Does Itunyoso Triqui have intonation?

Christian DiCanio
cdicanio@buffalo.edu
Richard Hatcher
rjhatche@buffalo.edu

Department of Linguistics
University at Buffalo

10/20/18
Where is intonation in tone languages?

- Pitch accents are either minimal or do not occur.
 e.g. Mandarin (Xu, 1997), Mambila (Connell, 2017), Yoloxóchitl Mixtec (DiCanio et al., 2018), Yoruba (Laniran and Clements, 2003)

- Boundary tones may be absent or may only co-occur with certain tones.
 e.g. Akan (Kügler, 2017), Bàsàá (Makasso et al., 2017), Mandarin (Xu, 1999), Taiwanese (Peng, 1992), Tswana (Zerbian, 2017), Yoruba (Laniran and Clements, 2003)

⇒ **Intonational effects** may be phonetically layered on existing lexical tones and cause (a) F_0 register shift or (b) F_0 range fluctuation.
 e.g. Mandarin (Xu, 1999), Yoloxóchitl Mixtec (DiCanio et al., 2018)
High tones in Mandarin undergo raising and \(F_0\) range expansion when in focus (Xu, 1999).

‘The kitty touches the kitty.’
Itunyoso Triqui (Otomanguean) possesses a complex tonal system and does not possess either pitch accents or boundary tones.

Does the language show evidence for intonational effects elsewhere, such as in the realization of narrow/contrastive focus and at utterance-boundaries?
The Triqui region
Word-level prosodic phonology

- Most morphemes (73% of roots) are polysyllabic.
- Nine lexical tones contrast on final syllables. Tone in non-final syllables is often redundant (e.g. \([\text{ru}^4\text{ne}^{43}]\) ‘avocado’) but may be contrastive (\(/2/\) vs. \(/3/\), \(/3/\) vs. \(/4/\)) (DiCanio, 2008, 2016).

<table>
<thead>
<tr>
<th>Tone</th>
<th>Open syllable</th>
<th>Coda /h/</th>
<th>Coda /ʔ/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Word</td>
<td>Gloss</td>
<td>Word</td>
</tr>
<tr>
<td>/4/</td>
<td>yū⁴</td>
<td>‘earthquake’</td>
<td>yāh⁴</td>
</tr>
<tr>
<td>/3/</td>
<td>yū³</td>
<td>‘palm leaf’</td>
<td>yāh³</td>
</tr>
<tr>
<td>/2/</td>
<td>ŭ²</td>
<td>‘nine’</td>
<td>tah²</td>
</tr>
<tr>
<td>/1/</td>
<td>ŭ¹</td>
<td>‘loose’</td>
<td>kāh¹</td>
</tr>
<tr>
<td>/45/</td>
<td></td>
<td></td>
<td>toh⁴⁵</td>
</tr>
<tr>
<td>/13/</td>
<td>yo¹³</td>
<td>‘fast (adj.)’</td>
<td>toh¹³</td>
</tr>
<tr>
<td>/43/</td>
<td>ra⁴³</td>
<td>‘want’</td>
<td>nnāh⁴³</td>
</tr>
<tr>
<td>/32/</td>
<td>ra³²</td>
<td>‘durable’</td>
<td>nnāh³²</td>
</tr>
<tr>
<td>/31/</td>
<td>ra³¹</td>
<td>‘lightning’</td>
<td></td>
</tr>
</tbody>
</table>
Final syllables are bimoraic, consisting of the shapes /CVh, CVʔ, CV:/, and prominent. Most of the phonological contrasts occur on them (DiCanio, 2008).

Tone has a high morphological load in the language, marking person, verbal aspect, and a few other distinctions (DiCanio, 2016).

- ts'ah⁴³ 'to eat (PERF)'
- ts'ah² 'to eat (POT)'
- ts'ah⁴ 'I ate'
- ts'ah¹ 'I will eat'
- ts'ah⁴¹=ɾeʔ¹ 'You ate'
- ts'ah³ '(aforementioned) ate'
- ts'ah²³ '(aforementioned) will eat'
- ts'oʔ⁴ 'We ate'
- ts'oʔ² 'We will eat'
All words are tonally marked in Triqui and there are no pitch accents.

`The beans fell under the cat.`
Much of the pragmatic work usually done by intonation is handled by obligatory utterance-final particles (at least 24 of them). These do not seem to influence the F₀ of preceding tones.

‘Are you going to buy some huipil pieces?’ (clipped)

‘You are going to buy some huipil pieces apparently.’ (clipped)
Open questions

1. Might tones have alternate realizations under different information structure contexts?

2. Are there boundary tones? What happens to tones at utterance boundaries?
Where are intonational effects in tone languages?

- **Focus** may be marked by phonetic lengthening, register shift, or pitch range expansion.

e.g. Mandarin (Peng, 1997; Xu, 1999; Liu and Xu, 2005), Akan (Kügler and Genzel, 2011), Santa Ana del Valle Zapotec (Esposito, 2010).

- **Final lowering** may occur for all tones or be restricted to low/falling tones.

 All tones: Kipare (Herman, 1996), Moro (Chung et al., 2016), Embosi (Rialland and Embanga Aborobongui, 2017)

 Low/falling tones: Mambila (Connell, 2017), Taiwanese (Peng, 1997).

- **Declination** is limited to a sequence of high or low tones; or be absent.

 Restricted: Mandarin (Xu, 1999), Taiwanese (Peng, 1997), Mambila (Connell, 2017), Yoruba (Laniran and Clements, 2003)

 Absent: Choguita Rarámuri (Garellek et al., 2015), Embosi (Rialland and Embanga Aborobongui, 2017).
Eliciting information structure in Itunyoso Triqui

- Illiterate population, so a reading task will not work. c.f. studies on Mandarin (Chen and Gussenhoven, 2008; Xu, 1999), Guaraní (Clopper and Tonhauser, 2013), Arabic (de Jong and Zawaydeh, 2002), German (Mücke and Grice, 2014), or Dutch (Peters et al., 2014).

- Mining a corpus for examples does not control for tone or word structure.

- A Q&A paradigm following a short story elicits NPs with different information structure, but this does not work well for broad focus. c.f. studies on Akan (Kügler and Genzel, 2011), Guaraní (Clopper and Tonhauser, 2013)).

- A mixed design was used; both repetition and a Q&A paradigm (c.f. (DiCanio et al., 2018)).
Methods

- Each answer/response was repeated five times by each speaker; 3 conditions (broad focus, contrastive focus, narrow focus).
- Recording took place in Tlaxiaco, Mexico and San Martín Itunyoso.
- Each condition contained the same 50 target words which possessed tones /1, 2, 3, 4, 45, 13, 32, 43/ on monosyllables and disyllables, with each rime type (/Vː, Vfi, Vʔ/).
- 11 native speakers participated; a total of 8250 utterances were analyzed.
- Target words segmented and analyzed using a script written in Praat (Boersma and Weenink, 2016).
- Normalized F₀ trajectories extracted over 5 time points and converted to log-normal values. Syllable duration also extracted.
- Results analyzed using LMMs with lmerTest (Kuznetsova et al., 2017).
Syllables are longer under narrow/contrastive focus than under broad focus.
Results: Tone in monosyllabic words

Effect of focus type on level tones
- Tonal melody: /1/ /2/ /3/ /4/
- Condition: broad, contrastive, narrow

Effect of focus type on rising tones
- Tonal melody: /13/ /45/
- Condition: broad, contrastive, narrow

Effect of focus type on falling tones
- Tonal melody: /43/ /32/ /31/
- Condition: broad, contrastive, narrow
Interim discussion - no effect of focus on F_0

No general effect of narrow/contrastive focus on F_0 across tonal categories, but a significant effect for tones with a coda /?/.

F_0 is lower under broad focus for /V?/ rimes. Why?

Coda /?/ induces F_0 lowering on tone (c.f. DiCanio (2012a)) and these effects might be weaker under narrow or contrastive focus; where speech is hyperarticulated.

Words are longer under contrastive and narrow focus than under broad focus; open syllables lengthen more (20%) than V? and Vh syllables (5-15%).

Tone-specific effects of information structure occurred (tone /4/, /3/), but of relatively small magnitude (0.25 - 0.5 s.d.)
Methods: Experiment 2 - Positional effects

- 10 tonal melodies were analyzed (3.5, 4.4, 4.43...) in disyllabic words in non-final contexts (before a PP/Adv) and utterance-final contexts.

 \[\text{ki}^3\text{r}\text{ā}^4 \text{neh}^3 \text{ŋgo}^2 \text{tʃi}^3\text{n}^\text{ā}^5 \text{‘They bought a huipil.’} \]

 \[\text{ki}^3\text{r}\text{ā}^4 \text{neh}^3 \text{ŋgo}^2 \text{tʃi}^3\text{n}^\text{ā}^5 \text{n}^3\text{yj}^\text{ā}^5 \text{‘They bought a huipil in Tlaxiaco.’} \]

- The pre-target word always had tone /2/. The post-target word always had tone /3/.

- 400 repetitions for each speaker (50 words x 2 conditions x 4 repetitions); 10 speakers (5M/5F)

- Initial transcription in ELAN and segmentation in Praat. We used a script to analyze F_0 dynamics and duration.

- F_0 was normalized and all data was analyzed using the same methods as experiment 1.
Duration

Syllable duration by word and utterance position

![Graph showing syllable duration by word and utterance position for non-final and final positions, with different markers for /n/, /h/, and no coda.](image)
Results - tones in open syllables

Effect of sentence position on tonal melodies /3.3, 2.2, 1.1/

Effect of sentence position on tonal melodies /1.3, 3.4, 3.5/

Effect of sentence position on tonal melodies /3.1, 3.32, 4.43/

Slope and F0 level are significantly different across utterance positions.

Slope is significantly different across utterance positions.

Utterance position
- non-final
- final

Tonal melody
- T3.3
- T2.2
- T1.1
- T1.3
- T3.4
- T3.5
- T3.1
- T3.32
- T4.43

Time (normalized)
Interim discussion - little effect of position on F_0

Final syllables are longer than non-final syllables and lengthened in utterance-final position.

As in the focus data, open syllables were lengthened more than closed syllables (1:1.5 vs. 1:1.37, 1:1.12).

Minimal effect of utterance position on F_0 of tones /4.43, 3.32, 3.4/. No effect on any other tonal melody.

However, investigating the slope on the falling tones across utterance positions revealed them to be equivalent.
Discussion: where is intonation in Itunyoso Triqui?

The F_0 of tones is unaffected by changes to information structure or utterance position.

Prosody influences syllable duration and this may, in turn, permit speakers a larger durational window for the hyperarticulation of contrasts on the word (c.f. DiCanio et al. (2018) on Yoloxóchitl Mixtec).

In Itunyoso Triqui, F_0 does not appear to be one of the parameters which is hyperarticulated in the examined contexts.

In line with work showing that speakers may be inconsistent in their use of pitch accents (Grice et al., 2017) but consistent in supralaryngeal hyperarticulation (Mücke and Grice, 2014).
Functional load of F_0 and duration?

F_0 varies not only with the dense lexical tone system, but also with coda glottal consonants (DiCanio, 2008, 2012a).

Prosodic lengthening is restricted since length is phonemic in consonants (DiCanio, 2012b), a strong cue to coda glottal consonants (DiCanio, 2014), and varies with tone (DiCanio, 2008).

Word-prosodic complexity restricts the degrees of freedom for the phonetic realization of intonation in Itunyoso Triqui.
Future plans

1. Research on declination in utterances with varying final particles.

2. Corpus tone production in parallel annotated corpora of Yoloxóchitl Mixtec and Itunyoso Triqui.

3. EMA research in the UB Phonlab on the supralaryngeal articulation of information structure in English and Korean.
Acknowledgements

- Support from NSF DEL/RI grant 1603323, *Understanding Prosody and Tone Interactions through Documentation of Two Endangered Languages*

- Team Triqui: Basileo Martínez Cruz, Wilberto Martínez Cruz, the Itunyoso Triqui community
Stimuli elicitation for focus - a mixed design

- **Argument focus (after story)**
 Consultant: Who arrived?
 Speaker: John arrived.

- **Contrastive focus (after story)**
 Consultant: Did Marcus arrive?
 Speaker: John arrived.

- **Sentential focus (repetition)**
 Consultant: John arrived.
 Speaker: John arrived.
Why a mixed design?

1. Itunyoso Triqui uses pronominal clitics for animate entities that have been backgrounded.

2. Mixtecan languages are object-dropping.

3. “Describe what happened.” is an odd demand after listening to a text. Speakers attempt to answer it by speculating about the actors’ intents in the text.
Results: Tone in glottal contexts

Effect of focus type on level tones in monosyllabic words in different rime contexts
Results: Tone in disyllabic words

Effect of focus type on level melodies in disyllables

- **Condition**: broad, contrastive, narrow
- **Tonal melody**: /1.1/, /2.2/, /3.3/

Effect of focus type on rising melodies in disyllables

- **Condition**: broad, contrastive, narrow
- **Tonal melody**: /1.3/, /3.4/, /3.5/

Effect of focus type on falling melodies in disyllables

- **Condition**: broad, contrastive, narrow
- **Tonal melody**: /3.32/, /3.1/, /4.43/
Results: Positional effects by coda type

Effect of sentence position on tonal melodies /4.4, 3.3, 2.2, 1.1/ by final coda type

Utterance position
- non-final
- final

Tonal melody
- T4.4
- T3.3
- T2.2
- T1.1

