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Abstract
Missing  data  often  presents  significant  challenges  in  statistical  modeling.  Previous  practices  have  demonstrated  that  the  SAS  LOGISTIC  procedure  for

forward,  backward,  or stepwise selections may produce unreliable results when a substantial  portion of data is  missing in logistic regression models.  To

address this issue, a new Macro-based Forward Model Selection method (MFMS) was developed to overcome the limitations of the LOGISTIC procedure. The

MFMS approach preserves  information from incomplete observations  by Macro,  automated controlled addition of  one significant  effect  at  a  time while

retaining incomplete observations for other variables in the analysis. To evaluate the robustness of MFMS, simulations were conducted using independent

multivariate normal data with a binary response. The complete data was randomly deleted at rates of 5%, 10%, 15%, and 20% for each predictor variable,

generating datasets under three mechanisms. The performance of MFMS, PROC LOGISTIC, and MI procedures were compared for logistic modeling across

different levels of missingness and mechanisms. The results demonstrated that MFMS consistently outperformed the other methods, proving to be the most

reliable model selection method. The Macro implementation of MFMS is available for download as a supplementary file to this paper.
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Introduction

Missing  data  have  long  been  a  serious  impediment  in  statistical
analysis and modeling in research and business. The logistic regres-
sion  model  is  a  standard  statistical  method  used  in  analysis  when
the  response  variables  are  dichotomous  or  binary[1].  The  present
work aims to demonstrate the advantages or disadvantages of logis-
tic  regression  modeling  methods  among  SAS  PROC  LOGISTIC
forward  selection,  SAS  MI  procedure,  and  the  developed  macro-
based forward selection method, using the artificial binary response
data with the presence of random missing values. 

Missing data mechanisms
According  to  the  generating  mechanisms,  missing  data  can  be

classified  into  three  board  types:  missing  completely  at  random
(MCAR)  if  missing  data  are  completely  independent  of  any  other
factors;  missing  at  random  (MAR)  describes  the  missingness  based
on  other  complete  variables;  not  missing  at  random  (NMAR)  if  the
probability  of  missing  data  systematically  depends  on  incomplete
variables.  According  to  missing  data  mechanisms,  distribution
assumptions  are  made  in  advance  indicating  the  modeling  meth-
ods.  To  specify,  missing  data  does  not  represent  the  entire  data.
Thus,  the  modeling  assumption  could  be  MCAR,  MAR,  or  NMAR
depending on the variables of interest[2−5].  MCAR is possible to test
in practice empirically. 

Deletion and single imputation
Traditionally,  missing  data  are  deleted  or  replaced  with  single

imputations[5].  Maximum  likelihood  and  multiple  imputation  are
advantageous[6]. The deletion method includes two approaches: list-
wise deletion and pairwise deletion. In SAS, the default effect selec-
tion of the LOGISTIC procedure listwise deletes any observation with
missing values in independent and response variables. The analysis
is  restricted  to  the  remaining  complete  data  set  using  standard
procedures[7].  Listwise  deletion  of  missing  values  is  under  the

assumption  of  MCAR  and  results  in  bias  estimates  since  MCAR  is
rarely  satisfied[5].  In  addition,  deleting  missing  values  severely
reduces the analyzable sample size, particularly for data with a high
proportion  of  missing  values  or  missing  in  many  variables.  This
results in the loss of power of the significance test[8].

Single  imputation  is  another  traditional  approach  to  processing
missing  data.  The  most  widely  used  single  imputation  methods
include  mean  imputation,  regression  imputation,  and  stochastic
regression[9].  Mean  imputation  replaces  the  missing  values  with
arithmetic  mean  based  on  the  available  data  of  the  corresponding
variables.  The  added  mean  values  are  equivalent  to  a  group  of
uncorrelated data, which results in an underestimation of the over-
all  correlations.  On  the  other  hand,  regression  imputation  will
strengthen  the  variable  correlation.  It  predicts  a  regression  equa-
tion  from  available  values  and  replaces  the  missing  values  with
predicted  regression  outcomes[6].  Mean  imputation  and  regression
imputation  dramatically  reduce  the  variability  of  data  and  result  in
bias. Stochastic regression imputation adds residual terms to regres-
sion  imputation,  which  effectively  restores  the  variability  repre-
sented by the lost values[3]. 

Multiple imputation
Multiple imputation (MI)  is  the procedure that replaces the miss-

ing  value  with  more  than  one  imputation  method.  Each  missing
value  is  replaced  by  m  (m  >  1)  plausible  imputed  values  given  the
observed  values.  The  imputation  creates  m  complete  data  sets
which are analyzed separately with the same procedure, resulting in
m sets of parameter estimates and standard errors. The multiple sets
of results are subsequently merged into one set of results. These are
the  three  steps  of  multiple  imputation:  imputation  phase,  analysis
phase, and pooling phase[10−13]. 

Imputation algorithms - Markov Chain Monte Carlo
Multiple  imputation  is  regarded  as  a  model-based  imputa-

tion  since  the  imputation  model  is  constructed  according  to  the

ARTICLE
 

© The Author(s)
www.maxapress.com/stati

www.maxapress.com

mailto:cxma@buffalo.edu
https://doi.org/10.48130/stati-0024-0002
https://doi.org/10.48130/stati-0024-0002
https://doi.org/10.48130/stati-0024-0002
https://doi.org/10.48130/stati-0024-0002
https://doi.org/10.48130/stati-0024-0002
mailto:cxma@buffalo.edu
https://doi.org/10.48130/stati-0024-0002
https://doi.org/10.48130/stati-0024-0002
https://doi.org/10.48130/stati-0024-0002
https://doi.org/10.48130/stati-0024-0002
https://doi.org/10.48130/stati-0024-0002
http://www.maxapress.com/stati
http://www.maxapress.com


distributional  relationship  between  the  missing  values  and  the
observed values[14]. Data augmentation is the most often used algo-
rithm  for  normally  distributed  data  which  belongs  to  the  family  of
Markov  Chain  Monte  Carlo  (MCMC)  procedure.  MCMC  draws
pseudo-random  samples  with  the  Monte  Carlo  method  using
Markov chains[10,11]. MCMC is a composite of two steps: The imputa-
tion step (I-step) and the Posterior step (P-step). Initial I-step is prin-
cipally  identical  to  stochastic  imputation  where  model-based
imputed  values  replace  the  missing  values  and  the  error  terms  are
added to the estimated parameters to represent the uncertainty of
observed data. In P-step, the I-step data perform as building blocks
to  generate  new  estimates  of  means  and  covariances  under  the
Bayesian estimation principles. The new parameters randomly differ
from those used in the previous I-step and are successively used to
create  imputed  values  in  the  preceding  I-step.  Repeating  this  two-
step procedure for specific times yields multiple copies of complete
data  sets,  each  of  which  contains  unique  estimate  parameters  of
the  missing  values[15,16].  Multiple  imputation  shares  the  advantage
of  a  single  imputation  and  restores  the  variability  of  imputed
complete data. 

SAS MI procedure
To apply the MI procedure,  the type and distribution of  the data

need  to  satisfy  certain  assumptions.  MI  assumes  that  the  data  are
from  a  continuous  multivariate  distribution  and  contain  missing
values  that  may occur  on any of  the  variables.  It  also  assumes that
the missing data are under the MAR mechanism[17]. The next step is
to  analyze  the  existing  missing  data  patterns,  arbitrary  or  other
specific  patterns  such  as  monotone.  The  PROC  MI  default  MCMC
method  assumes  that  the  multivariate  normal  data  can  be  used.
MCMC  is  an  appropriate  method  for  continuous  arbitrary  missing
data[18]. 

Methods
 

Macro-based Forward Model Selection method
SAS  LOGISTIC  procedure  forward  selection  provides  an  auto-

mated  model  selection  for  binary  response.  It  computes  and  ranks
the p-value  of  the  Chi-square  statistic  for  each  effect  not  in  the
model. If the minimum p-value is smaller than α, this corresponding
effect is added to the model and never removed. The above proce-
dures are repeated until none of the remaining effects is significant
at  level α[17].  However,  forward  selection  is  not  a  good  method  to
process missing data, since the observations with missing values are
entirely excluded from analysis. The huge loss of information repre-
sented  by  incomplete  observations  impairs  the  accuracy  of  effect
selection and power of significance test.

To  keep  the  maximum  information  in  incomplete  observations,
the  Macro-based  Forward  Model  Selection  (MFMS)  method  was
developed, in which the macro controls the automated effect selec-
tion using the forward selection algorithms. The biggest advantage
of  MFMS  is  to  process  one  variable  each  time  while  keeping  the
incomplete observations in other variables undeleted. MFMS can be
decomposed into steps: p-values of the Chi-square score for all one-
variable  models  are  calculated and ranked using the  SAS LOGISTIC
procedure.  The smallest p-value (P-min)  is  considered as the candi-
date for the first cycle. If P-min is smaller than α, it indicates that the
corresponding variable is  significant at  level α and eligible to enter
the  model.  Only  if  the  addition  of  the  first  effect  happens,  we
consider  all  the  two-variable  combinations  consisting  of  the  first
enrolled  variable  and  one  of  the  remained  variables  not  in  the
model. Again, the smallest p-value is compared with α. If significant,
the effect not in the previous model will enter as the second effect.

Otherwise,  the  program  ends  up  with  the  previous  model.  Macro
controls  the sequential  entry  of  significant  effects  one by one until
the  termination  point  and  returns  the  final  effects  list.  The  final
model will contain the best significant effect added in each cycle.

Fan[19] reported  the  application  of  MFMS  algorithms  to  analyze
missing data in linear regression and concluded that MFMS is supe-
rior to traditional REG and MI procedures. 

Simulation and model assumptions
Logistic  regression  is  used  to  investigate  the  binary  response,

ordinal  response,  and  nominal  response.  For  binary  response
models,  the  response  variable  Y  can  take  on  one  of  two  possible
values, denoted for convenience by 1 and 2. Suppose vector X is the
explanatory variable, and the response probability is:

π = Pr(Y = 1|x)

The logic response model can be a linear form as:

logit (π) = ln
( π
1−π

)
= β0+βiXi

A logistic regression model with 200 observations was simulated,
each of  which consists  of  a  binary  response Y  and 20 independent
variables X1, X2, …, X20, as Table 1. In most cases, actual data usually
have  a  small  sample  size  and  a  complex  set  of  variables.  Addi-
tionally, the smaller the sample size, the larger the influence that the
missingness could cause. So, the complete data was simulated with
200 samples and 20 X variables.

The model relies on several assumptions. Each X variable is inde-
pendently  drawn  from  a  standard  normal  distribution  as  our
complete explanatory variable matrix X. Y is the binary logistic func-
tion of  X.  Thus,  our  complete  data  set  is  a  binary  response with  20
multivariate  normal-distributed explanatory  variables.  The  assump-
tion of our models, along with MCAR and MAR mechanisms, satisfy
the requirements for the SA LOGISTIC and MI procedures.

The  complete  and  missing  data  were  simulated  based  on  the
following logistic function with descending coefficients:

logit (π) = ln
( π
1−π

)
= 1− x1+0.8x2+0.6x3

The  descending  order  of  coefficients  was  designed  to  examine
how the coefficients can affect the model selection.

First,  the  100  simulated  complete  data  sets  were  processed  by
traditional  logistic  procedures  with  forward  selection  and  each  of
the  final  effects  list  was  recorded.  By  counting  the  effect  selected
times in the 100 procedures, the numbers of each X selected out of
100  times  were  acquired.  Similarly,  the  5%,  10%,  15%,  and  20%
randomly deleted datasets were processed by the proposed MFMS
method,  SAS  traditional  logistic  procedure,  and  MI  procedure
respectively. Merging the results from the first and the second steps
by  SAS  SQL  procedure,  an  overall  list  of  each  X  variable  selected
numbers were achieved for the complete data and at each missing
percentage as shown in Tables 2−7. 

Results
The  development  of  the  MFMS  method  aims  to  circumvent  the

shortcomings of LOGISTIC forward selection when processing miss-
ing  data  of  logistic  regression.  MI  procedure  MCMC  method  is  the
 

Table 1.    The complete data matrix.

Observation Y X1 X2 … X20

1 Y1 X11 X12 … X1,20

2 Y2 X21 X22 … X2,20

3 Y3 X31 X32 … X3,20

… … … … … …
200 Y200 X200,1 X200,2 … X200,20
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most popular logistic modeling procedure. The MFMS, PROC LOGIS-
TIC, and PROC MI methods were compared by testing the selection
frequency  of  each  X  variable.  The  significant  level  of  entry  for  all
methods  was  0.1.  Detailed  methodologies  are  described  in  the
Methods  section.  Several  rules  for  model  selection  accuracy  were
established: (1) the true model variables could be selected 50 times
or more; (2) the true model variables could be enrolled into models
more frequently than other variables; (3) the results of model selec-
tion  and  parameter  estimates  should  be  close  to  those  of  true
models or complete data. (4) less false positive effects. The methods
that  satisfy  those  criteria  are  believed  to  be  reliable  for  processing
missing  data. Tables  2−5 show  the  selecting  frequency  of  X  vari-
ables  at  different  missing  levels  among  all  methods. Tables  6 & 7
present the selecting frequency of X variables under different miss-
ing mechanisms.

Columns  2−4  in  each  table  show  the  results  of  complete  data
model  selection  by  PROC  LOGISTIC  at  significance  level  0.1  where
X1,  X2,  and  X3  are  in  the  true  model  and  X4−X20  are  not  in  the
model. Tables 2−5 show that with the current model setting, almost
all  three  model  variables,  except  X3  for  96  times,  were  selected  to
enter into the model 100 times. The frequencies of other non-model
effects  were  far  behind.  In  addition,  the  coefficient  estimates  of
X1−X3  matched  the  true  model  with  minor  differences.  The  above
indicated  the  accuracy  of  the  LOGISTIC  procedure  in  model  selec-
tion for complete data.

To demonstrate the model selection efficiency and accuracy,  the
performance of the three modeling methods were analyzed at each
missing level under MCAR.

At  a  5% missing level  (Table  2),  the  model  selection pattern  and
the  coefficient  estimates  obtained  from  the  proposed  MFMS

 

Table 2.    Model selection at 5% missing for 200 sample size, MCAR.

V
Complete data SAS macro SAS forward MI

Mean N MSE Mean N MSE Mean N MSE Mean N MSE

x1 1.161 100 0.250 1.162 100 0.345 1.152 99 0.322 1.092 100 0.244
x2 −0.880 100 0.252 −0.938 99 0.334 −0.947 89 0.287 −0.837 100 0.266
x3 −0.679 96 0.186 −0.712 87 0.239 −0.750 61 0.233 −0.626 98 0.208
x4 −0.130 8 0.474 0.049 8 0.621 −0.013 15 0.452 −0.009 62 0.267
x5 −0.083 5 0.393 0.060 7 0.563 −0.015 15 0.445 0.007 58 0.240
x6 0.118 22 0.428 0.168 10 0.472 0.107 13 0.525 0.021 65 0.286
x7 0.229 10 0.337 −0.066 10 0.608 0.254 15 0.314 0.016 65 0.255
x8 0.446 9 0.057 0.012 15 0.543 −0.014 15 0.336 0.027 60 0.262
x9 0.187 8 0.406 0.110 16 0.478 −0.037 17 0.360 0.065 57 0.251
x10 0.095 14 0.403 −0.060 17 0.554 0.045 12 0.362 0.040 61 0.269
x11 −0.041 7 0.407 −0.059 9 0.567 0.079 7 0.348 0.007 57 0.232
x12 0.018 9 0.474 0.000 13 0.596 −0.091 8 0.376 0.009 58 0.243
x13 −0.085 13 0.443 0.101 20 0.482 −0.161 14 0.417 0.036 59 0.265
x14 0.071 6 0.578 0.212 11 0.544 0.010 17 0.334 −0.022 51 0.268
x15 −0.135 8 0.426 −0.022 12 0.553 −0.086 13 0.352 −0.017 63 0.253
x16 0.040 6 0.480 −0.090 11 0.455 −0.122 18 0.415 −0.078 59 0.240
x17 0.034 11 0.417 0.042 12 0.547 0.017 13 0.351 −0.034 57 0.248
x18 0.038 8 0.435 0.016 12 0.511 0.174 15 0.401 0.041 59 0.236
x19 −0.431 4 0.085 0.002 15 0.510 −0.228 10 0.311 0.005 55 0.239
x20 −0.029 7 0.482 −0.246 6 0.524 0.092 15 0.298 0.001 59 0.253

 

Table 3.    Model selection at 10% missing for 200 sample size, MCAR.

V
Complete data SAS macro SAS forward MI

Mean N MSE Mean N MSE Mean N MSE Mean N MSE

x1 1.161 100 0.250 1.197 100 0.576 1.045 54 0.312 0.985 100 0.221
x2 −0.880 100 0.252 −1.012 97 0.418 −0.867 35 0.346 −0.748 100 0.224
x3 −0.679 96 0.186 −0.867 79 0.365 −0.677 25 0.266 −0.571 98 0.193
x4 −0.130 8 0.474 0.132 16 0.884 0.020 13 0.343 −0.019 54 0.265
x5 −0.083 5 0.393 −0.233 13 0.746 0.011 14 0.246 −0.001 60 0.223
x6 0.118 22 0.428 −0.018 19 0.710 0.029 9 0.229 0.018 63 0.276
x7 0.229 10 0.337 −0.028 14 1.206 0.012 9 0.221 0.009 59 0.224
x8 0.446 9 0.057 0.335 9 0.746 0.077 14 0.210 0.049 66 0.228
x9 0.187 8 0.406 0.374 9 0.707 0.121 15 0.281 0.055 64 0.240
x10 0.095 14 0.403 0.14 17 0.725 0.091 15 0.224 0.025 62 0.256
x11 −0.041 7 0.407 −0.397 17 0.586 −0.083 9 0.281 −0.026 51 0.229
x12 0.018 9 0.474 −0.207 16 0.739 0.037 12 0.328 −0.010 52 0.238
x13 −0.085 13 0.443 0.018 17 0.727 0.028 15 0.297 0.015 55 0.261
x14 0.071 6 0.578 0.014 12 0.828 −0.012 15 0.241 0.004 60 0.238
x15 −0.135 8 0.426 −0.133 13 0.750 −0.060 14 0.308 0.007 60 0.240
x16 0.040 6 0.480 0.051 10 0.748 −0.079 14 0.224 −0.076 46 0.246
x17 0.034 11 0.417 −0.93 10 0.898 0.027 21 0.322 −0.028 64 0.229
x18 0.038 8 0.435 −0.102 10 1.034 0.124 16 0.298 0.018 58 0.254
x19 −0.431 4 0.085 −0.026 8 0.866 −0.024 15 0.258 −0.038 56 0.216
x20 −0.029 7 0.482 0.071 10 0.860 −0.021 14 0.184 0.009 59 0.234
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method were highly consistent with the complete data. X1, X2, and
X3  were  found  for  100,  99,  and  87,  respectively.  This  suggests  the
validity  of  the  MFMS  method  at  a  5%  missing  level.  SAS  PROC
LOGISTIC did not perform as well as MFMS, which had a lower selec-
tion frequency and a larger difference compared to MFMS. However,
it was still acceptable in the current setting. The MI also identified X1
and X2 100 times, while X3 was found 98 times. The coefficient esti-
mates were also close to those of the complete data. However, after
carefully  examining  the  MI  results,  it  was  found  that  all  the  non-
model  variables  were  included  in  the  model  more  than  50  times.
This  indicated  that  the  MI  procedure  not  only  selected  the  true
model  variables  but  also  incorrectly  included  the  non-model  vari-
ables at a high frequency. This increased the likelihood of achieving
a  biased  conclusion  based  on  the  insignificant  model.  The  issues
inherent  in  the  forward  selection  and  the  MI  procedure  worsened
with increasing missingness.

To evaluate the performance of the three model selection meth-
ods under MAR data scenarios, datasets with a 5% missing level for
MAR  were  established.  The  results,  shown  in Table  6,  demonstrate
consistent  conclusions  with  those  observed  under  MCAR.  Since
NMAR  does  not  meet  the  assumptions  required  by  the  LOGISTIC
and  MI  procedures,  only  the  performance  of  the  MFMS  method
under the NMAR mechanism were evaluated. The results, presented
in Table 7, indicate that the MFMS method also performs well under
NMAR conditions.

At  a  10%  missing  level  shown  in Table  3,  MFMS  enrolled  X1−X3
100,  97,  and  79  times,  respectively.  The  parameter  estimates  were
close to the complete data with slight changes.  This approved that
MFMS was reliable at the 10% missing level. SAS LOGISTIC could not
maintain its  accuracy.  It  found X1 54 times,  X2 35 times,  and X3 25
times.  The  selection  frequency  dramatically  decreased  for  true
model  variables.  Only  X1  entered  the  model  more  than  50  times,

 

Table 4.    Model selection at 15% missing for 200 sample size, MCAR.

V
Complete data SAS macro SAS forward MI

Mean N MSE Mean N MSE Mean N MSE Mean N MSE

x1 1.161 100 0.250 1.635 99 1.790 0.959 14 0.212 0.879 100 0.203
x2 −0.880 100 0.252 −1.608 97 3.742 −0.721 12 0.292 −0.685 100 0.201
x3 −0.679 96 0.186 −1.364 75 2.802 −0.656 4 0.223 −0.525 97 0.156
x4 −0.130 8 0.474 0.731 13 2.760 0.087 5 0.250 −0.015 59 0.235
x5 −0.083 5 0.393 0.847 9 1.421 0.023 4 0.129 0.002 52 0.239
x6 0.118 22 0.428 −0.065 15 1.023 −0.015 9 0.145 0.026 60 0.262
x7 0.229 10 0.337 1.715 17 6.451 −0.076 6 0.323 0.010 55 0.218
x8 0.446 9 0.057 −1.392 16 5.247 0.092 2 0.024 0.059 53 0.242
x9 0.187 8 0.406 0.252 12 1.769 −0.030 3 0.093 0.070 59 0.234
x10 0.095 14 0.403 −0.736 11 2.755 0.060 9 0.087 0.040 58 0.236
x11 −0.041 7 0.407 0.146 15 1.496 0.048 6 0.204 0.011 56 0.221
x12 0.018 9 0.474 0.127 10 0.969 0.094 4 0.214 0.027 59 0.218
x13 −0.085 13 0.443 0.493 15 1.020 0.009 7 0.144 0.033 56 0.259
x14 0.071 6 0.578 0.089 16 1.213 0.177 6 0.190 −0.021 58 0.223
x15 −0.135 8 0.426 −0.107 12 0.810 0.026 3 0.187 −0.017 60 0.228
x16 0.040 6 0.480 −0.318 18 0.769 −0.087 5 0.268 −0.064 54 0.203
x17 0.034 11 0.417 −0.126 15 1.107 −0.002 10 0.122 −0.047 65 0.219
x18 0.038 8 0.435 −0.342 13 1.420 0.021 5 0.285 0.000 58 0.231
x19 −0.431 4 0.085 1.089 14 4.293 −0.035 5 0.159 −0.032 56 0.223
x20 −0.029 7 0.482 2.323 19 9.146 −0.056 6 0.068 0.051 61 0.230

 

Table 5.    Model selection at 20% missing for 200 sample size, MCAR.

V
Complete data SAS macro SAS forward MI

Mean N MSE Mean N MSE Mean N MSE Mean N MSE

x1 1.161 100 0.250 3.586 99 8.270 0.916 10 0.147 0.795 100 0.191
x2 −0.880 100 0.252 −3.931 95 12.843 −0.882 6 0.204 −0.599 100 0.205
x3 −0.679 96 0.186 −3.412 65 9.724 . . . −0.446 98 0.149
x4 −0.130 8 0.474 −3.784 8 12.557 0.084 3 0.101 0.040 53 0.207
x5 −0.083 5 0.393 4.551 14 12.84 0.013 6 0.145 0.041 58 0.226
x6 0.118 22 0.428 6.864 9 13.589 −0.065 6 0.115 0.025 56 0.236
x7 0.229 10 0.337 −1.193 12 5.979 −0.067 4 0.092 −0.020 57 0.229
x8 0.446 9 0.057 0.864 15 6.120 −0.075 2 0.370 0.053 59 0.224
x9 0.187 8 0.406 −0.884 13 20.753 . . . 0.063 54 0.225
x10 0.095 14 0.403 0.387 10 2.697 0.025 21 0.196 0.047 57 0.217
x11 −0.041 7 0.407 1.571 20 8.790 −0.014 1 . −0.002 60 0.215
x12 0.018 9 0.474 −0.349 10 1.559 −0.069 8 0.111 0.000 60 0.188
x13 −0.085 13 0.443 0.512 16 2.378 0.013 6 0.240 0.054 61 0.221
x14 0.071 6 0.578 0.622 16 2.122 . . . −0.011 55 0.236
x15 −0.135 8 0.426 2.194 18 15.942 0.040 4 0.234 −0.033 58 0.236
x16 0.040 6 0.480 −2.824 18 11.498 . . . −0.028 60 0.195
x17 0.034 11 0.417 −2.208 13 7.217 −0.010 8 0.175 −0.031 53 0.205
x18 0.038 8 0.435 −0.337 9 1.457 0.115 3 0.113 −0.007 51 0.196
x19 −0.431 4 0.085 −1.937 11 11.302 . . . −0.040 56 0.199
x20 −0.029 7 0.482 −1.990 13 5.940 −0.014 22 0.160 −0.026 55 0.212
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while  X2  and  X3  could  not  stand  out  from  other  non-model  vari-
ables.  It  indicated that  PROC LOGISTIC was  no longer  able  to  build
up a correct logit model. This was because missingness at this level
caused a  huge loss  of  usable  data.  Although it  was  only  10% miss-
ing in each X variable. When considering 20 X variables, the listwise
deletion algorithms resulted in a much higher percentage of overall
missing.  The  complete  subset  for  SAS  LOGISTIC  was  much  smaller
than  the  200  sample  size.  As  seen  with  a  10%  missing  level,  MI
enrolled  too  many  non-significant  variables  and  was  not  a  reliable
method.

The results are shown in Table 4 for 15% missingness. MFMS stur-
dily  selected  the  true  model  variables  with  a  similar  frequency  of
10%.  However,  the  estimates  of  coefficients  moderately  deviated
from  the  true  model.  SAS  LOGISTIC  failed  to  select  any  significant
variable.  All  three true model variables were found under 50 times.

The  coefficient  estimates  by  MI  started  to  deviate  from  the  true
model  while  the  model  selection  was  almost  the  same as  previous
missing levels.

As seen in Table 5, the 20% missing level where MFMS still found
the true model  was examined,  but the parameter estimates largely
deviated from the complete data.  SAS LOGISTIC completely  lost  its
accuracy of model selection. No significant variable was found. Parts
of  the  X  variables,  including  X3,  X9,  X14,  X16,  and  X19,  were  not
found  even  once.  No  parameter  was  estimated  for  those  variables.
Those  demonstrated  that  SAS  LOGISTIC  was  no  longer  able  to
analyze  the  data  at  a  high  missing  level.  The  frequency  of  variable
selection  by  MI  seldom  changed  with  increasing  of  missing  level.
The parameter estimates deviated further from the true model.

In summary, the MFMS satisfied the criteria to be a reliable logis-
tic  modeling  method  at  5%  and  10%  missing  levels.  MFMS  exhi-
bited  a  high  consistency  of  model  selection  pattern  compared  to
the complete data set. The three true model variables were succes-
sively  selected  at  all  missing  levels.  Additionally,  the  happening  of
false  positive  selection  was  efficiently  forbidden,  since  MFMS  only
added  the  best  significant  effect  with  the  smallest p-value  each
cycle.  MFMS  also  extensively  reduced  the  exclusion  of  incomplete
observations.  Only  the  missing  values  in  the  current  analyzed  vari-
able were excluded and the other variable was untouched. It main-
tained  the  maximum  information  and  uncertainty  of  the  missing
data.  As proof,  the parameter estimates at  a  5% missing level  were
very  close  to  those  of  complete  sets.  With  the  increase  of  missing-
ness  to  15%,  the  parameter  estimates  slightly  deviated  from
complete  data.  However,  compared  to  the  SAS  LOGISTIC  and  MI
procedures,  MFMS  was  still  the  best  one.  At  a  20%  missing  level,
MFMS  was  able  to  select  the  right  model,  but  with  incorrect  para-
meter estimates due to the low events per variable.

SAS  LOGISTIC  excluded  any  observation  that  contained  missing
values.  When  missingness  happens  in  multiple  variables,  the  list-
wise  deletion  causes  severe  loss  of  information.  The  selecting
frequency  of  true  model  variables  dramatically  decreased  at  10%
and  higher  missing  levels.  Finally,  it  completely  failed  to  select  the
accurate  model  and  estimate  the  parameters  at  the  15%  and  20%
missing levels.

 

Table 6.    Model selection at 5% missing for 200 sample size, MAR.

V
Complete data SAS macro SAS forward MI

Mean N MSE Mean N MSE Mean N MSE Mean N MSE

x1 1.122 100 0.226 1.090 100 0.307 1.171 92 0.349 1.051 100 0.234
x2 −0.884 98 0.223 −0.892 100 0.248 −0.967 82 0.322 −0.822 100 0.244
x3 −0.644 95 0.193 −0.733 91 0.226 −0.726 67 0.265 −0.583 100 0.210
x4 −0.029 13 0.448 0.147 7 0.482 0.186 11 0.468 0.024 65 0.271
x5 0.007 15 0.460 −0.057 13 0.468 −0.079 22 0.480 −0.001 60 0.297
x6 −0.132 12 0.386 0.156 11 0.487 −0.262 12 0.418 −0.028 60 0.268
x7 −0.209 11 0.383 0.110 12 0.551 0.015 13 0.481 −0.024 62 0.264
x8 0.114 15 0.415 0.034 14 0.561 0.095 17 0.488 0.026 59 0.295
x9 −0.001 12 0.415 0.072 8 0.495 −0.123 16 0.418 0.025 63 0.256
x10 −0.068 7 0.468 −0.091 11 0.475 −0.207 15 0.277 −0.049 54 0.259
x11 −0.186 6 0.403 −0.147 10 0.504 −0.054 8 0.422 −0.034 61 0.233
x12 −0.099 13 0.420 −0.056 16 0.555 −0.057 17 0.531 −0.035 64 0.254
x13 0.143 16 0.360 −0.198 7 0.464 0.002 16 0.369 0.012 65 0.249
x14 0.147 14 0.400 0.157 7 0.582 −0.081 15 0.534 0.048 70 0.259
x15 −0.080 12 0.465 0.187 14 0.483 −0.071 12 0.529 −0.006 58 0.274
x16 −0.177 11 0.435 −0.363 4 0.554 0.129 10 0.349 −0.050 51 0.254
x17 0.268 10 0.358 −0.211 17 0.466 0.014 15 0.416 0.053 51 0.256
x18 0.033 10 0.428 0.172 12 0.456 0.231 8 0.240 0.063 66 0.246
x19 0.242 9 0.386 0.160 10 0.514 0.049 11 0.472 0.018 62 0.265
x20 0.039 8 0.472 0.084 10 0.470 −0.132 10 0.333 0.031 56 0.246

 

Table 7.    Model selection at 5% missing for 200 sample size, NMAR.

V
Complete data SAS macro

Mean N MSE Mean N MSE

x1 1.097 100 0.258 1.145 100 0.316
x2 −0.859 100 0.206 −0.949 100 0.271
x3 −0.656 95 0.205 −0.718 87 0.268
x4 0.009 9 0.486 0.098 19 0.535
x5 0.027 10 0.451 0.003 13 0.656
x6 0.106 9 0.463 0.185 12 0.432
x7 0.134 16 0.442 0.004 10 0.559
x8 0.001 16 0.409 0.012 5 0.481
x9 −0.171 8 0.463 −0.013 14 0.521
x10 0.057 11 0.419 0.200 15 0.410
x11 −0.147 11 0.448 0.000 15 0.562
x12 −0.154 10 0.419 0.049 10 0.583
x13 0.248 10 0.342 −0.042 18 0.558
x14 −0.032 12 0.409 0.197 16 0.559
x15 0.053 9 0.409 0.009 13 0.607
x16 −0.091 12 0.378 0.048 12 0.641
x17 0.193 12 0.402 0.140 13 0.552
x18 0.197 8 0.410 0.043 10 0.561
x19 0.416 7 0.371 −0.125 14 0.660
x20 −0.001 11 0.486 0.085 10 0.668
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The  MI  procedure  could  choose  the  true  model  variables  at  all
missing levels  100 times.  However,  the selection frequency of  non-
significant  variables  was  also  around  50  times.  MI  automatically
sampled the missing data with model-based imputation, which led
to  an  overestimation  of  the  logistic  association  and  a  narrower
confidence  interval.  Those  resulted  in  insignificant  model  selection
and biased parameter estimates.

In  summary,  it  was  concluded  that  MFMS  was  the  best  reliable
selection  method  for  binary  logistic  models  with  independently
normal-distributed  multivariate  for  low-moderate  level  missing
under MCAR, MAR, or NMAR assumption. 

Real example

The  World  Health  Organization  estimates  12  million  annual
deaths  from  heart  diseases  globally,  with  half  of  all  deaths  in  the
United  States  and  other  developed  countries  attributed  to  cardio-
vascular  diseases.  Early  detection  enables  high-risk  individuals  to
adopt preventive lifestyle changes. A publicly available cardiovascu-
lar  dataset  from a study in Framingham, Massachusetts  (USA),  with
over  4,000  records  and  15  attributes,  was  analyzed  to  identify  key
risk factors for heart disease. The dataset is publicly available on the
Kaggle  website.  Given  its  missing  values,  this  dataset  was  used  to
compare  SAS  forward  selection  with  the  Macro-based  selection
method. Results are shown in Tables 8 & 9.

The  results  indicate  that  both  methods  identify  key  variables  —
age,  systolic  blood  pressure,  cigarettes  smoked  per  day,  gender,
glucose level, and total cholesterol level — as significant predictors
of  cardiovascular  disease  risk.  However,  the  macro-based  selection
method  also  includes  an  additional  variable,  the  history  of  stroke,
with a significant p-value (0.016),  suggesting it  may have identified
an additional important predictor overlooked by the forward selec-
tion method. 

Discussion

Logit  function  parameters  are  estimated  using  the  method  of
maximum  likelihood[17].  While  sample  size  does  not  directly  influ-
ence  parameter  estimates  in  logistic  regression,  the  number  of
events  is  critical.  However,  unless  the  two  levels  of  the  binary
response are highly imbalanced, such as 10% vs 90%, a reduction in
sample  size  indirectly  impacts  parameter  estimates  by  decreasing
the  number  of  events.  Research  indicates  that  biases  in  parameter
estimates  decrease  as  sample  size  increases  in  binary  logistic
models[20].  Insufficient  events  can  lead  to  infinite  maximum  likeli-
hood estimates, resulting in parameter estimation failure. The mini-
mum  requirement  for  accurate  estimation  of  logistic  parameters  is
10 events per explanatory variable (EPV)[21].

The present simulation included 20 explanatory variables (X) and
200  samples.  Under  the  assumptions  of  the  model,  the  probability
of  each  binary  response  was  not  extremely  imbalanced.  However,
the EPV in the complete dataset was lower than 10, which explains
the  minor  bias  observed  in  parameter  estimates.  At  low  levels  of
missingness, the MFMS method was reliable for selecting significant
variables  and  estimating  parameters  since  the  EPV  did  not  drop
substantially.  As  missingness  increased  to  20%,  the  EPV  decreased
dramatically.  Although  MFMS  could  still  identify  significant  vari-
ables, parameter estimates were biased due to the lower EPV, which
resulted in increased variance and wider confidence intervals.

When the sample size increased to 500,  the accuracy of  parame-
ter  estimates  improved  significantly  compared  to  the  estimates
derived from 200 samples, as shown in Appendix I.  However, given
funding  and  time  constraints,  researchers  often  work  with  smaller
sample  sizes  of  around 200.  To  address  parameter  estimate  bias  at
high  levels  of  missingness,  MFMS  can  first  be  applied  to  identify
significant  variables,  such  as  X1–X3.  A  logistic  model  can  then  be
fitted  with  only  these  significant  variables,  substantially  increasing
the EPV.  Parameters  can subsequently  be re-estimated using PROC
LOGISTIC  or  PROC  MI.  This  approach  was  tested  in  the  present
model,  and the  re-estimated parameters,  presented in Appendix  II,
were much closer to the true model values.

In  the  simulated  logistic  model,  it  was  assumed  that  the  X
variables  were  independently  normally  distributed  and  considered
only  the  main  effects  in  the  true  model.  Interactions  between  X
variables were not accounted for. Independence among variables is
rare  in  practical  scenarios.  Interactions  can  provide  valuable  infor-
mation  about  relationships  and  associations  between  variables.
Future  research  will  explore  the  effects  of  interactions  on  model
performance.

Another limitation of the present approach is its focus on continu-
ous  explanatory  variables.  Extending  the  procedure  to  accommo-
date  mixed  categorical  and  continuous  variables  would  make  it
more applicable to a broader range of problems.

Additionally, the simulated data used in this study have the same
sample size and the same percentage of missingness across all vari-
ables.  In  real-world  data,  the  percentage  of  missingness  and  the
sample  size  of  the  complete  subset  often  vary  between  variables,
leading to differences in the degrees of freedom (DOF) for each vari-
able. MFMS probably could not find the criteria for statistics. Despite
this,  MFMS  demonstrated  robustness  by  successfully  selecting
significant  variables  one-by-one using the Chi-square-associated p-
value. In this study, the impact of DOF differences was negligible.

The  model  currently  focuses  mainly  on  MCAR  mechanisms.
However, MAR scenarios are more prevalent in practice. Under MAR,
the  MI  procedure  often  performs  better.  Future  research  could
explore using MI to preprocess MAR data by identifying a subset of
variables  that  fit  the  model.  This  subset  could  then  undergo  a

 

Table 8.    SAS forward selection results.

Parameter Estimate Standard error Pr > ChiSq

Intercept 9.130 0.476 < 0.0001
Male −0.561 0.107 < 0.0001
Age −0.066 0.006 < 0.0001
cigsPerDay −0.019 0.004 < 0.0001
totChol −0.002 0.001 0.043
sysBP −0.018 0.002 < 0.0001
Glucose −0.007 0.002 < 0.0001

Male:  gender,  male  or  female  (Nominal);  Age:  Age  of  the  patient  (Continuous);
cigsPerDay: the number of cigarettes that the person smoked on average in one
day  (continuous);  totChol:  total  cholesterol  level  (Continuous);  sysBP:  systolic
blood pressure (Continuous); Glucose: glucose level (Continuous).

 

Table 9.    SAS macro-based selection results.

Parameter Estimate Standard error Pr > ChiSq

Intercept 9.125 0.463 < 0.0001
Age −0.066 0.006 < 0.0001
sysBP −0.017 0.002 < 0.0001
cigsPerDay −0.020 0.004 < 0.0001
Male −0.549 0.104 < 0.0001
Glucose −0.008 0.002 < 0.0001
PrevalentStroke −1.064 0.442 0.016
totChol −0.003 0.001 0.018

Age: Age of the patient (Continuous); sysBP: systolic blood pressure (Continuous);
cigsPerDay: the number of cigarettes that the person smoked on average in one
day (continuous);  Male: gender, male or female (Nominal);  Glucose: glucose level
(Continuous);  PrevalentStroke:  whether  or  not  the  patient  had  previously  had  a
stroke (Nominal); totChol: total cholesterol level (Continuous).
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LOGISTIC  backward  selection  step  to  re-evaluate  and  remove  false
positives[6,7,10].  However,  MI  is  not  always  the  optimal  method  for
MAR  or  other  complex  data  scenarios.  Since  MI  involves  random
draws, the parameter estimates and test statistics can vary between
runs  on  the  same  dataset,  potentially  leading  to  different  conclu-
sions from the same data and procedures[22].

The MACRO code is provided in Appendix III. This MACRO can also
handle  categorical  predictors  and  interaction  terms.  Additionally,
the methodology in the MACRO can be adapted for model selection
in other SAS procedures, such as GENMOD and MIXED, broadening
its utility. 
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