The following are two problems you should know how to solve for Test #3.

(i) Find the eigenvalues and corresponding eigenfunctions for

\[x^2 \varphi'' + x \varphi' + (\beta \lambda) \varphi = 0 \quad \text{in} \quad [0, 1] \]

(i) \(\varphi(a) = \varphi(b) = 0 \) \(\text{and} \) (ii) \(\varphi'(a) = \varphi'(b) = 0 \) \(\text{or} \)

(iii) \(\varphi(a) = \varphi'(b) = 0 \) \(\text{and} \) (iv) \(\varphi'(a) = \varphi(b) = 0 \).

In eq. 1, \(\beta \) is a constant, \(\beta > 0 \).

Let \(\varphi_n(x) \) \((n = 0, 1, 2, 3, \ldots) \) be the eigenfunctions found in part (i). Find the coefficient \(a_n \) in

\[f(x) = \sum a_n \varphi_n(x) \].

We outline the procedure for solving (P) (i): if \(a = 1 \) and \(b > 1 \).

Set \(f(x) = x^p \), and substitute in 1 to find

\[p(p-1) + 2p + \beta = 0 \]

\[(p^2 + (a-1)p + \beta) = 0 \]

(Indicial equation)

\(\Rightarrow \)

\[p = \frac{(1-\lambda)}{2} \pm \frac{1}{2} \sqrt{\beta \lambda - \frac{(1-\lambda)^2}{4}} = \text{(Indicial roots)} \]

assuming that \(\lambda > \frac{(1-\lambda)^2}{4\beta} \).