Understanding the increase of the electric permittivity of cement caused by latex addition

Min Wang ¹, D.D.L. Chung* ²

¹ Composite Materials Research Laboratory, Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4400, USA

2 Permanent address: The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, PR China.

Article Info
Article history:
Received 24 April 2017
Received in revised form 27 September 2017
Accepted 28 September 2017
Available online 29 September 2017

Keywords:
Ceramic-matrix composites (CMCs)
Particle-reinforcement
Electrical properties
Permittivity

Abstract
The addition to cement paste of latex (styrene-butadiene, latex/cement mass ratio C20/0.30, where latex refers to the latex dispersion with 48 wt.% latex solid) increases the relative permittivity (2 kHz) from 27 to 43. The permittivity increases abruptly at latex/cement ratio C20/0.05, levels off at ratio 0.2, and increases abruptly at ratio C21/0.25. The increase occurs in spite of the low permittivity of latex solid compared to cement. It is attributed to the interface between cement and latex solid. The permittivity is modeled as the cement, latex solid and latex-cement interface in parallel electrically. Cement is the main contributor, followed by the latex-cement interface.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The electric permittivity (the real part of the complex permittivity, also known as the dielectric constant) is a material property that pertains to the piezoelectric, dielectric and electric polarization behavior. The piezoelectric behavior of cement-based materials relates to the use of these materials as sensors and actuators [1–4]. The permittivity is one of the key material properties that govern the interaction of electromagnetic radiation with a material. Such interaction pertains to the probing of concrete with ground-penetrating radar [5] and the use of concrete for electromagnetic interference (EMI) shielding [6–8]. The polarization behavior affects the use of the electrical conductivity of these materials, since the polarization results in a reverse electric field in the material [9,10]. The polarization is also affected by stress, thus allowing polarization-based stress sensing [11]. The electrical conduction behavior of cement-based materials relates to the use of these materials in piezoresistivity-based strain/damage sensing [12–15], anti-static components [16], resistance-heating-based deicing [17,18], electrical grounding, and lightning protection. The conduction behavior is also relevant to the cathodic protection of the steel embedded in concrete [19–22] and to the removal of ions from these materials by electrochemical processes [22]. In spite of the relevance to numerous applications, the electric permittivity of cement-based materials has received little prior attention [23–25]. Most prior work on the permittivity of cement-based materials concerns the process of hydration [26–29].

Latex-modified cement-based materials are attractive for their enhanced flexural strength [30–32], flexural toughness [32] and vibration damping ability [33], decreased average crack width [34], reduced void content [32], and improved adhesion and bonding properties [35–37]. However, the electrical behaviors of these materials have received little prior attention [32]. It has been reported that latex addition to cement increases both the electrical resistivity [32] and the electric permittivity [23]. The increase in resistivity is expected, since latex (a polymer) is an electrical insulator, while cement is conductive. However, the increase in electric permittivity is not expected, since the permittivity of latex (as typical for polymers) is lower than that of cement. No explanation for the increase in permittivity by latex addition has been provided by the prior work. However, it is reasonable to conjecture that polarization occurs at the interface between latex and cement, thereby causing the permittivity to be increased by the latex addition.
Latex is most commonly used as an admixture in cement. However, latex has also been used as a protective coating on glass fiber fabric that is used to reinforce cement [38]. Polymer fibers such as polypropylene fibers are also used admixtures in cement to improve the toughness [39]. The combined use of polymer fiber and latex as admixtures is attractive for controlling the multiple cracking behavior [40].

This paper is aimed at (i) understanding the effect of latex addition on the electric permittivity of cement, (ii) modeling the electric permittivity based on the contributions of the constituents (namely cement, latex and cement-latex interface) to the permittivity of latex-modified cement, (iii) investigating the effect of the latex/cement ratio on each of these contributions, and (iv) advancing the science related to the permittivity of cement-based materials.

2. Experimental methods

2.1. Materials

Portland cement (Type I, ASTM C150) from Lafarge (Southfield, MI) is used. No aggregate is used. The water/cement mass ratio is fixed at 0.5% by mass. Portland cement (Type I, ASTM C150) from Lafarge (Southfield, MI) is used. No aggregate is used. The water/cement mass ratio is fixed at 0.5% by mass. The antifoam content is styrene butadiene copolymer with the polymer making up 48% of the latex dispersion. All the ingredients are mixed in a rotary mixer (Fig. 1). The slope of the straight-line plot is equal to 1/(kε0μ0A), where k is the relative permittivity of the specimen, ε0 is the permittivity of free space, and A is the area of the sandwiched dielectric material. Hence, k is obtained from the reciprocal of the slope. The intercept of the straight with the vertical axis at zero thickness equals 2/Ci, where Ci is the capacitance of one interface. In other words,

\[C_m = 1/C_v + 2/C_i, \]

where \(C_v \) is the volumetric capacitance. Using Eq. (1), which is based on capacitors in series, \(1/C_v \) is obtained for a given value of \(I \). The \(C_v \) is given by

\[C_v = \varepsilon_0 \kappa A/l, \]

where \(\varepsilon_0 \) is the permittivity of free space (8.85 \times 10^{-12} \text{ F/m}), A is the area of the sandwich (i.e., the area of the electrical contact), and \(l \) is the thickness of the specimen sandwiched by the electrical contacts.

The cement, latex solid and the interface between these components are modeled electrically as continuous dielectric components that are either in parallel or in series, with capacitances \(C_C, C_L \) and \(C_I \), respectively. Water is included in the cement component. In addition, moisture may be present at the interface between cement and latex solid. The effect of the amount of water is not addressed in this paper, as the water/cement ratio is fixed.

With the cement and latex solid components alternating in their positions (Fig. 2), let \(N \) be the number of cement layers. Then the number of latex solid layer is \(N-1 \) and the number of interfaces is \(2N-2 \). The effect of the degree of dispersion of the latex is not addressed in this paper, as the mixing condition is fixed.

In the parallel model (Fig. 2(a)), according to the Rule of Mixtures [41],

\[C_v = NC_C + (N-1)C_L + (2N-2)C_I. \]

Rearrangement gives the contribution of the interfaces to the relative permittivity of the cement-based material as

\[\frac{C_I}{\varepsilon_0 l_{eff}} = \kappa - \varepsilon_C \kappa_C - \varepsilon_L \kappa_L, \]

where \(\varepsilon_C \) and \(\kappa_C \) are the volume fraction and relative permittivity of cement, respectively, and \(\varepsilon_L \) and \(\kappa_L \) are the volume fraction and

<table>
<thead>
<tr>
<th>Latex/cement mass ratio</th>
<th>Cement (g)</th>
<th>Latex (g)</th>
<th>Water (g)</th>
<th>Antifoam (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.0 ± 0.5</td>
<td>0</td>
<td>45.0 ± 0.5</td>
<td>0</td>
</tr>
<tr>
<td>0.05</td>
<td>100.0 ± 0.5</td>
<td>5.0 ± 0.5</td>
<td>42.4 ± 0.5</td>
<td>0.025</td>
</tr>
<tr>
<td>0.10</td>
<td>100.0 ± 0.5</td>
<td>10.0 ± 0.5</td>
<td>39.8 ± 0.5</td>
<td>0.050</td>
</tr>
<tr>
<td>0.15</td>
<td>100.0 ± 0.5</td>
<td>15.0 ± 0.5</td>
<td>37.2 ± 0.5</td>
<td>0.075</td>
</tr>
<tr>
<td>0.20</td>
<td>100.0 ± 0.5</td>
<td>20.0 ± 0.5</td>
<td>34.6 ± 0.5</td>
<td>0.100</td>
</tr>
<tr>
<td>0.25</td>
<td>100.0 ± 0.5</td>
<td>25.0 ± 0.5</td>
<td>32.0 ± 0.05</td>
<td>0.125</td>
</tr>
<tr>
<td>0.30</td>
<td>100.0 ± 0.5</td>
<td>30.0 ± 0.5</td>
<td>29.4 ± 0.5</td>
<td>0.150</td>
</tr>
</tbody>
</table>

* Latex dispersion.
relative permittivity of latex solid, respectively. The terms V_{Ck} and V_{Lk} are the contributions of the cement and latex solid to the relative permittivity of the cement-based material, respectively. The volume fractions are obtained from the mass fractions (Table 1, with the fraction of solid in the latex dispersion taken into consideration) and the densities. The density of cement is taken as 1.62 g/cm3, which is the density of the cement-based material without latex addition, as measured in this work. The density of latex solid (with 66% styrene) is taken as 0.994 g/cm3, which is obtained by extrapolating the known densities of styrene-butadiene of 0.965 g/cm3 at 45% styrene and 0.910 g/cm3 for 5% styrene [42]. The relative permittivity of styrene-butadiene solid is 2.8 [43].

In the series model (Fig. 2(b)), according to the Rule of Mixtures [41],

$$1/C_s = N/C_C + (N - 1)/C_L + (2N - 2)/C_L.$$ \hspace{1cm} (5)

Rearrangement of Eq. (5) gives the contribution of the interfaces to the reciprocal of the relative permittivity of the cement-based material as

Table 2
The measured capacitance C_m and the relative permittivity ε obtained from the slope of the plot of $1/C_m$ vs. thickness l.

<table>
<thead>
<tr>
<th>Latex/cement mass ratio</th>
<th>Cement volume fraction</th>
<th>Latex solid volume fraction</th>
<th>Thickness (mm)</th>
<th>Area (mm2)</th>
<th>C_m(pF)</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>0</td>
<td>1.91</td>
<td>25.04 x 24.60</td>
<td>22.44 ± 0.01</td>
<td>26.98 ± 0.90</td>
</tr>
<tr>
<td>0.05</td>
<td>0.96 ± 0.01</td>
<td>0.038 ± 0.000</td>
<td>1.33</td>
<td>24.36 x 24.30</td>
<td>21.17 ± 0.01</td>
<td>32.87 ± 0.77</td>
</tr>
<tr>
<td>0.10</td>
<td>0.93 ± 0.01</td>
<td>0.072 ± 0.000</td>
<td>1.99</td>
<td>25.38 x 25.24</td>
<td>20.64 ± 0.01</td>
<td>36.16 ± 0.60</td>
</tr>
<tr>
<td>0.15</td>
<td>0.89 ± 0.01</td>
<td>0.10 ± 0.00</td>
<td>2.38</td>
<td>23.83 x 23.88</td>
<td>17.91 ± 0.03</td>
<td>37.66 ± 0.82</td>
</tr>
<tr>
<td>0.20</td>
<td>0.86 ± 0.01</td>
<td>0.14 ± 0.00</td>
<td>1.85</td>
<td>25.19 x 24.88</td>
<td>17.13 ± 0.01</td>
<td>39.30 ± 0.60</td>
</tr>
<tr>
<td>0.25</td>
<td>0.84 ± 0.01</td>
<td>0.16 ± 0.00</td>
<td>2.39</td>
<td>25.10 x 25.35</td>
<td>16.51 ± 0.05</td>
<td>40.18 ± 0.53</td>
</tr>
<tr>
<td>0.30</td>
<td>0.81 ± 0.01</td>
<td>0.19 ± 0.00</td>
<td>1.72</td>
<td>24.88 x 24.88</td>
<td>15.18 ± 0.03</td>
<td>43.04 ± 0.32</td>
</tr>
<tr>
<td>0.30</td>
<td>0.81 ± 0.01</td>
<td>0.19 ± 0.00</td>
<td>2.50</td>
<td>24.85 x 24.89</td>
<td>14.97 ± 0.02</td>
<td>40.18 ± 0.53</td>
</tr>
<tr>
<td>0.30</td>
<td>0.81 ± 0.01</td>
<td>0.19 ± 0.00</td>
<td>3.02</td>
<td>25.24 x 25.11</td>
<td>18.05 ± 0.02</td>
<td>43.04 ± 0.32</td>
</tr>
<tr>
<td>0.30</td>
<td>0.81 ± 0.01</td>
<td>0.19 ± 0.00</td>
<td>3.51</td>
<td>25.02 x 24.94</td>
<td>15.18 ± 0.03</td>
<td>40.18 ± 0.53</td>
</tr>
<tr>
<td>0.30</td>
<td>0.81 ± 0.01</td>
<td>0.19 ± 0.00</td>
<td>4.00</td>
<td>24.88 x 24.88</td>
<td>15.18 ± 0.03</td>
<td>43.04 ± 0.32</td>
</tr>
<tr>
<td>0.30</td>
<td>0.81 ± 0.01</td>
<td>0.19 ± 0.00</td>
<td>4.50</td>
<td>24.88 x 24.88</td>
<td>15.18 ± 0.03</td>
<td>43.04 ± 0.32</td>
</tr>
</tbody>
</table>

* Latex dispersion.

Fig. 1. Schematic plot of $1/C_m$ vs. l, for the determination of C_i and ε based on Eq. (1), where C_m is the measured capacitance, C_i is the capacitance of a specimen-contact interface, l is the thickness of the specimen, and ε is the relative permittivity of the specimen. The slope equals $1/(\varepsilon_oA)$, where A is the area of the specimen. The intercept on the vertical axis equals $2/C_i$.

Fig. 2. Equivalent electric circuit models for the cement-based materials of this work. C = cement; L = latex solid. (a) The parallel model. (b) The series model.
\[
2N - 2 \frac{A_{eq}}{C_{f} l} = 1/\kappa - V_{c}/k_{c} - V_{L}/k_{L}.
\]
(6)

The terms \(V_{C}/k_{C}\) and \(V_{L}/k_{L}\) are the contributions of the cement and latex solid to the reciprocal of the relative permittivity of the cement-based material, respectively.

3. Results and discussion

Fig. 3 shows that the experimental plot of \(1/C_{m}\) vs. \(l\) is indeed linear, as observed for all of the cement-based materials studied and as illustrated schematically in Fig. 1. Table 3 shows that the relative permittivity \(\kappa\) of the cement-based material increases monotonically with increasing latex/cement ratio. The value is increased from 27 to 43 when the latex/cement ratio is increased from 0 to 0.30.

The closest prior work [23] reported that the values of the relative permittivity at 10 kHz for cement pastes with latex/cement ratios 0 and 0.2 are 29 and 35, respectively. In spite of the difference in frequency, at the same latex/cement ratio, the permittivity is only slightly lower in the present work than the prior work [23]. This difference is attributed to the fact that the prior work uses a single specimen thickness in determining the permittivity from the capacitance, whereas the present work uses three specimen thicknesses for determining the permittivity from the slope of the plot of the inverse capacitance vs. thickness. Thus, the prior work does not decouple between the capacitance from the specimen-contact interface and the specimen capacitance, whereas the present work does. Without the decoupling, the inverse of the interfacial capacitance \(1/C_{i}\) is lumped in with the inverse of the specimen capacitance \(1/C_{s}\), in accordance with Eq. (1), so that the inverse of the specimen capacitance is over-estimated. This overestimation means that the specimen capacitance is underestimated. As a consequence, \(\kappa\) is also underestimated. The lower value of \(\kappa\) in the prior work [23] is probably also due to the higher frequency used.

For the parallel model, Table 3 shows that the cement is the main contributor to the relative permittivity of the cement-based material. This is expected from the high proportion of cement in the mix (Table 1). The contribution from the latex solid is small, as expected from the low proportion of latex dispersion in the mix (Table 1). The contribution from the interface between cement and latex solid is substantial, though it is below that of the cement. As the latex/cement ratio increases, the contributions from the latex solid and from the cement-latex increase, while that from the cement decreases. As a consequence, at a high latex/cement ratio (such as 0.30), the contribution from the cement-latex interface approaches that from the cement. Therefore, the increase in the relative permittivity of the cement-based material with increasing latex/cement ratio is mainly due to the cement-latex interface.

For the series model, Table 4 shows that the cement and latex solid contribute positively to the reciprocal of the relative permittivity of the cement-based material, while the cement-latex interface contributes negatively. This suggests polarization in the reverse direction at the cement-latex interface. The cement is the main contributor to the reciprocal of the relative permittivity when the latex/cement ratio is 0.10 or below, with the latex solid being the smallest contributor. At higher values of the latex/cement ratio, the cement is the smallest contributor, while the cement-latex interface is the greatest contributor (though negative). The contribution from the latex solid and that from the interface increase with increasing latex/cement ratio, while that from the cement decreases. Therefore, the decrease of the reciprocal of the relative permittivity (i.e., the increase of the relative permittivity) with increasing latex/cement ratio is mainly due to the cement-latex interface.

Although the results of the series model are not totally unreasonable, the high negative values of the contribution from the cement-latex interface is not likely to be feasible, as there is no reasonable mechanism that would enable this. Therefore, the parallel model (Table 3) is much closer to reality that the series model (Table 4).

As shown in Fig. 4, the relative permittivity \(\kappa\) of the cement-based material increases with the latex/cement ratio (where the latex refers to the latex dispersion). It increases abruptly at a low latex/cement ratio of \(<0.05\), levels off at a ratio of about 0.2, and increases abruptly at a ratio >0.25. The abrupt increase at a ratio >0.25 is attributed to the dielectric percolation of the latex solid phase, which leads to the dielectric percolation of the interface between latex solid and cement. The abrupt increase at ratio >0.05 is attributed to the introduction of the interface when the latex content is increased from zero. The shape of the curve in Fig. 4 is in contrast to the roughly linear increase of the electrical resistivity with the latex/cement ratio [32]. The increase of the resistivity with latex content is due to the high resistivity of latex solid compared to cement. However, the increase in the relative permittivity with increasing latex content is mainly due to the increasing abundance of the interface between cement and latex solid. In addition, conduction percolation and dielectric percolation are not the same, as the former involves charge carrier movement whereas the latter involves polarization.

As shown in Fig. 5, according to the parallel model, the
contribution of cement to the relative permittivity \(\varepsilon \) of the cement-based material decreases with the latex/cement ratio roughly linearly, whereas the contributions of latex solid and latex-cement interface increase with increasing latex/cement ratio. The increase of the contribution of the latex solid is roughly linear, but that of the contribution of the latex-cement ratio increases more abruptly at low and high values of the latex/cement ratio than the intermediate values, akin to the variation of \(\varepsilon \) with the latex-cement ratio (Fig. 4). The similarity in shape between the curves in Figs. 4 and 5(c) supports the notion that the increase in the latex-cement ratio is mainly due to the latex-cement interface.

According to the parallel model (Eq. (4)), the fractional contribution of the latex solid to the relative permittivity \(\varepsilon \) of the cement-based material (i.e., the contribution to \(\varepsilon \) from the latex solid as a fraction of \(\varepsilon \)) is given by

\[
\kappa L / \kappa
\]

as shown in Fig. 6(a). The fractional contribution of the latex-cement interface to \(\varepsilon \) is given by

\[
(2N - 2) CI l / (\varepsilon 0k),
\]

as shown in Fig. 6(b). The fractional contribution of the latex solid to \(\varepsilon \) increases roughly linearly with increasing latex/cement ratio, such that it levels off at a latex/cement ratio \(\geq 0.25 \). This is probably due to the percolation of latex solid at ratio \(\geq 0.25 \). The fractional contribution of the latex-cement interface to \(\varepsilon \) increases relatively abruptly at low latex/cement ratio below 0.10 and at high ratio above 0.25. The shape of the curve in Fig. 6(b) is similar to that of the curve in Fig. 5(c) for the contribution of the latex-cement interface to \(\varepsilon \), and is also similar to that of the curve in Fig. 4 for \(\varepsilon \). This similarity is consistent with the notion that the latex-cement interface is mainly responsible for the increase of \(\varepsilon \) upon increase of the latex/cement ratio.

Fig. 7 shows that, for the series model, the contribution of the cement to the relative permittivity \(\varepsilon \) of the cement-based material decreases essentially linearly with increasing latex/cement ratio, whereas that of the latex solid increases essentially linearly, such that the increase becomes more gradual at a high latex/cement ratio of \(\geq 0.20 \) probably due to latex solid percolation. The contribution from the latex-cement interface becomes increasingly negative as the latex/cement ratio increases, such that the dependence is essentially linear. None of the curves in Fig. 7 resemble the shape of Fig. 4. This lack of resemblance supports the notion that the series model is not effective.

For the series model (Eq. (6)), the fractional contribution from the latex solid to \(1/\varepsilon \) is given by

\[
V_l / \kappa L,
\]

as shown in Fig. 8(a), and the fractional contribution from the latex-cement interface to \(1/\varepsilon \) is given by

\[
\kappa M / \kappa L.
\]
The fractional contribution from the latex solid to $1/k$ increases roughly linearly with increasing latex/cement ratio, such that the increase becomes more abrupt at a high latex/cement ratio >0.25. The fractional contribution from the latex-cement interface to $1/k$ becomes increasingly negative (roughly linearly) with increasing latex/cement ratio, such that increase is more abrupt at a high latex/cement ratio >0.25. The greater abruptness at a high latex/cement ratio >0.25 is not consistent with the notion of percolation being expected to occur at high values of this ratio. In addition, the shapes of the curves in Fig. 8 do not resemble that of Fig. 4. Therefore, Fig. 8 supports the notion that the series model is not sufficiently effective.

Fig. 9 shows the equivalent circuit model that embodies the parallel model mentioned above. In this model, cement, latex solid and latex-cement interface are three circuit elements that are in parallel electrically. Each element is modeled as a resistance and a capacitance in parallel, though this paper addresses only the capacitance and not the resistance. This parallel combination is in series with two circuit elements that represent the two electrical contacts that sandwich the specimen. Hence, the model reflects the testing configuration.

A model that involves both parallel and series configurations is also possible. However, simplicity in the model is preferred. Therefore, the model of Fig. 9 is recommended.

The model of Fig. 9 implies a degree of continuity of the latex solid in cement-based material. The formation of latex film or network in cement has been previously reported, based on microstructural observations [44–47]. Moreover, the formation in cement of latex films penetrated by cement hydration products has also been reported [48]. Furthermore, the formation of latex in the form of particulate single-layers adsorbed on cement particles has been reported [49]. In addition, the presence of latex particles in cement has been observed [50]. Most commonly, latex addition has been reported to decrease the porosity [51,52], downshift the pore-size distribution [51,53] and reduce the water absorption [52].

The model of Fig. 9 also implies a degree of continuity of the latex-cement interface. This is supported by the previously reported formation of latex in the form of particulate single-layers adsorbed on cement particles [49]. It is also supported by the reported adsorption of the latex particles on the cement particles shortly after mixing [54].

This work uses a technique that differs greatly from the widely used technique of impedance spectroscopy, which measures the impedance as a function of frequency and uses the frequency dependence to obtain information. Firstly, the technique of this work does not measure the impedance, but measures the relative permittivity (real part of the permittivity). Secondly, the technique of this work decouples the contribution of the specimen-contact
interface from the contribution of the volume of the specimen. This decoupling is not performed in impedance spectroscopy. Thirdly, the technique of this work uses an equivalent circuit model (Fig. 9) that reflects the testing configuration and material structure. Fourthly, the technique of this work does not need to address the frequency dependence in order to obtain meaningful information. In contrast, impedance spectroscopy is focused on the frequency dependence of the impedance, as conventionally described in terms of the Nyquist plot, for the purpose of deriving an equivalent electrical circuit that is intended to describe the electrical/dielectric behavior of the material. The circuit model obtained by the curve fitting tends to be not unique, so the determined values of the circuit elements in the model are not very meaningful.

4. Conclusions

Latex (styrene-butadiene copolymer) is the most commonly used polymer admixture in cement-based materials. This work strengthens the science of latex-modified cement by addressing the effect of latex addition on the electric permittivity. Most notably, this work shows that the interface between cement and latex solid contributes substantially to the permittivity of the latex-modified cement.

The addition to cement paste of latex up to a latex/cement mass ratio of 0.3 (with the latex in this ratio referring to the latex dispersion rather than the latex solid) increases the relative permittivity at 2 kHz from 27 to 43 when the latex/cement ratio is increased from 0 to 0.3. The permittivity increases abruptly at a low latex/cement ratio of ≤0.05, levels off at a ratio of about 0.2, and increases abruptly at a ratio ≥0.25. The increase occurs in spite of the low permittivity of latex solid compared to cement. It is attributed to the contribution to the permittivity from the interface between the cement and latex solid.

The permittivity of the cement-based material is effectively modeled by considering cement, latex solid and the latex-cement interface as three continuous constituents in parallel electrically. The series model is not effective. The cement is the main
contributor to the relative permittivity. The contribution from the latex solid is small. The contribution from the interface between cement and latex solid is substantial, though it is below that of the cement. As the latex/cement ratio increases, the contributions from the latex solid and from the cement-latex increase, while that from the cement decreases. As a consequence, at a high latex/cement ratio (such as 0.30), the contribution from the cement-latex interface approaches that from the cement. The contribution of cement to the relative permittivity k of the cement-based material decreases with the latex/cement ratio roughly linearly, whereas the contributions of latex solid and latex-cement interface increase with increasing latex/cement ratio. The increase of the contribution of the latex solid is roughly linear, but that of the contribution of the latex-cement ratio increases more abruptly at low and high values of the latex/cement ratio than the intermediate values, akin to the variation of k with the latex–cement ratio. This similarity is consistent with the notion that the latex–cement interface is mainly responsible for the increase of k upon increase of the latex/cement ratio.

The fractional contribution of the latex solid (i.e., the contribution to k from the latex solid as a fraction of k) increases roughly linearly with increasing latex/cement ratio, such that it levels off at a latex/cement ratio ≥ 0.25, probably due to the percolation of latex solid at ratio ≥ 0.25. The fractional contribution of the latex–cement interface increases relatively abruptly at low latex/cement ratio below 0.10 and at high ratio above 0.25.

References

