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Abstract. This paper discusses aspects of qualitative reasoning
about approximate spatio-temporal location at multiple levels of
granularity. We start by defining systems of granularities which are
tree-like hierarchical structures and which are used as frames of ref-
erence in order to specify approximate location of objects. We then
define levels of granularities within those tree structures and strati-
fied map spaces over such granularity structures. Stratified maps are
descriptions of objects in a certain domain at different levels of gran-
ularity. The structure of stratified map spaces allows us to perform
reasoning about location which is specified at different levels of gran-
ularity like: Assume that John is in the same place in which Mary is
(in Hyde Park) and that Mary is also in the same place in which Paula
is (in London). It is then our aim to derive that John and Paula are in
the same place (in London).

1 INTRODUCTION

Consider a chain of reasoning like: From (a) John and Mary are in
the same place at the same time, and (b) Paula and Mary are in the
same place at the same time, it follows that (c) John and Paula are
in the same place at the same time. This seems to be a valid way
of reasoning based on the transitivity property of the relation same-
place-same-time.

However, things are more complicated since being at the same
place at the same time does not mean that John, Mary, and Paula
take up the same region of space at the same time and therefore over-
lap spatially. We do not refer to the exact location of those people but
to their approximate location. Being in the same place at the same
time means to be in the same room, or in the same building, or in the
same city, etc. This shows that there are multiple ways of approximat-
ing spatio-temporal location. Identical things can be approximated at
different levels of granularity depending on the context.

Imagine that you are an FBI agent and that it is your task to con-
firm whether or not John and Paula could possibly have met. In order
to do so you try do derive John same-time-same-place Paula from the
data you have. Assume that one source confirms that John and Mary
were in the same place at the same time (sitting on a bench in Hyde
Park on Monday morning). Another source confirms that that Mary
as well as Paula were in the same place at the same time (meaning
in London on Monday morning). In this case we have John same-
time-same-place Mary and Mary same-time-same-place Paula. The
problem is that the relations refer to approximate location at different
levels of granularity. The question now is under which circumstances
we can derive John same-time-same-place Paula with the interpreta-
tion that both, John and Paula, are in London. The answer of this
�
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question lies at the heart of reasoning about approximations at differ-
ent levels of granularity and it is the purpose of this paper to answer
this question.

Qualitative spatial, temporal, and spatio-temporal relations and
reasoning have been discussed widely in the literature, for example
in [1, 12, 8, 7, 10, 2]. There are fewer attempts to consider qualita-
tive spatial and temporal relations and reasoning at different levels of
granularity. Examples are [9, 3, 11]. This paper is a contribution to
this line of research, however the objective here is not the reasoning
about hierarchically organized sets of relations but to take a simple
but relevant set of relations such as same-time-same-place etc. and
to study their composition in the context of approximation of spatio-
temporal location at different levels of granularity.

The paper is structured as follows. We start by laying out some on-
tological notions fundamental for this paper. We then discuss strati-
fied map spaces and their application to systems of spatial and tempo-
ral granularities. We then define relations between elements in those
spaces and the composition of those relations at the same and at dif-
ferent levels of granularity.

2 A SPATIO-TEMPORAL ONTOLOGY

We distinguish the domain of objects, � , and the domain of re-
gions, � . The domain of regions is constituted by regions of different
dimensionality: four-dimensional spatio-temporal regions ����� ,
three-dimensional spatial regions, �
	����
	 , and one-dimensional
temporal regions, �
�
����� . Individual objects stand to individual
regions in the relation of location.

Every object, ����� , is exactly located at a single three-
dimensional spatial region, � 	 , at every instant of time, � [6]: �����
������� 	 �������! #"$�&%'� 	)(+* The region � 	 is the exact or precise
spatial location of � at the time instant � . We say that the object � is
located at the region � in order to stress the exact fit of object and
region (the object matches the region). Exact location is a functional
relation.

Most objects have different exact spatial locations at different
times. We say that these objects change their spatial location. If we
consider a temporal region (a period of time) during which the object
� existed, then � may be either (i) at rest, i.e., it may be located in
the same region of space, �,	 over the given period of time � � ; or (ii)
its spatial location may change, as a result of being located in differ-
ent regions of space at different time-instants during this period. In
this case we consider � 	 to be the mereological sum of all locations
visited over the period � � .

Often, however, it is not very interesting to know that John is ex-
actly located at that region of space from which the air is displaced
by his body at a particular instant or period of time. It is much more



interesting to know, for example, that John is in London or in Paris.
Here we are interested in sentences like ‘John was in Hyde Park on
Monday morning’, where Monday morning and Hyde Park specify
the approximate rather than the exact temporal and spatial location of
the object John over a certain period of time. (Imagine that John en-
tered the park at 9.45 a.m., went directly to his favorite bench, rested
there for 30 minutes and then left the park at 10.05 a.m.)

We define the notion of approximate spatio-temporal location by
demanding that the exact spatial location of the object � over a cer-
tain period of time is a part of the approximating spatial region (e.g.,
Hyde Park) and that the time-period in question is a part of the ap-
proximating temporal regions (e.g., Monday morning):

��"$��%'� � %-� 	 (/. �&��01�2��0134� �
5 ���6�6��07�2�&�
�8�9 :"$��%'� ( 5 ��3;� 	
Here 3 denotes the part-of relation which holds among regions of
space and among regions of time and �<�<� is an abbreviation for
‘the instant � is within the boundaries of the time-period � ’. In the
approximate context we trace over between the distinction between
rest and change by assuming the object in question does not leave the
approximating region we are referring to.

3 SYSTEMS OF GRANULARITY

Granularities are the results of the way we humans structure our sur-
rounding world and provide the foundation for the notion of approx-
imation and for reasoning about approximations [3, 14, 5]. In the
context of approximation of spatial and temporal location the (sin-
gular) notion of granularity refers to the size of the approximating
region. The plural notion of granularities then refers to systems of
regions that can potentially serve as approximating regions. In our
example above the regions referred to by the names ‘Hyde Park’ and
‘London’ belong to such a system of granularities. (We use names
of objects occupying a certain region in order to refer to this region,
e.g., ‘Hyde Park’, ‘January 13th 2002’, etc.)

Formally, a system of granularities is a pair, =?>@"A�B%DC ( , where
� is a set of regions with a binary relation C . Following [14] we call
those regions cells and the relation C the subcell relation. (We use
��EGF in order to denote ��CHF and �JI>�F .) Systems of granulari-
ties form finite tree structures induced by the subcell relation . Here
we obviously assume that systems of granularity include only those
places and temporal intervals which are disjoint or contain each other
in such a way that no partial overlap occurs. For reasons why this is
a sensible assumption and for further details see [5]. Consider the
following examples: (E1) A spatial system of granularities is formed
by the cells Hyde Park, Soho, Buckingham Palace, Downtown, Lon-
don, York, Edinburgh, Glasgow, England, Scotland, Great Britain,
Germany, Europe and the corresponding nesting of those cells (Fig-
ure 1); (E2) The political subdivision of the United States forms a
(flat) system of granularities with the US as root-cell and minimal
cells like Wyoming and Montana; (E3) A temporal system of granu-
larities is formed by the subdivision of Saturday, January 13th 2002
into forenoon, afternoon, hours, half-hours, quarters, and five-minute
slots.

Let =�>K"A�MLN%DC ( be a system of granularities and let O the cor-
responding tree representation. A level of granularity in = then is a
cut in the tree-structure in the sense of [13]: (1) Let � be the root
of O , then PQ�SR is a cut; (2) sons "$� ( is a cut, where sons "$T ( is the
set of immediate descendants of T ; (3) Let U be a cut and V<�HU
such that sons "$V ( I>�W then U 0 >X"YU[Z\V (^] sons "$V ( is a cut. This
definition ensures that (i) the elements forming a level of granularity
are pair-wise disjoint, i.e., _/��V � %-V2`a��Ub�!V � EXVc`edSV2`aE@V � ;
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Figure 1. A system of granularities

(ii) levels of granularity are exhaustive in the sense that ��VS�a�fL[�
if V�I�gU then ��V 0 �gUG�2VhC4V 0 diV 0 C;V .

Consider Figure 1. Levels of granularity, for example, are:

jck P Europe Rj � P Great Britain % Germany Rjcl P York % London % Scotland % Germany Rjcm P York % Hyde Park % Soho % Buckingham Palace %
Suburbs % Edinburgh % Glasgow % Germany R

(1)

Following [13] we define an a partial order on cuts U and U 0 of a
given tree as: U?n�U 0 if and only if �
FS�4U 0 �o�����4U such that
��CpF . The corresponding lattice is called the granularity lattice,
G of = . This lattice has the root cell as maximal element with the
coarsest level of granularity and the set of leaf-cells as the finest level
of granularity. In Equation 1 we have the ordering: j8k n j � njcl n jcm .

4 STRATIFIED MAP SPACES

This section outlines in a rough and informal manner the main fea-
tures of the notion of stratified map spaces (Figure 2) proposed in
[15].

Stell and Worboys use the term map to denote an arbitrary finite
collection of data. A map space then is a set of all possible maps
describing a particular domain using some fixed representation vo-
cabulary. As indicated in Figure 2 a map can be thought of as a paper
map and a map space then is a collection of paper maps of the same
scale. Stell and Worboys also give the following analogy: In database
terms, a map corresponds to a database state whereas the map space
corresponds to the set of possible database states that are instances
of a fixed schema.

In the context of this paper a map space can be thought of as a
subset of the powerset of a set of objects together with their (approx-
imate) spatio-temporal location. Maps then are elements of such map
spaces.

Map spaces are partially ordered by granularity. Intuitively, if q �
and q
` are maps in the same map space, then q � 34q�` , means that
q � has a finer level of granularity than q ` . Levels or granularity are
‘measured’ with respect to an underlying granularity lattice with the
properties discussed above. The notion of a stratified map space then
allows the translation between maps representing the same domain
(or parts of it) at different levels of granularity (detail).

As indicated in Figure 2, a stratified map space consists of a gran-
ularity lattice, r , and for each granularity j �sr , a map spacet Tvu,w2" j ( . There are two special transfer functions: (1) =MxQy that
transfers by some coarsening process a map from one level of gran-
ularity to a coarser one; and (2) �9z|{#} that transfers a map from a



coarser level of granularity to a finer one. Whenever j � n j ` �ar ,
there are functions

=Mxvy/~ j � % j `�� � t Tvu,w2" j � (9� t T�u
w8" j ` (
�9z|{#})~ j � % j `�� � t Tvu,w2" j ` (/� t Tvu,w2" j � (

between the map spaces
t Tvu,w2" j � ( and

t Tvu,w2" j ` ( .
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Figure 2. A stratified map space [15]

5 STRATIFIED SPATIO-TEMPORAL MAP
SPACES

Let = 	 be a spatial system of granularities and let r 	 be the cor-
responding granularity lattice with elements � 	 � % *)*D* � 	� . Let =M� be
a temporal system of granularities and let r � be the corresponding
granularity lattice with elements � � � % *)*)* � �� . The granularity lattice
underlying the spatio-temporal stratified map space consists of pairs
"$�,	� %'� �� ( which are ordered partially as "$�1	� %'� �� ( n�"$�,	� %'� �� ( if and
only if �,	� n��,	� and � �� n�� �� . We call pairs of the form "$�1	� %-� �� (
spatio-temporal levels of granularity.

Associated with every stratified map space there is a set of ob-
jects � such that for every �
��� there are minimal cells j 	��4=M	
and j ���;=M� such that ��"$�&% j �'% j 	 ( . This is not a serious limitation
since we always can choose granularity-systems in such a way that
they fit the associated set of objects nicely. Associated with every
spatio-temporal level of granularity, "$� 	� %'�,�� ( , there is a set of mapst Tvu,w2"$� 	� %'� �� ( (a map space). An element of

t Tvu,w2"$� 	� %�� �� ( is a set
of objects, ��C;� which is equipped with a function, � :

�<��� � � ��B� � 	� % with ��"$� ( >�"$� � %�� 	 (9. ��"$��%'� � %�� 	 (+*
Since � � and � 	 are elements of levels of granularity and the ele-
ments of levels of granularity are mutually disjoint, the mapping �
is well defined. In the remainder we use notations like ���o���� %�� �,���� �t Tvu,w2" j � ( in order to refer to elements the map space

t Tvu,w2" j � ( .
Consider the levels of granularity j >�"$�1	� %'� �� ( and {
>�"$�,	� %'� �� (

with j n�{ . Due to the tree structure of the underlying temporal
and spatial systems of granularities there exists a taxonomic gener-
alization function =Mxvyo=e��T�yX��� �� � � 	� � � �� � � 	� . This func-
tion takes the element "$� � %'��	 ( �<� �� � �,	� and returns the element
"$F&��%'F 	 ( ���,�� � � 	� with the properties �
��C<F&� and � 	 C<F 	 . These
elements exists uniquely due to the exhaustiveness and the mutual

disjointness of elements of a single level of granularity. The general-
ization function =MxQy/~ j %�{ � � t Tvu,w2" j (�� t Tvu,w2"Y{ ( assigns to the
map �<��� � �,�� � � 	� the map "Y=MxQyo=e��T�y/~ j %�{ � � ( ��� � �1�� � � 	� .

Corresponding to the generalization function =Mxvyo=e��T�yG�9� �� �
�,	� � � �� � �,	� there exists a lifting function �9z|{#}�=e��T�y��c� �� � �,	� �
�,�� � � 	� . The lifting function �/z|{#})~ {:% j � � t Tvu,w2"Y{ (�� t Tvu,w2" j (

assigns to the map ���8� � � �� � � 	� the map "A�/z|{#}�=e��T&y/~ {:% j � � ( �
� � � �� � � 	� . The lifting exists due to the constraints on � .

Consider the system of granularities =f� � depicted in Figure 1
with levels of granularity listed in Equation 1 and assume that our
domain � contains the objects John, Mary, Paula and Jack. For
simplification we discuss only the spatial component of the strat-
ified map space. Consider the map � �¡ �'¢ � t Tvu,w2" jcm ( and let
� �¡ �'¢ >£P�" John ¤� Hyde Park ( %Q" Mary ¤� Hyde Park ( R . In the
same map space there might be another map � �o¥�'¢ >�P8" Jack ¤�
York ( %Q" Paula ¤� Soho ( R . However there cannot be a map in this
space with the tuple " Mary ¤� London ( . This tuple belongs to a map
in another map space, e.g., � � ���¦ >KP8" John ¤� London ( %)" Mary ¤�
London ( RB� t Tvu,w2" j l ( .

Since we have j2m n j2l there is a generalization (lifting) function
=MxQy/~ j2m % j2l � ( �/z|{#})~ j2l % jcm � ) such that "Y=MxQyo=e��T�y/~ j2m % jcl � � �¡ �'¢ ( >
� �¡ ��¦ ( "A�/z§{#}'=e��T�y/~ j l % j m � � � ���¦ ( >J� � ��'¢ ).

6 SPATIO-TEMPORAL RELATIONS

Consider the map space
t Tvu,w2"$� � ( which is formed by maps � �1� �

� � � � � , i.e., � �1� � t Tvu,w2"$� � ( or � �1�¨ � for short. We call pairs of

the form ©a>��i¤� j with ©;��� �,�¨ � the elements of the map � �1�¨ � .
© relates the object � to its spatio-temporal location j at the level of
granularity � � .

Let © � and © ` be elements of maps in the map space
t Tvu,w2"$� � (

with objects � � and �2` approximately located in spatial regions
� 	 � %'� 	 ` ��� 	� and approximately located in temporal regions � � � %'� � ` �
�,�� . We define a set of identity and overlap-sensitive relations between
map elements © � and © ` by distinguishing relations between the as-
sociated spatial and associated temporal regions. We distinguish the
relations: identity (=), proper overlap which excludes identity but in-
cludes containment (o), and non-overlap (ø) that hold among spatial
regions and among temporal regions.

This gives raise to the nine combinatorial possible spatio-temporal
relations between map elements © � and © ` which are shown in Table
2. When considering relations between elements © � and © ` of map
spaces

t Tvu,w2"$� � ( , however, only the patterns 1, 3, 7, and 9 in Table
2 can occur, since the regions forming levels of granularity are pair-
wise disjoint and the relation proper overlap in the sense defined
above cannot occur.

Since interpret a given element © of a map space
t Tvu,w2"$� � ( as

specifying the place at which the object � is located approximately
over a certain time-period, we interpret the relations 1, 3, 7, 9 in Table
2 as: (1) - same-time-same-place (stsp); (3) - same-time-different-
place (stdp); (7) - different-time-same-place (dtsp); (9) - different-
time-different-place (dtdp). (See [4] for further discussion of those
relations.)

� 	 �+"ª© � %-© ` ( « ¬ ­ ® ¯ ° ± ² ³
� � "$� � � %�� � ` ( > > > � � � ´ ´ ´
� 	 "$� 	 � %'� 	 ` ( > � ´ > � ´ > � ´

(2)



7 COMPOSITION OF RELATIONS IN A MAP
SPACE

We now consider the composition of spatio-temporal relations. As-
sume that we have © � stsp © ` and © ` stsp © l with © � %-© ` , and © l be-
ing elements of maps in the map space

t Tvu,w2"$� � ( . We then want to
perform the relation composition © � " stsp � stsp ( © l >�© � stsp © l .

In general, the composition of relation is defined as:

��"$�7%§F ( �8µN"$F
%-¶ ( >¸· � "$�o%'¶ (
*)*)* · � "$�7%'¶ ( (3)

where R, S, and T are binary relations that hold between spatial or
temporal regions. Given that � holds between � and F and µ holds
between F and ¶ then between � and ¶ one of the · � holds. In Table
4 the composition of the relations > , � , and ´ is given.

R ¹ S = o ø
= = o ø
o o =, o, ø o, ø
ø ø o , ø =, o, ø

(4)

In order to formalize the composition of spatio-temporal rela-
tions between elements © � and © ` of maps in a map space, as-
sume © � >�� � ¤� "$� � � %'�
	 � ( , © ` >�� ` ¤� "$� � ` %��
	` ( , and © l >
� l ¤� "$� �l %-�
	l ( and let the relations �º"ª© � %§©#` ( and µ�"ª©#`�%-© l ( with
�º%�µb�»P stsp % stdp % dtsp % dtsp R hold. Since the definition of
these relations is based on relations between regions, their compo-
sition is based on the composition of the relations between the asso-
ciated regions. Since there are no assumptions about the dimension
of the regions involved, Table 4 can be used in order to compute the
spatial as well as the temporal component of the composition opera-
tion. Formally we write:

��"$� � ¤� "$�
� � %-� 	 � ( %'�c`�¤� "$�
�` %-� 	 ` ('(
� µ�"$� ` ¤� "$� � ` %'�
	` ( %'� l ¤� "$� �l %��
	l ('(

> · � "$� � ¤� "$� � � %-�
	 � ( %'� l ¤� "$� �l %'��	l ('(,*)*D*
· � "$� � ¤� "$� � � %'�
	 � ( %-� l ¤� "$� �l %'�
	l ('(

with
· � � � � "$� � � %'� � ` ( �2µ � "$� � ` %�� �l ( � �e	�"$�
	 � %-�
	` ( �8µ^	c"$�
	` %'�
	l (

(5)

where the relation � � ( �e	 ) is the temporal (spatial) component of the
relation � . Table 6 shows the operation table for the composition of
the four relations. The composition of relations between elements of
maps in a map space is closed due to the granularity structure of the
underlying map space.

�4¹Nµ stsp stdp dtsp dtdp
stsp stsp stdp dtsp dtdp
stdp stdp wD}�Pv¼Qu7%�w-u1R dtdp ¼2}�P�w'uo%-¼Qu1R
dtsp dtsp stdp P�w)}+%'¼2}�R�w-u P�wD}D%-¼2}�Rv¼Qu
dtdp dtdp w)}�P�w-u7%'¼Qu,R½P�wD}D%'¼2}�Rv¼Qu P�wD}+%'¼2}�R

P�w-u7%-¼Qu1R

(6)

8 COMPOSITION AT DIFFERENT LEVELS OF
GRANULARITY

We now consider relations between elements of maps "$� � ¤�
"$� � � %'� 	 � ('( %Q"$�c`a¤� "$� � ` %'� 	 ` ('( ��� �� � and "$�2`�¤� "$� �l %'� 	l ('( %Q"$� l ¤�

"$� �m %'��	m ('( �<� �� � which belong to map spaces at different levels of
granularity, i.e.,

t Tvu,w2" j � ( I> t Tvu,w2" j � ( . The composition of rela-
tions � and µ follows the pattern:

��"$� � ¤� "$� � � %'� 	 � ( %'�c`�¤� "$� � ` %'� 	 ` ('(
�¾µ�"$� ` ¤� "$� �l %'�
	l ( %-� l ¤� "$� �m %'�
	m ('(

> *)*)*
(7)

In the standard sense the composition of two relations is defined only
if there is a ‘binding individual’ (e.g., the y in Equation 3) which
occurs in both relations. If we consider the composition of relations
between elements of maps at different levels of granularity then we
need to consider two cases: (i) � � ` >[� �l and �
	` >G��	l and (ii) � � ` I>
���l or � 	 ` I>�� 	l .

In case (i) both map spaces ‘overlap nicely’ such that there is a
‘binding individual’ "$�2`i¤� "$� � ` %'� 	 ` ('( >»"$�c`i¤� "$� �l %'� 	l ('( and we
can perform the composition of the relations � and µ in the way
defined in Equation 5.

In case (ii) there is no ‘binding individual’ directly connecting the
relations � and µ since "$�2`�¤� "$���` %'� 	 ` ('( I>�"$�2`�¤� "$���l %'� 	l ('( . There
is, however, a ‘binding object’ � ` and it also holds that "$� � ` %'�
	` ( and
"$� �l %'�
	l ( are ‘connected’ in the underlying granularity system in the
sense that "$� � ` %'��	` ( Ep"$� �l %���	l ( or "$� �l %'�
	l ( Es"$� �` %'�
	` ( . This ‘con-
nection’ always exists due to the exhaustiveness-property of levels
of granularities.

Consider, for example, the composition of the relations¿ �cÀ:y stsp
t T���F with the interpretation that both are in Hyde Park

on Monday morning and
t T���F stsp ÁMT&Â�ÃÄT with the interpretation

that both are in London on Monday morning. Hyde Park and London
are connected within the underlying system of granularities (Figure
1) via the chain: Hyde Park E Downtown E London. Our aim now
is to derive

¿ ��À:y stsp ÁMT�Â
ÃÄT with the interpretation that both are in
London on Monday morning.

One can see that in order to perform the composition of rela-
tions between map elements of distinct map spaces we need to per-
form generalization or lifting transformations between maps spaces.
In this context it is important to know whether or not the relations
stsp % stdp % dtsp % dtdp are preserved under such transformations.

It will sufficient to consider the spatial components, same-place ( w-u )
and different-place ( ¼Qu ), and the temporal components same-time
( wD} ) and same-time ( ¼2} ) separately and to concentrate on invari-
ance or change of the spatial component under the transformations
=MxQy1	�~ j � % j � � "ª©,	 ( and �9z|{#}-	c~ j � % j � � "ª©,	 ( (the spatial components of
the functions =MxQy9~ j � % j � � and �9z|{#}D~ j � % j � � applied to the spatial com-
ponent © 	 >X�S¤� � 	 of ©¸>X�S¤� "$� � %�� 	+( ). This is because the
definitions for the temporal component follow the same pattern and
are very similar.

The following holds: (1) The relation w-u remains in-
variant under generalization, i.e., if © 	� w-u © 	` then
=MxQy 	 ~ j � % j � � "ª© 	� ( w-u =MxQy 	 ~ j � % j � � "ª© 	` ( ; (2) The relation
¼Qu remains invariant under lifting, i.e., if © 	� ¼Qu © 	` then
�/z|{#}'	c~ j � % j � � "ª©,	� ( ¼Quh�/z|{#}'	c~ j � % j � � "ª©
	` ( with j � n j � .

However, the relation w-u is not preserved under lifting
since " ¿ �cÀ:yÅ¤� �/��y1¼8��y ( sp � � "

t T���FÆ¤� �/��y,¼8��y ( in the
map space

t Tvu,w2" j � ( is perfectly consistent with " ¿ ��À:y¾¤�
Hyde Park ( dp � � "

t T���FJ¤� µ¡�cÀ:� ( in the map space
t Tvu,w2" j � ( .

On the other hand, the relation ¼Qu is not preserved under gener-
alization since " ¿ ��À:yX¤� Hyde Park ( dp � � "

t T���FH¤� µ¡��À:� ( in
the map space

t Tvu,w2" j � ( is perfectly consistent with " ¿ �cÀ#yÇ¤�
�/��y1¼8��y ( sp � � "

t T���FÈ¤� �9��y,¼8��y ( in the map space
t T�u
w8" j � ( .

Consider Equation 5. When performing the composition of rela-
tions between map elements of different map spaces then we need to
transform the parameters of one relation and leave the other relation
unchanged. We focus here on the discussion of the transformation
of the parameters of the first relation. When performing the transfor-
mation we need to insure that the relation still holds in the new map
space. Consequently if the relation which parameters we transform
is w'u then we can only apply the transformation =MxQy 	 (Equation 8).
If, however, the relation which parameters we transform is ¼Qu then



we can only apply the transformation �/z|{#}�	 (Equation 9). Of course,
we can apply =MxQyo	 ( �/z§{#}-	 ) only if �
	` C��
	l ( �
	l C��
	` ) holds. (In
the case of �
	` >K��	l the transformation =MxQyo	 ( �9z|{#}-	 ) is the iden-
tity map.) If these conditions do not hold we need to transform the
parameters of the second relation (Equations 10 and 11).

Let © � >�� � ¤� � 	 � , ©#`É>Ê�c`4¤� � 	 ` , Ë � >��2`4¤� � 	l , and
Ë ` >�� l ¤� ��	m be spatial projections of the map-elements © 0� %-© 0` %'Ë 0 � %
and Ë 0` with © 0� %-© 0` �
� �¨ � and Ë 0 � %'Ë 0` ��� �¨ � . We then define:

sp "ª© � %-© ` ( �8µ�"$Ë � %'Ë ` (
> · � "'"AÌ�© � ( %-Ëv` (,*D*)* · � "'"AÌ�© � ( %'Ëv` (
iff � 	 ` C4� 	l 5 Ë � >�"AÌ�©#` ( 5 Ì�>J=MxQy 	 ~ j � % j � �

with · � � " sp "AÌ�© � %'Ë � ( ��µ�"$Ë � %-Ë ` ('( %
(8)

and

dp "ª© � %-©#` ( ��µ�"$Ë � %-Ëv` (
> · � "'"AÌ�© � ( %-Ë ` (,*D*)* · � "'"AÌ�© � ( %'Ë ` (
iff � 	l C4� 	` 5 Ë � >�"AÌ�© ` ( 5 Ìf>¸�/z|{#} 	 ~ j � % j � �

with · � � " dp "AÌe© � %'Ë � ( �8µN"$Ë � %'Ëv` ('( %
(9)

Intuitively, Equation 8 means that if we have � 	 ` Cs� 	l and the
first relation is w-u then we map all objects to the level of granularity
of Ë � (using =MxQy1	 ) and perform the relation-composition in this map
space in the standard way. Equation 9 means that if we have �,	l C4�
	`
and the first relation is ¼Qu then we map all objects to the level of
granularity of © ` (using �9z|{#}'	 ) and perform the relation-composition
in this map space in the standard way.

Equations 10 and 11 now cover the cases where the parameters of
the second relation need to be transformed. They correspond in their
structure closely to their counterparts Equation 8 and Equation 9 and
a discussion is therefore omitted.

��"ª© � %-© ` ( � sp "$Ë � %-Ë ` (
> · � "ª© � %Q"AÌeË ` ('(
*)*D* · � "ª© � %)"AÌeË ` ('(
iff � 	l C;� 	` 5 ©#`�>�"AÌeË � ( 5 Ìf>J=MxQy 	 ~ j � % j � �

with · � � "A��"ª© � %-© ` ( � sp "ª© ` %'ÌMË ` ('( %
(10)

and

��"ª© � %-©#` ( � dp "$Ë � %'Ëv` (
> · � "ª© � %�ÌeËQ` (,*)*)* · � "ª© � ( %'ÌMËv` (
iff � 	 ` C4� 	l 5 © ` >�"AÌeË � ( 5 Ìf>¸�/z§{#} 	 ~ j � % j � �

with · � � "A��"ª© � %-© ` ( � dp "ª© ` %�ÌeË ` ('(
(11)

Examples are given in Table 12. (For the meaning of the abbre-
viations see Figure 1.) Again, for simplification we consider only
the composition of the spatial component. The first column should
be read as: " ¿ ��À:yÍ¤� Hyde Park ( sp � � "

t T���FK¤� Hyde Park ( ,
" t T���F@¤� London ( sp � � "AÁMT�Â
ÃÄT@¤� London ( , and " ¿ �cÀ:yÎ¤�
London ( sp � � � sp � � "AÁMT&Â�ÃÄTh¤� London ( , where sp � � means that
the relation same-place holds in the map space

t T�u
w8" j � ( .
John R Mary S Paula John (R:S) Paula
HP sp HP Ï L sp L L sp L
L sp L Ï HP sp HP L sp L

HP sp HP Ï HP dp EB HP dp EB
HP sp HP Ï L dp EB L dp EB
HP dp EB Ï EB sp EB HP dp EB
HP dp SH Ï L dp EB HP dp EB

(12)

As already pointed out, the treatment of the temporal component
is similar. In the temporal case we need to consider the transfor-
mations =Mxvy1�+~ j � % j � � "ª©,� ( and �9z|{#}'��~ j � % j � � "ª©,� ( , i.e., the temporal
components of the transformations =MxQy/~ j � % j � � and �9z|{#})~ j � % j � � ap-
plied to the temporal component © � >��i¤� � � of the map element
©�>J�B¤� "$� � %��
	 ( . The equations 8–10 then can be rephrased in the
obvious manner.

9 CONCLUSIONS

In this paper we applied the notion of stratified map spaces to the
composition of relations about approximate spatio-temporal location
at different levels of granularity. Critical for the whole approach are
the existence of systems of granularities which provide frames of ref-
erence for the specification of approximate spatio-temporal location.
Future work should further study the properties of those structures,
the way human beings facilitate different frames of reference in dif-
ferent contexts, as well as more complex sets of relations.
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