e.g. inserted expressed NIRVs) and
from independent viral insertion. From a parsimony perspective,
we do not expect independent insertion of viral genome fragments
to involve the same section of viral genome on multiple occasions.
Indeed, eukaryotic genomes often contain NIRVs of differing
sections of viral genomes. Also, the nucleotide sequence diver-
gence of these PRNs is consistent with divergence from a common
host at the root of the D. pulex species complex (490% sequence
identity) (Ambrose and Crease, 2011). This point is illustrated in
Fig. S3, in which phylogenetic analysis of several of the internally-
amplified PRNs results in distinct clades of interspecific PRNs.
Multiple, independent and lineage-specific integrations would be

Fig. 1. Evolutionary relationship of phlebovirus RdRp-like paleoviruses (PRNs) to bunyavirus RdRp. (A) A midpoint-rooted, maximum likelihood phylogram of PRN and
bunyavirus RdRp amino acid sequences showing the position of the PRNs as a monophyletic clade within the genus Phlebovirus. Branches are labeled with aLRT support
values greater than 0.75 and bootstrap support values greater than 75. Branches marked with a solid black circle have maximum support (1 and 100, respectively). (B) and
(C) Hypothetical host tree diagrams illustrating two hypotheses for the evolutionary origin of the PRN clade, where (B) represents a single viral integration followed by
duplication within the host genome, and (C) represents multiple integrations of closely related viruses. Each multicolored sphere represents a single exogenous phlebovirus
particle. The D. pulex image marking the PRN clade was created by Kim Kraeer and Lucy Van Essen-Fishman, and provided courtesy of the Integration and Application
Network, University of Maryland Center for Environmental Science (ian.umces.edu/symbols/).
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expected to produce a pattern of PRNs grouping by host as a result
of virus–host co-divergence (assumed to be the case for a scenario
in which independent integrations repeatedly occur in each host
lineage through evolutionary time). The observed topology is quite
different; the putatively orthologous PRN sets are nested with one
or two PRNs per host in each clade, suggesting descent from a
common ancestral PRN rather than several ancestral exogenous
viruses. Although the balance of the evidence seems to favor single
viral insertion, we cannot presently rule out additional insertions.

With this in mind, it is difficult to justify attributing the
extensive purifying selection detected throughout the D. pulex
TCO PRNs to the host rather than multiple viral ancestors. We did,
however, detect significant evidence of purifying selection

between interspecific PRN5 sequences, which we have shown to
be orthologous, as well as between interspecific PRN2, PRN3 and
PRN7 sequences, for which we have successfully amplified only
internal sequences, indicating that some PRNs may have been co-
opted by the host during their history. With the exception of PRN1,
all of the PRNs we identified and tested for selection have acquired
at least one ORF disruption, therefore it is likely that the detectable
selection is a remnant of past function rather than ongoing
selective maintenance in Daphnia. We can only speculate at this
point as to what role these PRN elements might have played, but
the combination of phlebovirus RdRp motif conservation and
purifying selection does hint at the possibility that they were
being maintained to interact with viral components.

Fig. 2. Amplification of phlebovirus RdRp-like paleoviruses (PRNs) in the D. pulex species complex. A midpoint-rooted, maximum likelihood phylogram of ND2 mtDNA
sequences of daphnids. The D. pulex species complex is indicated by a shaded box. Branches are labeled with aLRT support values greater than 0.85. Red taxa indicate D. pulex
complex species that were screened for PRNs in this study. All taxa in red were positive for PRNs. D. pulex TCO refers to the chosen one strain. Black taxa within the D. pulex
species complex are present for reference purposes and were not screened for PRNs. Number and letter codes following taxa are GenBank accession numbers. Some black
taxa outside of the D. pulex complex were screened for PRNs (e.g. Daphnia obtusa, Drosophila ambigua, Daphnia curvirostris, Daphnia galeata) but these screens were
universally negative. A phylogram showing the relationships between the internally-amplified PRN sequences and those identified in D. pulex TCO, and D. pulicaria, the
rejected one strain, is available in Supplementary Fig. S3.

Fig. 3. Structure of the orthologous phlebovirus RdRp-like paleovirus in Daphnia (PRN5). Approximately 8000 base pairs of the D. pulex genomic sequence (GenBank ID:
ACJG01003328) structure surrounding PRN5 is represented by a cartoon map. The yellow arrow indicates the nearby hypothetical protein (GenBank ID: EFX73957) targeted
by one PRN5 primer (right-facing brown arrow), while the second primer (left-facing brown arrow) targeted the interior of PRN5 (red arrow). The BLAST match expected
value refers to a BLASTx of PRN5 nucleotides against the non-redundant protein sequence database (nr). The direction of the red and yellow arrows indicate the orientation
of their respective reading frames. The 4237 base pair product, indicated by dashed lines, was amplified in representatives of each major clade of the D. pulex species complex
(see Fig. 2).
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The apparent absence of PRN1 from all lineages except D. pulex
TCO is interesting in that this PRN is also the only one present as
an undisrupted ORF. In the D. pulex TCO genome assembly, PRN1 is
divided between the termini of two separate contigs that map
side-by-side on the same scaffold with a predicted gap of 166 bp
between them. Aligning these ends with phlebovirus RdRp
sequences predicted about 810 bp of missing phlebovirus-like
sequence. We performed PCR across the gap to confirm that the
intervening sequence was phlebovirus-like and maintained the
reading frame. Amplification of the anticipated 800 base pairs was
successful in D. pulex TCO, but failed in all other lineages screened.
Primer mismatch is a possibility (we attempted several unique
primer sets), but the high nucleotide similarity between many
members of this species complex coupled with the success of the
other PRN amplifications suggests that PRN1 is simply not present,
either by loss or by unique integration in D. pulex TCO. Supporting
the latter is the fact that PRN1 is present as an uninterrupted
2985 bp open reading frame, yet has no identifiable RNA transcript
in the D. pulex expressed sequence tags (EST) database or through
our own RT-PCR experiments. If PRN1 were ancient and at one
time present throughout the D. pulex species complex, then it
would likely have been selectively maintained to preserve the ORF
for millions of years until the present. Under this scenario, it
should be one of the PRNs for which expressed transcripts and
orthologous genomic copies could be easily identified. It seems

more likely that exclusivity of PRN1 to D. pulex TCO and its
uninterrupted ORF are side effects of a younger integration. The
only piece of evidence to support an older PRN1 integration is the
incomplete fragment of PRN1-like sequence we identified in the D.
pulicaria TRO genome (Fig. S3).

Conclusions

We have presented paleovirological evidence of a virus–host
association between Daphnia and a virus in the genus Phlebovirus,
which represents the first confirmed case of a natural RNA virus
infection in Daphnia, to our knowledge. This historical association
expands the known host range of phleboviruses to include non-
hematophagous arthropods, and establishes a minimum age for
the genus as millions of years old. While we are uncertain of the
role these paleoviruses may have played, if any, in this virus–host
association, our data suggests that for some period of time during
their evolutionary history they were co-opted by the host. Though
little is yet known about the origins and scope of virally-derived
gene families in eukaryotic genomes, our results contribute to a
growing body of evidence that exogenous non-retroviral RNA
viruses have served as novel genetic material in eukaryotic
genomes throughout evolutionary time.

Fig. 4. Site-specific detection of purifying selection in phlebovirus RdRp-like paleoviruses (PRNs) by FUBAR. Posterior probability of purifying selection (y axis) is plotted
against each site (x axis) in alignments of all the D. pulex TCO PRNs as well as individual orthologous (PRN5) and putatively orthologous (PRN2, 3 and 7) PRNs. The
recommended significance cutoff of 40.9 is indicated by the unshaded region in the uppermost portion of each plot. For PRN2, 3, 5 and 7, in which fewer sites were
identified, those positions are indicated by a heavier line weight and a downward-pointing red arrow. The partitions of the ‘All PRN’ tests are divided based on the
recombination breakpoints identified by GARD. The three partitions of PRN5 correspond to three distinct regions of this PRN that were targeted by three unique primer sets.
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Materials and methods

PRN identification and sequence alignment

An initial dataset of phlebovirus RdRp-like NIRVs was identified
by BLAST (Altschul et al., 1990) tBLASTn searches of the D. pulex JGI
draft genome assembly v1.0 (GenBank ID: PRJNA12756) using
phlebovirus amino acid sequences as queries (Supplementary
Table S1). We also used the translated PRN-1 sequence to identify
PRNs that match to more divergent regions of phlebovirus RdRp.
We reversed the query process for every PRN in our final dataset to
confirm that the best viral match was within the genus Phlebo-
virus. To produce codon alignments, PRN nucleotide sequences
were blasted against phlebovirus RdRp amino acid sequences and
high-scoring segment pairs (HSPs) for each PRN were concate-
nated and codon aligned to phlebovirus RdRps using the transla-
tional alignment tool in Geneious 5.6.5 (created by Biomatters,
available from http://www.geneious.com) with the MAFFT 7 align-
ment algorithm (Katoh and Standley, 2013). When necessary, Ns
were inserted between HSPs to match the phlebovirus
reading frame.

Flanking sequence comparison

We used the GEvo tool on the Comparitive Genomics (CoGe)
(Lyons et al., 2008) webserver to perform nucleotide sequence
alignments under the BlastZ algorithm (Schwartz et al., 2003) for
large region alignments. We used a minimum cutoff size of 1 kb
per HSP. We deemed flanking sequences to be homologous if 44
HSPs were identified directly flanking the PRN locations (or fewer
HSPs of 44 kb).

Phylogenetic analyses

To demonstrate the position of the PRNs within bunyaviruses,
PRN and viral nucleotide sequences were translated and aligned
with the MAFFT 7 plugin in Geneious. Maximum likelihood
analyses were carried out with PhyML 3.0 as implemented by
SeaView 4.3.5 (Gouy et al., 2010) for SH-like approximate like-
lihood ratio tests and RAxML (Stamatakis, 2006) implemented by
RaxML GUI (Silvestro and Michalak, 2012) for 1000 bootstrapping
replicates. Both methods used the LG substitution model with the
gamma parameter for among site rate variation (þG). The subtree
pruning and regrafting (SPR) tree-searching algorithm was used
with 5 random starts. Daphnia ND2 sequences were codon aligned
with MAFFT 7.0 in Geneious and tree-building was done with
PhyML 3.0 in SeaView under the GTRþ IþG model and SPR.

Selection analyses

Our partitioned PRN alignments were screened for evidence of
selection with FUBAR and MEME. MEME was run under the HKY
rate substitution parameters with the recommended posterior
probability cutoff of 0.1 for MEME and 0.9 for FUBAR. Prior to
submitting the PRN sequences for these analyses, they were
partitioned according to the predicted recombination breakpoints.

Nucleotide extraction and PCR amplification

Specimens of Daphnia were collected (collection sites available
in Table S2) and identified based on morphological characteristics.
Specimens were crushed in 50 ul of Epicentre QuickExtract DNA
extraction solution and incubated at 62 1C for 1–2 h then for
10 min at 951 C to denature proteinase K. A quantity of 50–
100 ng of nucleic acid template was used per PCR reaction. A
complete list of the primer sequences used in this study is

available in Supplementary Table S3. For the PRN screening
reactions, thermal cycling was performed with an initial Taq
polymerase activation heat step at 95 1C for 2 min followed by
40 cycles of 95 1C for 301 s, 53 1C for 30 s, and 72 1C for 1 min. The
gap in the PRN-1 region of the genome assembly was amplified
from D. pulex TCO nucleic acids extracted as above. Thermal
cycling was performed with an initial Taq polymerase activation
step at 95 1C for 2 min, followed by 40 cycles of 95 1C for 30 s,
58 1C for 30 s (a 0.5 1C reduction was done for each cycle until
55 1C was reached and used for the remaining cycles), and 72 1C
for 2 min 30 s. Thermal cycling for internal PRN5 targets was
performed with an initial Taq polymerase activation step of 95 1C
for 2 min, followed by 40 cycles of 95 1C for 30 s, 57 1C (for PRN5.2
and 5.3) or 54 1C (for PRN5.1) for 30 s (a 0.5 1C reduction was done
per cycle until 541 [5.2 and 5.3] or 51 1C [5.1] was reached and
used for the remaining cycles), and 72 1C for 1 min. Thermal
cycling for ND2 reactions was performed with an initial Taq
polymerase activation step of 95 1C for 2 min, followed by 40
cycles of 95 1C for 30 s, 48 1C for 30 s, and 72 1C for 1 min 15 s. A
final extension step of 72 1C for 10 min was done for all PCR
reactions.

Long PCR was performed to demonstrate orthology for PRN5.
TaKaRa LA Taq was used to amplify the 4237 bp product across
species within the D. pulex species complex. Thermal cycling was
performed with an initial denaturation step of 94 1C for 1 min,
followed by 40 cycles of 94 1C for 30 s, 56 1C for 30 s, and 68 1C for
4 min 30 s. A final extension step of 72 1C for 10 min was also done
for this reaction.

An RT-PCR screen for an RNA transcript of PRN-1 was also
carried out, with negative results. RNA was extracted from D. pulex
TCO using the Qiagen RNeasy Mini Kit and treated with Promega
RQ1 DNase I. We used the Qiagen OneStep RT-PCR kit to carry out
cDNA synthesis and amplification. The primers were successfully
used to amplify genomic DNA but failed to amplify from an RNA
template. A control for RNA amplification (targeting 16S rRNA) was
positive. Thermal cycling included a cDNA synthesis step at 51/
47 1C for 45 min, a reverse transcriptase deactivation/Taq activa-
tion heat step of 94 1C for 15 min, followed 35 cycles of 94 1C for
30 s, 51/47 1C for 30 s, and 72 1C for 2 min. All PCR and RTPCR
products were separated by DNA agarose gel electrophoresis and
visualized by ethidium bromide staining under UV light.
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Figure S1. MAFFT alignment of PRN and phlebovirus RdRp amino acid sequences
An alignment of all 21 phlebovirus RdRp-like NIRVs (PRNs) and four phlebovirus RdRps. Only regions of the exogenous RdRp that are 
represented by at least one PRN sequence are present. Conserved RdRp motifs are indicated according to the system of Muller et al., 
1994. Question marks represent stop codons.



Figure S2. GARD analysis for detection of recombination in PRN 
and phlebovirus sequences

A

B

Detection of putative recombination breakpoints in A) PRN sequences 
and B) exogenous Uukuniemi group phleboviruses identifed evidence 
for multiple breakpoints in each. Akaike information criterion support 
values (y axis) are plotted against nucleotide positions (x axis). KH 
tests supported the PRN breakpoints at p<0.001, while they failed to 
support the phlebovirus breakpoints at p<0.05.



!

 
Figure S3. Evolutionary relationships of PRNs in the Daphnia pulex species 
complex 
Midpoint-rooted maximum likelihood phylogram of phlebovirus RdRp-like NIRVs 
(PRNs) in the Daphnia pulex TCO genome (light blue), the Daphnia pulicaria 
hybrid TRO genome (purple), and amplified by PCR in related members of the 
Daphnia pulex species complex (dark blue). Branches are labeled with aLRT 
support values >0.9. 



Figure S4. Site-specific detection of episodic diversifying selection in PRNs by MEME.
Posterior probability of episodic diversifying selection (y axis) is plotted against each site (x axis) in alignments of all the 
Daphnia pulex TCO PRNs. The recommended significance cutoff of <0.1 is indicated by the unshaded region at the base of 
each plot. Significant evidence of episodic diversifying selection was detected at 25 sites across all three alignment partitions.
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Table S1. Phlebovirus RdRp-like sequences identified by tBlastn searches of the Daphnia pulex genome 
 
PRN	
  ID	
   Contig	
  Accession	
  #	
   Position	
   Strand	
   tBLASTn	
  E	
  value	
   Query	
   Corresponding	
  EST	
  
PRN-­‐1	
   ACJG01002368	
  -­‐	
  69	
   24394-­‐25953;	
  1-­‐620	
   +	
   1	
  E-­‐78;	
  8	
  E-­‐47	
   HM566159	
   None	
  detected	
  
PRN-­‐2	
   ACJG01001533	
   16086-­‐18594	
   -­‐	
   2	
  E-­‐37	
   HM566159	
   None	
  detected	
  
PRN-­‐3	
   ACJG01004899	
   31195-­‐33601	
   +	
   3	
  E-­‐132	
   HM566159	
   None	
  detected	
  
PRN-­‐4	
   ACJG01004740	
   12769-­‐14779	
   +	
   4	
  E-­‐103	
   HM566159	
   None	
  detected	
  
PRN-­‐5	
   ACJG01003328	
   16846-­‐19277	
   +	
   7	
  E-­‐76	
   HM566159	
   None	
  detected	
  
PRN-­‐6	
   ACJG01001371	
   18420-­‐20123	
   -­‐	
   3	
  E-­‐51	
   HM566159	
   None	
  detected	
  
PRN-­‐7	
   ACJG01006381	
   54924-­‐56994	
   -­‐	
   1	
  E-­‐59	
   HM566159	
   None	
  detected	
  
PRN-­‐8	
   ACJG01000925	
   19739-­‐21820	
   +	
   1	
  E-­‐44	
   HM566159	
   None	
  detected	
  
PRN-­‐9	
   ACJG01002210	
   42617-­‐43644	
   +	
   5	
  E-­‐37	
   HM566159	
   None	
  detected	
  
PRN-­‐10	
   ACJG01001622	
   62176-­‐64191	
   -­‐	
   5	
  E-­‐42	
   HM566159	
   None	
  detected	
  
PRN-­‐11	
   ACJG01006902	
   3110-­‐6764	
   -­‐	
   4	
  E-­‐8	
   HM566159	
   None	
  detected	
  
PRN-­‐12	
   ACJG01005787	
   359-­‐1048	
   -­‐	
   5	
  E-­‐14	
   HM566159	
   None	
  detected	
  
PRN-­‐13	
   ACJG01005795	
   1256-­‐1788	
   +	
   6	
  E-­‐8	
   HM566159	
   None	
  detected	
  
PRN-­‐14	
   ACJG01017696	
   159-­‐392	
   -­‐	
   2	
  E-­‐09	
   HM566159	
   None	
  detected	
  
PRN-­‐15	
   ACJG01012275	
   1626-­‐1851	
   -­‐	
   2	
  E-­‐11	
   PRN-­‐1	
  (this	
  study)	
   None	
  detected	
  
PRN-­‐16	
   ACJG01007866	
   7420-­‐7615	
   -­‐	
   1	
  E-­‐9	
   PRN-­‐1	
  (this	
  study)	
   None	
  detected	
  
PRN-­‐17	
   ACJG01003720	
   354-­‐595	
   -­‐	
   5	
  E-­‐10	
   PRN-­‐1	
  (this	
  study)	
   None	
  detected	
  
PRN-­‐18	
   ACJG01006910	
   1310-­‐1551	
   +	
   5	
  E-­‐9	
   PRN-­‐1	
  (this	
  study)	
   None	
  detected	
  
PRN-­‐19	
   ACJG01015620	
   1903-­‐3285	
   +	
   5	
  E-­‐12	
   HM566159	
   None	
  detected	
  
PRN-­‐20	
   ACJG01000925	
   22160-­‐22974	
   -­‐	
   6	
  E-­‐32	
   HM566159	
   FE406379,	
  E	
  =	
  0	
  
PRN-­‐21	
   ACJG01006381	
   53637-­‐54578	
   +	
   9	
  E-­‐32	
   HM566159	
   FE406378,	
  E	
  =	
  E-­‐131	
  
	
  
21 phlebovirus RdRp-like sequences were identified in the Daphnia pulex genome by tBlastn searches using a 
phlebovirus RdRp sequence (accession number provided) and the amino acid translation of PRN-1. PRN number 
designations are arbitrary. Subject accession numbers refer to D. pulex contigs. tBlastn E value refers to the blast 
expected value score; matches greater than E-05 were not retained. 



 
Taxonomic names, geographic locations and GPS coordinates are listed for each species of Daphnia we screened for phlebovirus 
RdRp-like paleoviruses in this study. 

Table S2. Species of Daphnia that were PCR-screened for PRNs  

Daphnia sp. Location name Country Coordinates 

D. pulicaria Birch Lake AK, USA 61.14558, -149.9384 

D. tenebrosa Glacial-08N AK, USA 64.82526, -165.7465 

D. pulex Nome-04-2012 AK, USA 64.4777198, -165.2344387 

D. tenebrosa Taylor-12-2011 AK, USA 65.384906, -164.660289 

D. pulex Amherst  NY, USA 43.028756, -78.754544 

D. curvirostris Argeles plage (Pyrénées Orientales) France 42.57499, 3.044131 

D. pulicaria A small puddle near Bayan nuur (AAKM-0761) Mongolia 48.45144, 95.17455 

D. pulex A small forest pool (AAK M-0873) Sakhalin, RU 47.31642, 142.7005 

D. pulex Marnay-sur-Seine (AAK M-1421) France 48.53444, 3.574445 

D. catawba Laurel Lake NY, USA 40.978736, -72.557425 

D. obtusa BDW-1 Unavailable Unavailable 

D. galeata Laurel Lake NY, USA 40.978889, 23.209167 

D. cf. pulex Pond near Hibara Park Tokoname, Japan 34.857815, 136.888565 

D. curvirostris Pilgrim700 AK, USA 65.08552, -164.9267 

D. dentifera Teller-08-2012 AK, USA 65.0374609, -166.1610238 



Table   S3. PCR primer sequences 

Target Primer 1 Primer 2 

PRN2 internal GTGACAAGGATCAATCCAAATCCG GGTGTGCTTTGTTTCACAATCCAG 

PRN3 internal GGAAGAATTGGGAACCCTAAAAGCC GCCCCAGTGATTGTTATGTAGTTTTGA 

PRN5.1 internal CTGTTCCAAGTCTCAATCTCTGTTCTGG CTGCTTAGTCCTCTTTTCTTCCATCTGC 

PRN5.2 internal TGCATTCATCAACAACTCCTTCCAACTGACC GTGAACGTTGAAATCCCTCGTATGGATGC 

PRN5.3 internal TCAAGGCTGCTAAGTCAGCAGATGC AGGTTGGAGGCCATTTCCTCTTGCC 

PRN7 internal CAGTGTCCCAAAGCAGACTACAG GCTTCCTGTGTCTCCACTTTCG 

PRN5 flanking GTCTTCTCCCGAGTAGTAATTGTAGACG CATTCATAAAAATAAGCAAGCTGACGGC 

PRN1 transcript screen AAGCATGGTTAAGTTCTTATGCCG GCTTGTGCAATCTGACAATGAGC 

PRN1 assembly gap AGTGTTCAAGCCAGAAGATTACTGC GCTTGTGCAATCTGACAATGAGC 

PRN1 assembly gap " GCCTAGCTCTTTGGGCATCCAGC 

ND2 GTTCATGCCCCATTTATAGGTTA GAAGGTTTTTAGTTTAGTTAACTTAAA 
 
The sequences of PCR primer pairs used to target and amplify phlebovirus RdRp-like paleoviruses in species of Daphnia in this study 
are listed. All sequences are in 5’ to 3’ orientation.  
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