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The fringing electric field increases the apparent relative permittivity of cement when the electrodes do
not cover the entire specimen area. The apparent permittivity increases with increasing thickness, de-
creases with increasing area, and is much higher when the permittivity is obtained from the slope (P) of
1/C versus thickness than the slope (Q) of C versus area (C = measured capacitance). Using P, the value
(2 kHz) for various areas is 830—1760 and 810—1750 for plain and silica-fume cements, respectively.

Using Q, the value for various thicknesses is only 150—375 and 144—354 for plain and silica-fume ce-
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ments, respectively. When the electrodes cover the entire area, the fringing field effect is weaker, with
lower relative permittivity 24—38 and 23—36 for plain and silica-fume cements, respectively.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The electric permittivity (also known as the dielectric constant,
also known as the real part of the complex permittivity) is a ma-
terial property that largely governs the piezoelectric, dielectric and
electric polarization behavior. The piezoelectric behavior of
cement-based materials pertains to applications as sensors and
actuators [1—4], thereby enabling these materials to be multi-
functional structural materials (i.e., smart materials). The electric
permittivity of a material is a main material property that governs
the interaction of electromagnetic radiation with the material. This
interaction is practically important, as it is involved in the probing
of concrete with ground-penetrating radar [5] and the use of con-
crete for electromagnetic interference (EMI) shielding [6—8]. The
electric polarization behavior is central to the dielectric behavior
and affects the use of these materials in applications that exploit
their electrical conductivity. This is because the polarization results
in a reverse electric field in the material [9,10]. Moreover, the po-
larization is affected by the applied strain, thus allowing strain
sensing that is based on detecting the polarization [11]. The elec-
trical conduction behavior of cement-based materials is exploited
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in the applications of these materials in strain/damage sensing that
is based on piezoresistivity (i.e., the effect of strain/damage on the
electrical resistivity) [12—16], in addition to anti-static structural
components [17], Joule-heating-based deicing [18,19], electrical
grounding, and lightning protection. Moreover, the electrical con-
duction behavior of cement-based materials is exploited in the
cathodic protection of the steel reinforcement that is embedded in
concrete [20—23] and to the removal of undesirable ions (such as
chloride ions) from these materials by electrochemical methods
[23]. The electric permittivity of cement-based materials has
received little prior attention [24,25], although it is relevant to a
large variety of applications. Most of the prior work on the electric
permittivity of cement-based materials concerns the change of the
permittivity during the hydration process [26—29].

The real part of the relative electric permittivity is a funda-
mental material property (commonly referred to as the relative
permittivity) that describes the dielectric behavior of a material.
This behavior relates to the polarizability, i.e., the separation of the
positive and negative charge centers. The permittivity is one of the
key parameters that govern the electromagnetic behavior of ma-
terials. Furthermore, polarization causes the apparent electrical
resistivity of a material to increase, as shown for cement-based
materials [30,31]. In addition, the effect of stress on the permit-
tivity provides a mechanism for a cement-based material to sense
stress [32,33]. Materials of high permittivity are needed for
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capacitors (relevant to energy storage), ferroelectric memory,
piezoelectric sensors and actuators, pyroelectric motion detectors
and electromagnetic interference (EMI) shields. Cement-based
materials for EMI shielding have been reported [6—8]. On the
other hand, materials of low permittivity are needed for electrical
insulators in high-frequency circuit applications, as the capacitance
due to the polarization causes signal propagation delay.

The relative permittivity of cement-based materials has been
previously reported. Admixtures affect the relative permittivity. In
particular, the relative permittivity of cement paste at 10 kHz -
1 MHz is decreased by silica fume addition (from 29 to 21 at 10 kHz)
[34].

The measurement of the relative permittivity typically involves
a parallel-plate capacitor configuration, with the specimen under
investigation being sandwiched by electrodes [34]. The electrodes
can be pressure contacts or contacts involving a conductive paste,
such as silver paint. The relative permittivity « in the direction
perpendicular to the plane of the sandwich is given by the equation

Cy =g KA/, (1)

where C, is the capacitance due to the volume of the specimen, ¢, is
the permittivity of free space (8.85 x 10~'2 F/m), A is the area of the
sandwich (i.e., the area of the electrode), and [ is the thickness of
the specimen sandwiched by the electrodes.

The fringing electric field refers to the electric field in the sur-
rounding air immediately beyond the rim of the specimen in the
parallel-plate capacitor geometry. Although the permittivity of air
is lower than that of the specimen, some electric field lines
emanating from the two electrodes are curved away from the
electrodes so that they reach the surrounding air. The fringing field
results in the measured capacitance to be higher than the expected
value. This is because the fringing electric field causes the specimen
area to be effectively larger than the true area. As a consequence,
the measured (apparent) permittivity is higher than the true value.
The thicker is the specimen, the larger is the fringing field effect.
The smaller is the area of the specimen, the higher is the proportion
of the additional capacitance due to the fringing field effect.
Although the fringing field effect has been known for numerous
decades, its quantification remains in the realm of modeling rather
than the realm of measurement [35—37].

The severity of the fringing field effect increases with the
permittivity of the medium in which the fringing field resides. In
the prior work [34], the medium is air, which has a low relative
permittivity of 1.000 [38], so the fringing field effect is small.
However, if the medium is the same as the specimen material
(corresponding to the configuration in which the specimen extends
beyond the boundary of the sandwich), the fringing field effect is
relatively large. Since the permittivity of a material is affected by
defects (such as cracks), the method involving such a sandwich
configuration is relevant to the use of the measured (apparent)
permittivity to indicate the condition of the cement-based material
immediately adjacent to the area of the sandwich. This provides a
new method of sensing the condition of cement-based materials.
The sensing is the subject of a separate publication. The present
study addresses the effect of the fringing field on the apparent
permittivity of cement-based materials. Basic information on this
effect is necessary prior to the sensing ability investigation.

The sandwich involves the specimen and two specimen-
electrode interfaces. The specimen volume contributes to the
capacitance, due to the polarization within the specimen. Each
specimen-electrode interface also contributes to the capacitance,
due to interfacial-space charge at the electrode. Thus, both the
specimen volume and the interfaces contribute to the measured
capacitance. The quantity C, in Eq. (1) is the capacitance due to the

specimen alone, with the contribution of the two interfaces to the
measured capacitance excluded. Therefore, reliable determination
of the permittivity requires the decoupling of the volumetric and
interfacial contributions. Such decoupling was not conducted in
prior work on cement-based materials [34]. In contrast, this study
performs this decoupling. As a result, this study provides a more
accurate determination of the permittivity.

The objectives of this study are (i) to evaluate the effect of the
fringing electric field on the measured (apparent) relative permit-
tivity of cement-based materials, with the medium around the
specimen (which is sandwiched by the electrodes) being exten-
sions of the specimen, (ii) determining the relative permittivity of
cement-based materials with decoupling of the volumetric and
interfacial contributions to the measured capacitance, and (iii) to
advance the methodology of dielectric testing of cement-based
materials. Although this paper studies plain cement paste and
silica-fume cement paste, the methodology is applicable to
cement-based materials in general.

2. Methods
2.1. Materials

Portland cement (Type I, ASTM C150) is used. Silica fume (Elkem
Materials Inc., Pittsburgh, PA, microsilica, EMS 965, USA), if appli-
cable, is used at 15% by mass of cement [39]; it has particle size
ranging from 0.03 to 0.5 um, with average size 0.2 pum; it contains
>93 wt% SiO,, <0.7 wt% Aly03, <0.7 wt% CaO, <0.7 wt% MgoO,
<0.5 wt% Fe;03, <0.4 wt% Nay0, <0.9 wt% K50, and <6 wt% loss on
ignition, according to the manufacturer.

The silica fume has been subjected to silane treatment in order
to improve its dispersion in the cement mix [40,41]. The silane
coupling agent is a 1:1 (by mass) mixture of Z-6020
(H,NCH,CH,NHCH,CH,CH,Si(OCH3)s3, Fig. 2(a)) and Z-6040 (OCH,-
CHCH;0CH;CH,CH,Si(OCH3)s3, Fig. 2(b)) from Dow Corning Corp.
(Midland, MI). The amine group in Z-6020 serves as a catalyst for
the curing of the epoxy and consequently allows the Z-6020
molecule to attach to the epoxy end of the Z-6040 molecule. The
trimethylsiloxy ends of the Z-6020 and Z-6040 molecules then
connect to the —OH functional group on the surface of the silica
fume. The silane is dissolved in ethylacetate to form a solution with
2.0 wt% silane. Surface treatment of the silica fume is performed by
immersion in the silane solution, heating to 75 °C while stirring,
and then holding at 75 °C for 1.0 h, followed by filtration and
drying. Subsequently, the silica fume is heated at 110 °C for 12 h
[40,41].

No aggregate is used. The water/cement ratio is 0.35. A high-
range water reducing agent (Glenium 3000NS, BASF Construction
Chemicals) is used at 1.0% by mass of cement. The defoamer (Col-
loids Inc., Marietta, GA, 1010, USA) is used at 0.13% (% of specimen
volume). All the ingredients are mixed in a rotary mixer with a flat
beater.

Square plastic molds of dimensions 240 x 240 mm are used. For
all speciments, after filling the mold, an external vibrator is used to
facilitate compaction and diminish the air bubbles. The specimens
are demolded after 24 h and then cured at a relative humidity of
nearly 100% for 28 days. The specimen thicknesses are described in
Sec. 2.3. No cracking occurs upon curing for any of the specimens in
this work.

2.2. Decoupling the volumetric and interfacial contributions to the
measured capacitance

A method of decoupling the volumetric and interfacial contri-
butions to the measured capacitance involves testing multiple
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Fig. 1. Two methods of measuring the permittivity. (a) The method involving testing at
different thicknesses and plotting 1/C versus thickness I, where C is the measured
capacitance. (b) The method involving testing at different areas and plotting the
capacitance C vs. area A. In both (a) and (b), the dashed curve corresponds to the case
of significant fringing field effect, whereas the solid curve corresponds to the case of
negligible fringing field effect.
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Fig. 2. The molecular structure of two alkylsilanes. (a) 3-(2-aminoethylamino)pro-
pyltrimethoxysilane (Z-6020) [75]. (b) 3-(glycidyloxypropyl)trimethoxysilane (Z-6040)
[76].

sandwiches with different thicknesses of the specimen, but the
same area, as previously used to study carbon materials [42—45]
and manganese oxide [46]. Since the volumetric and interfacial
capacitances are capacitances in series, the measured capacitance is
given by

1/C = 2/Ci + 1/C.. (2)

The factor of 2 in Eq. (2) is due to the presence of two interfaces on
the two sides of the specimen. Due to Eq. (2), G is less influential
when it is large. The C, is given by Eq. (1). Due to Egs. (1) and (2), the
plot of 1/C against [ (Fig. 1(a)) is a straight line with the intercept of
2/C; at the 1/C axis at [ = 0, and the value of k is obtained from the
slope, which is equal to 1/(eokA). The larger is [, the more is the
fringing field effect, the higher is C, the smaller is 1/C, the smaller is
the slope, and the larger is «.

Another method of decoupling involves testing multiple sand-
wiches with different areas, but the same thickness. Since the
different parts of the area are capacitances in parallel, the measured
capacitance C is given by

C = Cort ok Afl, 3)

where C, is the capacitance at A = 0 and relates to the fringing field
effect, as obtained by extrapolating the plot of Cvs. Ato A =0
(Fig. 1(b)). The larger is C,, the more influential is C,. The slope of
this plot is equal to &, «/I. Thus,k is obtained from the slope. Since
the interface is structural identical for all areas, the slope effectively
removes the interfacial contribution. The larger is A, the smaller is
the fringing field effect, the smaller is C, the smaller is the slope and
the smaller is «.

2.3. Permittivity measurement

The permittivity is measured using the parallel-plate capacitor
geometry, with two electrodes sandwiching the specimen sym-
metrically. Two testing configurations are used. In one configura-
tion, the electrodes do not cover the entire area of the specimen
(Fig. 3(a)). In the other configuration, the electrodes cover the
entire area of the specimen (Fig. 3(b)).

2.3.1. Configuration I

Configuration I has the electrodes not covering the entire area of
the specimen. The apparent relative permittivity is obtained by
using two methods, which correspond to Eqgs. (2) and (3). In the
method corresponding to Eq. (2), the capacitance is measured for
three specimen thicknesses for each type of material and the same
electrode area, such that this is conducted for each of four electrode
areas (25 x 25,50 x 50,75 x 75 and 100 x 100 mm), which are all
centered at the center of the slab (Fig. 4).

Copper clectrode

Insulating film

b ]

Specimen

(@

Copper clectrode

Insulating film

i,

AT AT

Specimen

(b)

Fig. 3. Schematic illustration of the two testing configurations. (a) Configuration I
(with the electrodes not covering the entire area of the specimen). (b) Configuration II
(with the electrodes covering the entire area of the specimen).
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Fig. 4. Schematic illustration of Configuration I, showing the square specimen slab
with a square electrode applied to a part of the 240 x 240 mm area of the slab. Four
sizes of the electrode (each being square in shape) are used separately. For each of the
four sizes, the center of the area of the electrode is positioned at the center of the area
of the slab. All dimensions are in mm.

In the method corresponding to Eq. (3), the capacitance is
measured for four electrode areas (25 x 25, 50 x 50, 75 x 75 and
100 x 100 mm) (Fig. 4) and the same thickness, such that this is
conducted for each of three thicknesses, which are 8.39, 16.98 and
30.52 mm for plain cement paste (without silica fume), and 8.76,
17.03 and 30.60 mm for cement paste with silica fume.

Each electrode is a copper foil (0.15 mm thick), such that there is
an electrically insulating plastic film (double-sided adhesive tape of
thickness 0.06 mm and relative permittivity 1.5 at 2 kHz, as
measured in this work) positioned between the specimen and each
copper electrode. The electrode is identical in dimensions and
material on the two sides of the specimens. No pressure is applied
to the sandwich.

The capacitance is measured using a precision LCR meter (Instek
LCR-816 High Precision LCR Meter, 100 Hz-2 kHz), with the electric
field across the thickness of the specimen fixed at 0.040 V/mm. The
voltage associated with the electric field is 0.35, 0.68 and 1.22 V for
the specimen thicknesses of 8.38—8.76, 16.98—17.03 and
30.52—30.60 mm, respectively. The frequency used is 2 kHz. The
use of a higher electric field of 0.060 or 0.120 V/mm made no dif-
ference to the results. The capacitance reported here is that for the
equivalent electrical circuit of a capacitance and a resistance in
parallel.

2.3.2. Configuration Il with the electrodes covering the entire area
of the specimen

Configuration II has the electrodes covering the entire area of
the specimen. The configuration is the same as Configuration I (Sec.
2.3.1), except that (i) both the specimen area and the electrode area
are 25 x 25, 50 x 25 (corresponding to two 25 x 25 mm squares
side by side) and 75 x 25 mm (corresponding to three 25 x 25 mm
squares lined up in a row), (ii) the specimen thickness is
1.86—4.56 mm and 2.42—4.69 mm for plain cement paste and
silica-fume cement pastes, respectively, (iii) the electric field is
0.11 V/mm, with the applied voltage for plain cement paste of

thickness 1.86, 2.48, 3.71 and 4.56 mm being 0.20, 0.27, 0.40 and
0.49 V, respectively, and the applied voltage for silica-fume cement
paste of thickness 2.42, 3.56, 4.04 and 4.69 mm being 0.26, 0.38,
0.43 and 0.50 V, respectively, (iv) a pressure of 9.93 kPa is applied in
the direction perpendicular to the plane of the sandwich, (v) a
Teflon film of thickness 0.058 mm and relative permittivity 1.5 at
2 kHz, as measured in this work, is positioned between each of the
two sandwiching copper foils and the specimen, and (vi) the
QuadTech 7600 LCR meter (10 Hz—2 MHz) is used in order to
provide results over a wide frequency range.

3. Results and discussion
3.1. Configuration I

Figs. 5 and 6 show the results for Configuration L. The plots of 1/C
vs. thickness for plain cement paste and silica-fume cement paste
respectively. The curves are all essentially linear, indicating the
essential validity of Eq. (2). For both plain cement paste (Fig. 5) and
silica-fume cement paste (Fig. 6), the linearity increases with
increasing area, due to the decrease in the fringing field effect with
increasing area.

Figs. 7 and 8 show the plots of C vs. area for plain cement paste
and silica-fume cement paste respectively. The curves are all
essentially linear, indicating the essential validity of Eq. (3). For
both plain cement paste (Fig. 7) and silica-fume cement paste
(Fig. 8), the linearity decreases with increasing thickness, due to the
increase in the fringing field effect with increasing thickness.

Table 1 shows the apparent relative permittivity, as obtained
from the slope of the plot of 1/C vs. thickness and from the slope of
the plot of C vs. area. The values are much higher for the former
method than the latter method, due to the larger fringing field ef-
fect associated with the thickness dependence. Regardless of the
method, all values are higher than those obtained with the elec-
trodes covering the entire area of the specimen by 1—-2 orders of
magnitude, as reported previously [34] and confirmed in this work
(Sec. 3.2). This indicates the large effect of the fringing field when
the electrodes do not cover the entire area of the specimen.
Regardless of the method and dimensions, the apparent relative
permittivity is lower for silica-fume cement paste than plain
cement paste, as previously reported for the case of the electrodes
covering the entire area of the specimen [34]. For the method
involving the plot of 1/C vs. thickness, the apparent relative
permittivity decreases with increasing area, because the fringing
field effect decreases with increasing area. For the method
involving the plot of C vs. area, the apparent relative permittivity
increases with increasing thickness, because the fringing field ef-
fect increases with increasing thickness.

3.2. Configuration II

Fig. 9 shows that the results for Configuration IL. The plots of 1/C
vs. thickness and C vs. area, as obtained with the electrodes
covering the entire area of the specimen. The plots are linear,
particularly for the plots of Cvs. area (Fig. 9(b)). For the plots of Cvs.
area, the linearity occurs for all the thicknesses investigated,
although only the curve for the largest thickness for each type of
cement paste is shown in Fig. 9(b). The higher degree of linearity in
Fig. 9(b) than Fig. 9(a) is due to (i) the fringing field effect increasing
with increasing thickness and (ii) the fact that the thickness is the
variable in Fig. 9(a).

The high degree of linearity compared to the case of the
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electrodes not covering the entire area of the specimen (Configu-
ration I, Sec. 3.1) is due to the weakness of the fringing field effect
when the electrodes cover the entire area of the specimen. In spite
of the linearity, the apparent relative permittivity, as obtained from
the slope of the curve of C vs. area, increases with increasing
thickness (Fig. 10). This is due to the increase of the fringing field
effect with increasing thickness. The most accurate value of the
relative permittivity is given by the value at the smallest thickness.
The apparent relative permittivity decreases with increasing fre-
quency, as expected.

For similar small thicknesses, the apparent relative permittivity
is lower for silica-fume cement paste (2.42 mm thick) than plain
cement paste (2.48 mm thick). For example, at 10 Hz, the apparent
relative permittivity is 28 and 25 for plain cement paste and silica-
fume cement paste, respectively; at 2 MHz, the apparent relative
permittivity is 18 and 12 for plain cement paste and silica-fume
cement paste, respectively. The values are lower than the previ-
ously reported values [34]. In the prior work, which does not
involve the decoupling of the volumetric and interfacial contribu-
tions, the relative permittivity is decreased from 24 to 17 at 1 MHz
and from 29 to 21 at 10 kHz by the addition of untreated silica fume
[34].

Table 2 shows that, for the case of the electrodes covering the
entire area of the specimen (Configuration II), the apparent relative
permittivity is higher for the values obtained using the method of
1/C vs. thickness than corresponding values obtained using the
method of C vs. area, as for the case of the electrodes not covering
the entire area of the specimen (Configuration I, Table 1). This is
also shown for Configuration Il by comparing Fig. 11 (method of 1/C
vs. thickness) and Fig. 10 (method of C vs. area) for frequencies
ranging from 10 Hz to 2 MHz. The lower values obtained by using
the latter method are more accurate, as they are closer to the
previously reported values of the relative permittivity [34].
Therefore, the latter method, which has not been previously re-
ported for any material, is more valuable than the former method,
which has been previously reported for carbon and ceramic ma-
terials [40—44] (but not for cement-based materials).

The apparent relative permittivity values for plain cement paste
are higher than the corresponding values for silica-fume cement
paste, as shown in Tables 1 and 2 for a frequency of 2 kHz. Although
Table 2 is for the frequency of 2 kHz, similarly significant differ-
ences apply to frequencies ranging from 10 Hz to 2 MHz (Config-
uration II, Figs. 10 and 11). The lower permittivity for silica-fume
cement compared to plain cement paste is attributed to the finer
pore structure in the former and the consequent greater difficulty
for the ions in the pore water to move in response to the electric
field. This is consistent with the reduction in the chloride ion
permeability by the presence of silica fume [47].

3.3. Difference from the co-planar electrode configuration

Both configurations I and II of this work do not use co-planar
electrodes, which are associated with a configuration in which
the electric field lines spread between one electrode and the other.
This spreading allows the field to penetrate selected regions for
nondestructive evaluation, as shown for a glass fiber polymer-
matrix composite [48].

Fig. 5. Experimental results of plain cement paste for Configuration I, showing the plot
of 1/C versus thickness . (a) Electrode areas: 425 x 25 mm; HM50 x 50 mm; A
75 x 75 mm; @100 x 100 mm. (b) The magnified view of the plot for electrode area 25
x 25 mm. (c) The magnified view of the plot for electrode area 100 x 100 mm.
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Fig. 6. Experimental results of silica-fume cement paste for Configuration I, showing
the plot of 1/C versus thickness I (a) Superimposed plots. Electrode areas: 4
25 x 25 mm; W50 x 50 mm; A 75 x 75 mm; @100 x 100 mm. (b) Magnified plot for
electrode area 25 x 25 mm. (c) Magnified plot for electrode area 100 x 100 mm.
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Fig. 7. Experimental results of plain cement paste for Configuration I, showing the

superimposed plots of the measured capacitance C versus area A. Thicknesses: 4
8.39 mm; M 16.98 mm; A 30.52 mm.
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Fig. 8. Experimental results of silica-fume cement paste for Configuration I, showing
the superimposed plots of the measured capacitance C versus area A. Thicknesses: ¢
8.76 mm; M17.03 mm; A 30.60 mm.

3.4. Applicability to other cement-based materials

This work provides the first exposition of the fringing field effect
on cement-based materials by addressing cement-based materials
with and without silica fume, which is commonly used in cement-
based materials. However, the technique of this work is applicable
to cement-based materials in general. In particular, the application
of this technique to cement pastes with polymers (e.g., latex and
methylcellulose [49]) and carbons (e.g., graphite nanoplatelet [50])
is the subject of separate publications from the same research
group. Due to the presence of an electrically insulating film at the
interface between the specimen and an electrode, the measure-
ment of the apparent permittivity using the method of this paper is
expected to be applicable even to cement-based materials that are
electrically conductive, such as those with carbon fibers [51—61],
carbon nanofibers [62—64], carbon nanotubes [65—73] and
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Table 1

Experimental results for Configuration I, showing the apparent relative permittivity of plain cement paste and silica-fume cement paste. For each type of cement paste, the
results are obtained from both the slope of the plot of 1/C versus thickness I and the slope of the plot of C versus area A, where C is the measured capacitance. The frequency is
2 kHz.

Material Method of 1/C versus thickness Method of C versus area
Area (mm?) Thickness (mm)
25 x 25 50 x 50 75 x 75 100 x 100 8.39% 16.98* 30.52°
8.76" 17.03° 30.60°
Plain cement paste 1764 + 11 1327 +£ 20 1025 + 8 831 + 15 150 + 1 256 + 2 375+ 3
Silica-fume cement paste 1750 + 17 1289 +9 1007 + 13 807 + 6 144 £ 1 240 + 1 354 +2

2 Plain cement paste.
b Silica-fume cement paste.
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Fig. 10. Effects of thickness and frequency on the apparent relative permittivity ob-
(b) tained from plots of C versus area A and Configuration II. (a) Plain cement paste of
thickness 1.86 mm (@), 2.48 mm ( A ), 3.71 mm (M), and 4.56 mm (). (b) Silica-
Fig. 9. Experimental results for Configuration II. (a) Superimposed plots of 1/C versus fume cement paste of thickness 2.42 mm (@), 3.56 mm ( A ), 404 mm (M), and
thickness L (b) Superimposed plots of C versus area A. M Plain cement paste of 4.69 mm (). In both (a) and (b), the apparent relative permittivity increases

thickness 4.56 mm 4 Silica-fume cement paste of thickness 4.69 mm. monotonically with increasing thickness and decreases with increasing frequency.
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Fig. 11. The apparent relative permittivity obtained from the plots of 1/C vs. thickness |

for Configuration Il and various frequencies, with specimen area 25 x 25 mm. (a) Plain
cement paste. (b) Silica-fume cement paste.

Table 2

graphite nanoplatelet [74]. This expectation is supported by the
feasibility of measuring the permittivity of carbon materials in the
absence of cement [42—45].

4. Conclusions

The fringing field effect on the apparent relative permittivity of
cement-based materials is unusually strong when the electrodes do
not cover the entire area of the specimen (i.e., Configuration I). This
effect greatly increases the apparent relative permittivity, which
increases with increasing thickness, decreases with increasing area,
and is higher for the case in which the apparent relatively
permittivity is obtained from the slope of the curve of 1/C versus
thickness than the case in which the apparent permittivity is ob-
tained from the slope of the curve of C versus area. Based on the
curve of 1/C versus thickness, the value at 2 kHz obtained for
various areas is in the range from 830 to 1760 and the range from
810 to 1750 for plain cement paste and silica-fume cement paste,
respectively. Based on the curve of C versus area, the value at 2 kHz
obtained for various thicknesses is in the range from 150 to 375 and
the range from 144 to 354 for plain cement paste and silica-fume
cement paste, respectively.

Configuration II (with the electrodes covering the entire area of
the specimen), gives a much weaker fringing field effect than
Configuration I. This is due to the low permittivity of air compared
to cement. Nevertheless, with Configuration II, the fringing field
effect still causes the apparent relative permittivity to increase with
increasing thickness, with values ranging from 24 to 38 at 2 kHz for
plain cement paste and values ranging from 23 to 36 at 2 kHz for
silica-fume cement paste. These values are all much lower than the
values obtained with Configuration L.

With Configuration II, the apparent relative permittivity is
higher for the values obtained using the method involving the plot
of 1/C versus thickness than the corresponding values obtained
using the method involving the plot of C vs. area, such that the
latter values are close to the true values of the relative permittivity.
Therefore, the latter method, which has not been previously re-
ported for any material, is more valuable than the former method,
which has been previously reported for carbon and ceramic ma-
terials [42—46] (but not for cement-based materials). Thus, this
study advances the methodology of dielectric testing of cement-
based materials.

The very high value of the apparent relative permittivity of
cement pastes in case of Configuration I is expected to enable the
apparent relative permittivity to be an indicator of the condition of
the area of a cement-based material slab in the immediate vicinity
of the electrodes sandwiching a part of the slab.

Experimental results for Configuration II, showing the apparent relative permittivity of plain cement paste and silica-fume cement paste. For each type of cement paste, the
results are obtained from both the slope of the plot of 1/C versus thickness I and the slope of the plot of C versus area A, where C is the measured capacitance. The frequency is

2 kHz.
Material Method of 1/C versus thickness Method of C versus area
Area (mm?) Thickness (mm)
25 x 25 2.48° 3.71° 4.56%
2.42° 3.56" 4.69°
Plain cement paste 522 +0.5 243 £ 0.5 352 +05 38.1+03
Silica-fume cement paste 40.7 + 0.9 229+ 0.6 30.1 + 04 359+0.2

2 Plain cement paste.
b Silica-fume cement paste.
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