Does The Animalist Have a Too Many Thinkers Problem?
Does The Animalist Have a Too Many Thinkers Problem?

Animalism, or the Biological Approach to Personal Identity (BAPI), maintains that we are essentially living beings. Our capacity to think is a contingent property. We each once existed as a mindless fetus and we could continue to exist if we lost the capacity for thought due to the onset of a permanent vegetative state. Animalism’s main rival, the Psychological Approach to Personal Identity (PAPI), insists that we are essentially thinking entities and that we cease to exist when we lose the capacity for all or some kind of thought. The PAPI has a certain intuitive advantage that results from our reactions to cerebrum transplant thought experiments. But the approach seems to stumble badly on The Problem of Too Many Thinkers. This is a problem that arises if the person is understood as not being identical to the organism but rather spatially coincident with it for then it would seem that if the person can use its brain to think, the organism could as well. Since the organism shares a brain and every other organ and atom of its body with the person, one would expect it to have the same physically-based capacities. The result would be that there are two thinkers where commonsense assumes there is just one.

Animalists identify the person and the human animal and thus claim to avoid the problem of two spatially coincident thinkers. After sketching in a little more detail The Problem of Too Many Thinkers, I will suggest that animalists have their own version of the
problem. If their assumption that the human animal is the subject of thought is granted, then in a bizarre (but actual) case of conjoined twins consisting of two human organisms sharing one cerebrum, there would appear to be two human animals capable of thinking with the same cerebrum. Whatever solution the animalist can offer to the problem of two thinkers sharing one cerebrum, the advocate of the PAPI can likely borrow. Thus what seemed to be a great advantage of the BAPI over the PAPI is undermined.

* * *

The PAPI maintains that a person is spatially coincident with an organism. Since they share a brain, there arises the prospect of too many thinkers. It isn’t easy to argue that one of the two entities can think but the other that is spatially coincident with and physically indistinguishable from it cannot. Therefore every time the person thinks something, so does the organism. This would mean that there were either two streams of conscious thoughts or two thinkers sharing a single thought. Neither option is attractive. Eric Olson points out that if the person and the organism are using the same cerebrum to think, then if the person thinks something along the lines of “I am essentially a person,” so does the thinking animal. But such a thought would be false for the animal and true for the person. Since the same proposition can’t be true and false, then there must be two thoughts occurring simultaneously, one in which the first person pronoun refers to the organism and in the other to the person. It is not easy to see how this can be accomplished. Olson goes on to ask how can the organism know that it is an organism and not a person? The same problem arises for the person that is spatially coincident with the organism. He has no reason to believe that he is the person rather than the organism. In fact, the entity that is essentially a person will be alive and thus contingently an
organism; and the being that is essentially an organism will be capable of thought and thus contingently a person. So there will be two persons and thus two organisms where we would like there to be just one of each.

Olson and other advocates of Animalism believe that their favored theory avoids the problem of spatially coincident thinking beings since it treats “person” as a phase sortal. The person is identical to the organism, though he has the property of personhood contingently, just as he may have the property of being a student, Christian, European etc. The human person’s persistence conditions are those of a living being, not that of a thinking entity. The organism and the person, on this construal, present no more of a problem of there being two distinct spatially coincident thinkers than the fact that an organism and a philosopher are reading this paper right now.

However, it isn’t clear to me that the BAPI can avoid its own version of the Problem of Too Many Thinkers and thus may lose (the?) one major advantage it has over the PAPI. In the scientific literature can be found a description of aborted conjoined (Cephalothoracopagus Janicep) twins that shared one cerebrum but had two brainstems each possibly maintaining control over what could count as a distinct body (there being two cerebelli, two sets of lungs, two stomachs, two livers, other duplicated organs and two pairs of arms and legs). It seems plausible that such twins engaged in minimal thought before they were aborted or that it was metaphysically possible for such twins to have lived long enough to think. There would then be a problem of too many thinkers for the BAPI. However, since in the above case there was just a single heart, a single pair of kidneys and single gastrointestinal system, this might enable the twins to be treated in a manner that van Inwagen does his imagined creature “Neocerberus.” Neocerberus is not a threat to the BAPI for it is an entity which possesses two brainstem-like
control systems causally over-determining a single life which means that there is only a single organism present. So for there to be two distinct organisms thinking with a single cerebrum, there must be two biological control systems that do not overdetermine the same life processes, but each control a distinct biological life.

Even if I grant van Inwagen that the just mentioned cephalothoracopagus janiceps twins are really only one organism, I don’t see anything metaphysically impossible about imagining a slight twist in the above case in which there is one shared cerebrum but two brainstems that control different biological events (lives). The only organ that is physiologically regulated in an over-determined way by both brainstems is the one cerebrum. I believe van Inwagen must allow such a metaphysical possibility since he accepts the possibility of his imagined Cerberus and Neocerberus; the former is a creature which has two cerebrums and one brainstem, while the latter is similar except that it has a second brainstem which causally over-determines the life processes of a single organism. And as van Inwagen himself admits: “Since (metaphysical) theses are supposed to be necessary truths, they are as vulnerable to refutation by imaginary physiology as by actual physiology, provided only that the imaginary physiology does not conceal some intrinsic impossibility.” Let’s assume that my imagined modified Cephalothoracopagus Janiceps twins engaged in minimal thought before they were aborted or that it was, at least, metaphysically possible for such twins to have lived long enough to acquire thought. Now combine either claim with the Animalist assertion that organisms are the subjects of thought. This would mean that there could be two thinkers, each with their own biological life, sharing the same cerebrum and thus apparently thinking the same thoughts. The very puzzles of too many thinkers that supposedly embarrass the PAPI would then reappear to plague the BAPI even though the conjoined twins were not spatially coincident organisms. The
reason these problems show up for the non-spatially coincident pair of conjoined organisms is that they would be sharing one cerebrum which is the organ that realizes (or subserves) conscious life. Any pain one twin felt, the other would be using the same cerebrum to feel. And if we imagine that they survive to the developmental age at which self-consciousness emerges, there would arise all the earlier discussed problems of self reference.

Now let’s assume that the advocates of Animalism can explain how two organisms using the same cerebrum can think and each refer just to itself. The dilemma for the defenders of the BAPI would appear then to be that however they are capable of avoiding the problems that arise from positing two thinkers with one cerebrum would be available to the advocates of the PAPI who posit the spatially coincident organism and person sharing the same cerebrum.\(^9\) Given that the PAPI is otherwise more intuitively compelling than the BAPI, this sharing of The Problem of Too Many Thinkers may be very bad news for the latter approach.


\(^3\) David Lewis in his discussion of two people sharing a person stage, argues that they cannot each refer individually to themselves. He writes “The ‘me’ in their shared thought has the status of an improper description. It cannot refer to \(C_1\) in \(C_1\)’s thought and to \(C_2\) in \(C_2\)’s thought, for
these thoughts are one and the same…” “Survival and Identity” reprinted in his *Philosophical Papers Volume 1* (Oxford: Oxford University Press, 1983) pp. 74-75.

4 For the problems with constitution and coincidence, see Eric Olson’s “Material Coincidence and the Indiscernibility Problem.” *The Philosophical Quarterly.* 51. no. 204 (2001) and “Composition and Coincidence.” *Pacific Philosophical Quarterly.* 77. no. 4 (1996).

5 *Ultrasound in Obstetrics and Gynecology.* 18, 2001, pp. 289-290. A picture of a related kind of conjoined twins (Craniothoracopagus), one cerebrum and possibly two organisms, can be found at the following website: http://www.conjoined-twins.i-p.com/


7 The twins sharing only a cerebrum would no more be a single organism than if they were just attached at the hip. There would be two distinct lives. From a biological point of view, a cerebrum is not essential to an organism. An organism can live without a functioning cerebrum. And if an organism shares *just* the cerebrum with another entity, that doesn’t make them a single organism. They would have distinct persistence conditions. One life could cease and the other organism attached to it via the shared cerebrum need not die.

I would like to thank Rose Koch for bringing to my attention the craniothoracopagus and cephalothoracopagus janicep twins which share a single cerebrum.