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Abstract. One aim of this paper is to improve the logical and ontological rigor of the OBO relation ontology by providing
axiomatic specifications for logical properties of relations such as part_of, located_in, connected_to, adjacent_to, attached_to,
etc. All of these relations are currently only loosely specified in OBO.

A second aim is to improve the expressive power of the relation ontology by including axiomatic characterizations of quali-
tative size relations such as (roughly-the-) same-size-as, negligible-in-size-with-respect-to, same-scale, etc. Those relations are
important for comparing anatomical entities in a way that is compatible with the normal variations of their geometric properties.
Moreover, qualitative size relations are important for distinguishing anatomical entities at different scales. Unfortunately, the
formal treatment of those relations is difficult due to their context-dependent nature and their inherent vagueness. This paper
presents a formalization that facilitates the separation of ontological aspects that are context-independent and non-vague from
aspects that are context-dependent and subject to vagueness.

A third aim is to explicitly take into account the specific temporal properties of all of the relations and to provide a formalization
that can be used as a basis for the formal representation of canonical anatomy as well as of instantiated anatomy.

All the relations and their properties are illustrated informally using a human synovial joint as a running example. At the formal
level the axiomatic theory is developed using Isabelle, a computational system for implementing logical formalisms. All proofs
are computer-verified and the computational representation of the theory is accessible on http://www.ifomis.org/bfo/
fol.
Keywords: formal ontology, OBO, mereology, mereotopology, mereogeometry, qualitative representation and reasoning,
vagueness, context

1. Introduction

There is widespread recognition that many existing biological and medical ontologies (or controlled
vocabularies) can be improved by employing more rigorous logical methods (Rector and Horrocks, 1997;
Schulze-Kremer, 1998; Smith et al., 2003; Smith and Rosse, 2004; Rosse et al., 2005). For this reason,
the Open Biomedical Ontologies (OBO) consortium (OBO, 2006) has now added the criterion that the
relations used to connect terms in OBO ontologies need to be applied in ways consistent with the OBO
relation ontology (RO) (Smith et al., 2005).

Unfortunately, the current version of the OBO relation ontology (the version published in (Smith et al.,
2005)) focuses on the definitions of class-level relations (i.e., relations between classes of entities such as
the class of all right ventricles and the class of all hearts) and provides only a few axioms characterizing
the relations between particular entities (individual-level relations) which are used to define the class-level
relations.1 Obviously, the logical properties of the class-level relations will not be fully specified until the
individual-level relations used in their definitions are. Important individual-level relations whose logical
properties are only loosely specified in (Smith et al., 2005) are listed in Table 1. For example, Smith
et al. (2005) only include axioms for reflexivity, antisymmetry, and transitivity for the parthood relation
between particular entities (continuants, individuals, anatomical entities). These axioms are insufficient to

1This is a general problem in current biomedical ontologies including the FMA (Rosse and Mejino, 2003), GALEN (Open-
GALEN, 2003), and the Gene Ontology (The Gene Ontology Consortium, 2000), and in the literature on foundational relations
in bio-medical ontologies including (Schulz et al., 2000; Hahn et al., 1998; Schulz and Hahn, 2001; Mejino et al., 2003; Rogers
and Rector, 2000).
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specify the logical properties of part_of in a way that makes it possible to formally distinguish part_of
from relations such as contained_in, smaller_than, younger_than, etc. (Bittner and Donnelly, 2007b).

RO relation
name 1. arg. 2. arg. 3. arg Symbol
part_of continuant continuant time P

part_of region region – P
overlap continuant continuant time O

located_in continuant region time L

located_in continuant continuant time LocIn
contained_in continuant continuant time ContIn
adjacent_to continuant continuant time Adj

Table 1

Relations of the relation ontology and the symbols used in the presented axiomatic theory to refer to those relations. (The
argument types of the RO-relations are included since Smith et al. (2005) ‘overload’ part_of and located_in.)

In this paper an axiomatic theory is presented that more precisely specifies the logical properties of the
relations in the OBO relation ontology. For example, unlike the RO, which introduces adjacent_to as a
primitive relation without even giving axioms to specify the properties of this relations, in the presented
ontology adjacency is defined by making use of some qualitative size relations which are not included
in the OBO relation ontology. Thus in addition to offering a more precise analysis of the relations in the
RO, the analysis shows how the RO might be expanded to incorporate more relations that are important
for representing and reasoning about biological structures. The discussion in this paper shows how the
qualitative size relation negligible-with-respect-to can be used formally to characterize OBO’s adjacent_to
relation.

The formal ontology is developed within the framework of a temporal mereogeometry with location
relations which includes a temporal mereology and a temporal mereotopology as sub-theories. The tem-
poral mereogeometry is extended with qualitative size relations (Bittner and Donnelly, 2006, 2007a). The
underlying temporal framework allows one to distinguish time-dependent (i.e., changeable) and perma-
nent versions of all relations. This distinction is important since the OBO relation ontology is intended to
be applicable in all of the following areas:

(i) In canonical anatomy, where mereotopological relations as well as adjacency and attachment rela-
tions are typically permanent (bones do not break, ligaments are permanently attached to bones, etc.)
while ordering and distance relations (the spatial arrangement of anatomical parts with respect to one
another) often change over time (i.e., are not permanent – the heart beats, the jaw opens and closes,
etc.) (Bittner and Goldberg, 2007).

(ii) In clinical contexts where one deals with actually instantiated anatomical structures (Neal et al.,
1998) that do undergo non-normal changes of mereotopological, adjacency, and attachment relations
(Ceusters and Smith, 2005). Actually instantiated anatomical structures encounter injuries and dis-
eases but also undergo healing and surgery processes. All these processes may change mereotopo-
logical relations as well as adjacency and attachment relations. For example, bones get broken and
are put back together, muscles and bones get detached and reattached again.

(iii) To understand processes that occur in anatomical structures (canonical and instantiated) mereo-
geometrical relations between anatomical entities of different scale need to be taken into account.
Relations between entities of different scale are often NOT permanent. It is normal for organisms to
gain and to lose microscopic parts all the time.

In the presented ontology the formal foundations are laid for dealing with these different kinds of temporal
behaviors.
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2. A running example and requirements for the formal theory

It will be helpful to present the axiomatic theory in the context of a running example. This example is
also meant to illustrate the complexities the presented formal theory has to deal with.

2.1. Anatomical structure and foundational relations

Figure 1 depicts the index finger of Joe Doe’s left hand in a straight (Figure 1(a)) and in a bent position
(Figure 1(b)). The major parts of the depicted finger include the proximal, middle, and distal phalanges and
three hinged joints: distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal
(MCP).

distal phalanx (DP)proximal phalanx (PP) middle phalanx (MP)

metacarpophalangeal joint (MCP)

proximal interphalangeal joint (PIP)

distal interphalangeal joint (DIP)

(a) Straight position (b) Bent position

Fig. 1. Joe Doe’s left index finger.

The examples used in what follows focus on the proximal interphalangeal joint (PIP) of Joe’s left index
finger (Joe’s PIP for short). This is a synovial joint whose major parts are depicted in Figure 2(a): the
bony part of the middle phalanx (MPB), the articular cartilage of the middle phalanx (AC-MP), the bony
part of the proximal phalanx (PPB), the articular cartilage of the proximal phalanx (AC-PP), the ligament,
the synovial membrane, the synovial cavity, and the synovial fluid. A synovial joint is a movable joint,
which contains synovial fluid in a synovial cavity. The fluid acts as a lubricant to allow the surface of the
cartilage-capped bones that meet in the joint cavity to slide freely along one another (Stevens and Lowe,
2005). The bony part of the middle phalanx (MPB) and articular cartilage of the middle phalanx (AC-MP)
together with the the articular cartilage of the middle phalanx in the distal interphalangeal joint (DIP)
form the middle phalanx (MP). Similarly, the bony part of the proximal phalanx (PPB) and the articular
cartilage of the proximal phalanx (AC-PP) together with the the articular cartilage of the middle phalanx
in the metacarpophalangeal joint (MCP) form the proximal phalanx (PP).

In the graph (Figure 2(b)) the salient material parts of the proximal interphalangeal joint of Joe’s left
index finger are indicated by the corresponding labels of the nodes. The solid edges indicate that the
anatomical entities at the end of the edges are externally connected, i.e., have zero distance but do not
overlap. The distance between extended spatial objects is here understood as the greatest lower bound
of the distances between any point of the region occupied by the first object and any point of the region
occupied by the second object. External connection holds, for example, between the synovial cavity and
the synovial membrane, the articular cartilage of the proximal phalanx and the bony part of the proximal
phalanx, and so on.

The relation adjacent_to holds among material anatomical entities that are a very small but non-zero
positive distance apart. (See also (Smith and Varzi, 2000; Bittner and Goldberg, 2007).) More precisely,
the distance between two adjacent entities is non-zero, but negligible with respect to their size. Thus two
adjacent anatomical entities have parts that are very close but are not connected. For example, the bony
part of the proximal phalanx of Joe’s left index finger (PPB) is adjacent to the synovial membrane of the
proximal interphalangeal joint. This is because even though some of their parts are very close (so close
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bony part of the 

of the proximal phalanx
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(a) Major parts of the joint (adopted from (Stevens and
Lowe, 2005))
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(b) Graph of external connectedness (solid edges), attach-
ment relations (dashed edges) and adjacency without attach-
ment (dotted edges).

Fig. 2. The proximal interphalangeal joint of Joe Doe’s left index finger.

that the synovial fluid remains inside the space enclosed by the membrane and the bone), there is always a
small but positive distance between both objects. Similarly, the bony part of the proximal phalanx (PPB) is
adjacent to the ligament of the proximal interphalangeal joint. It is also the case that the articular cartilage
of the proximal phalanx (AC-PP) is adjacent to the articular cartilage of the medial phalanx (AC-MP). In
the graph in Figure 2(b) the relation of adjacency is represented by dashed and dotted edges.

These examples show that, in order to be capable of representing adjacency relations between material
parts of anatomical structures such as synovial joints, a bio-medical ontology needs to incorporate qual-
itative distance relations such as close-to (which will be analyzed in terms of the relation negligible-in-
size-with-respect-to in Section 8).

2.2. Temporal change

The discussion in this subsections will illustrate that bio-medical ontologies need the formal resources
to deal with a variety of time-dependent and time-independent (permanent) versions of foundational rela-
tions.

Time-dependent vs. permanent relations. As already mentioned, most mereotopological relations and
many adjacency relations in canonical anatomy are permanent. That is, they hold between their relata at
all times at which the relata exist. By ‘x exists at time t’ is meant in the context of this paper that x is an
anatomical entity that is part of a living organism. Barring a disruption in the normal functioning of Joe’s
PIP, all relations depicted in Figure 2(b) are permanent in the sense that these relations hold at all times at
which the PIP as a whole exists as part of Joe’s living body.

Since bio-medical ontologies are not only about canonical anatomical structures (e.g. synovial joints)
but also about actually instantiated structures (e.g. Joe’s PIP), one needs to take into account that, other
than canonical anatomical structures, actually instantiated anatomical structures do undergo non-normal
changes, i.e., encounter injuries and diseases. For example at time t the articular cartilages of the proximal
and the medial phalanges (AC-PP and AC-MP) are adjacent. At time t2 Joe gets into a fist fight and his PIP
gets dislocated such that at t2 the articular cartilages of the proximal and the medial phalanges are NOT
adjacent. At time t3 after surgery and a successful healing process the articular cartilages of the proximal
and the medial phalanges are adjacent again.
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Kinds of permanent adjacency relations. In addition to the general distinction of time-dependent and
permanent relations it is important to distinguish permanent adjacency relations of different strength:
The proximal phalanx of Joe’s left index finger is permanently adjacent to the ligament of the proximal
interphalangeal joint in the sense that the location of both is fixed with respect to one another. By contrast,
the articular cartilage of the proximal phalanx (AC-PP) and the articular cartilage of the medial phalanx
(AC-MP) are (permanently) adjacent, but both have the capability of sliding along one another. This can
be seen easily by comparing the relative location of Joe’s proximal and phalanges in Figures 1(a) and
1(b). In the graph in Figure 2(b), the kind of adjacency relation that permits sliding is represented by
dotted edges. (Similar points are made by Bittner and Goldberg (2007) using the example of the human
temporomandibular joint (TMJ).)

Granular parts. Relations between anatomical entities at different scale (at different levels of granular-
ity) often are not permanent. Consider, for example, the synovial membrane at the inside of the synovial
ligament of Joe’s PIP and the particular formation of cells that constitutes this membrane at a given time.
It is normal that the synovial membrane persists through time but gains and loses cells over time. Cells
are granular parts, i.e., parts that are negligible in size with respect to their wholes. Cells are often also
non-permanent parts, i.e., are outlived by the wholes they form. This example shows that, even in canon-
ical anatomy, relations between anatomical entities at different levels of granularity are time-dependent
and not permanent.

2.3. Formal representation

Conventions. For the reasons discussed above for each relation that holds between objects (continuants,
anatomical entities) time-dependent and time-independent (permanent) versions are distinguished. For-
mally, the ontology is presented in a sorted first-order predicate logic with identity. Variables range over
individual objects (anatomical entities that are parts of living organisms – a specific kind of continuant in
the sense of the RO), regions of space, and instants of time. Variables x, y, z, w are used for objects, vari-
ables a, b, c, d for regions and variables t, t1, t2 for instants of time. It is assumed that the axiomatic appa-
ratus that governs the sub-domain of time instants is an independent component of the relation ontology
and is not addressed in this paper. Ontologically, time instances represent time slices of four-dimensional
space time (Pianesi and Varzi, 1996; Bittner and Donnelly, 2004). For an overview of existing temporal
formalisms see (Galton, 1987, 1999).

In order to be able to state definitions, axioms, and theorems in a readable way, the symbols listed in
Table 1 are used in the theory for the respective RO-relations. The logical connectors ¬, =, ∧ , ∨ , → ,
↔ have their usual meanings: not, identical-to, and, or, if . . . then, if and only if (iff). The symbol ≡

is used for definitions. (x) symbolizes universal quantification and (∃x) symbolizes existential quantifi-
cation. Leading universal quantifiers are generally omitted. Names of axioms begin with the capital letter
‘A’, names of definitions begin with the capital letter ‘D’, and names of theorems begin with the capital
letter ‘T’.

Modality. In addition to the (temporal) distinction between time-dependent and permanent relations
there is a (modal) distinction between relations that hold necessarily and relations that hold contingently.
The temporal distinctions are orthogonal to the modal distinctions. There are necessary and contingent
permanent relations and there are necessary and contingent time-dependent relations between anatomical
objects. They are found in both, canonical as well as in instantiated anatomy. The distinction of modal
aspects is important to specify further differences between canonical and instantiated anatomy. Unfortu-
nately the formal representation of modal aspects of relations requires a more powerful representational
framework than a first-order predicate logic with the sorts specified above.

To formally address the distinction between relations that hold necessarily and relations that hold con-
tingently one has to (i) introduce additional sorts of variables for possible worlds and a corresponding
axiomatic apparatus (Lewis, 1986) or (ii) to use a modal predicate logic (Hughes and Cresswell, 2004).
Both options go beyond the scope of this paper.
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3. Mereology of objects

In this section the part of the formal ontology which characterizes the logical properties of time-
dependent and time-independent versions of the OBO relations part_of and overlaps is presented. An ex-
tended discussion of various options of developing temporal mereologies can be found in (Simons, 1987).

3.1. Time-dependent parthood

Following Bittner et al. (2004, to appear), in this sub-section a temporal version of mereology based
on the ternary primitive P is presented, where P xyt is interpreted as: object x is part of object y at
time-instant t. For example this blood cell was part of my body yesterday, but it is not a part of my body
now.

The relations of proper parthood and overlap among objects are defined in the usual way: x is proper
part of y at t if and only if x is part of y at t and y is not part of x at t (DPP); x overlaps y at t if and only
if there is an object z such that z is part of x at t and z is part of y at t (DO). P is used to distinguish the
time-instants at which objects exist: x exists at time t (symbolically E xt) if and only if x is a part of itself
at t (DE).

DPP PP xyt ≡ P xyt ∧ ¬P yxt
DO O xyt ≡ (∃z)(P zxt ∧ P zyt) DE E xt ≡ P xxt

The following axioms are added. For every object there is some time at which it exists (AM1). At each
time instant, the individual parthood relation is transitive (AM2). If x is a part of y at t then both x and y
exist at t (AM3). If x exists at t and everything that overlaps x at t also overlaps y at t then x is a part of y
at t (AM4).

AM1 (∃t)E xt
AM2 P xyt ∧ P yzt→ P xzt

AM3 P xyt→ E xt ∧ E yt
AM4 E xt ∧ (z)(O zxt→ O zyt)→ P xyt

One can prove that the following statements hold at all times: overlap is symmetric; proper parthood is
asymmetric and transitive.2

Notice that there are significant differences between axioms AM1-AM4 and the axioms for parthood in
the relation ontology: (i) the RO does not have an existence predicate; (ii) the RO does not have axiom
AM4; (iii) unlike the RO this ontology does not include an antisymmetry axiom. An existence predicate
may not be so important in canonical anatomy, however it is important for representation of facts about
instantiated anatomical structures in clinical contexts (the tumor did not exist at t1 but it did exist at t2).
Consider axiom AM4. Using AM4 one can prove that if x is a proper part of y at t then there is a z such
that z is a proper part of y at t and z does not overlap x at t (TM1). From this immediately follows that no
object can have a single proper part. This, clearly, is an important logical property of the part_of relation
that is not covered by the axioms of the RO. (See also (Simons, 1987; Varzi, 2003; Bittner and Donnelly,
2007b).)

TM1 PP xyt→ (∃z)(PP zyt ∧ ¬O xyt)

No axiom of antisymmetry for parthood among objects is included in the theory in order to leave
open the possibility that there may be distinct objects which have exactly the same parts at a given time.
For example, the FMA distinguishes between an anatomical entity and the tissue which constitutes that
entity at a given time (Rosse and Mejino, 2003). Often, however, it is the case that if tissue x constitutes

2Theorems about standard properties of relations such as reflexivity, transitivity, symmetry, asymmetry, etc. are not explicitly
listed in this paper. The theorems and their proofs, however, can be found in the computational representation of the theory. (See
also Section 10.)
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anatomical entity y at time t then x and y have the same parts at t. Consider, for example the synovial
membrane of Joe’s PIP and the tissue – the particular formation of cells – that constitutes this membrane at
time t. At this time the synovial membrane and the tissue have exactly the same parts: the same cells, the
same molecules, etc. but still one might want to hold that membrane and tissue are distinct entities since
the synovial membrane may be constituted by different tissues (i.e., different cells) at different times. For
an extended discussion see also (Bittner and Donnelly, 2007c; Donnelly and Bittner, 2008).

3.2. Time-independent mereological relations

In terms of the time-dependent basic mereological relations one can define corresponding time-
independent relations. Object x is a permanent part of object y if and only if whenever x or y exist, x is a
part of y (DpP). Object x is a permanent proper part of object y if and only if whenever x or y exist, x is
a proper part of y (DpPP). Entity x permanently overlaps entity y if and only if at all time at which x or y
exist, x overlaps y (DpO).

DpP pP xy ≡ (t)((E xt ∨ E yt)→ P xyt)
DpPP pPP xy ≡ (t)((E xt ∨ E yt)→ PP xyt)
DpO pO xy ≡ (t)((E xt ∨ E yt)→ O xyt)

One can prove that permanent parthood is reflexive and transitive, that permanent proper parthood is
asymmetric and transitive, and that permanent overlap is reflexive and symmetric. One can also prove that
if x is a permanent part of y then x exists at t if and only if y exists at t (TM2), i.e., x and y exist at the
same times. Similar theorems can be derived for all permanent relations introduced in this paper.

TM2 pP xy → (t)(E xt↔ E yt)

As pointed out above, most parthood relations between macroscopic anatomical entities in canonical
anatomy are permanent relations. The permanent parts of Joe’s PIP of macroscopic scale are: the bony
part of the middle phalanx (MPB), the articular cartilage of the middle phalanx (AC-MP), the bony part
of the proximal phalanx (PPB), the articular cartilage of the proximal phalanx (AC-PP), the ligament, the
synovial membrane, the synovial cavity, and the synovial fluid.

3.3. The importance of distinguishing time-dependent and permanent mereological relations

It is important to note that the logical relations between pP and pPP are not exactly analogous to those
between P and PP: As stated in (DPP) x is a proper part of y at t if and only if x is a part of y at t and y
is not a part of x at t. One can prove in the presented theory that if x is a permanent proper part of y then
x is a permanent part of y and y is not a permanent part of x (TM3).

TM3 pPP xy → pP xy ∧ ¬pPyx

But one cannot prove the converse of this theorem, i.e., it is not always the case that if x is a permanent
part of y and y is not a permanent part of x then x is a permanent proper part of y.

To see that the converse of TM3 cannot be a theorem, consider Figure 3 which depicts Joe’s left index
finger (JLIF ) at different points in time. At time t1, FS is proper part of JLIF as depicted in Figure
3(a). Suppose that Joe has an accident between t1 and t2 in which the distal part of his left index finger
gets destroyed in a way such that at time t2 Joe’s left index finger is as depicted in Figure 3(b). Thus,
while at t1 FS is a proper part of JLIF , at t2 FS is identical to JLIF . If Joe does not have any further
accidents then the following holds: (i) whenever FS or JLIF exist, FS is a part of JLIF (i.e., FS is
a permanent part of JLIF ); (ii) it is not the case that whenever FS or JLIF exist, JLIF is a part of
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FS

JLIF

(a) Time t1

JLIF = FS

(b) Time t2

Fig. 3. Joe Doe’s left index finger at different times.

FS (i.e., JLIF is not a permanent part of FS). But clearly, FS is not a permanent proper part of JLIF .
Hence the converse of (TM3) cannot be a theorem.

Similarly, the logical relations between pO and pP are not exactly analogous to those between O and
P (Donnelly, 2007). One can prove in the presented theory that if there is a z such that z is a permanent
part of x and a permanent part of y then x and y permanently overlap (TM4). But one cannot prove the
converse of this theorem. This is because permanently overlapping objects do not need to share permanent
parts. Objects can overlap permanently by sharing different non-permanent parts at different times.

TM4 (∃z)(pP zx ∧ pP zy)→ pO xy

This discussion shows that it is important to explicitly distinguish permanent (parthood, overlap, etc.)
relations from time-dependent (parthood, overlap, etc.) relations. This is particularly important since in
ontologies formalized using description logics (Baader et al., 2002) it is difficult to represent ternary re-
lations (Grenon, 2006). Therefore often exclusively binary relation symbols are used. The temporal pa-
rameters of time-dependent relations are generally omitted and the symbols referring to time-dependent
relations are assumed to be implicitly time-indexed. This means that at the level of the formal language
time-dependent and permanent relations cannot be distinguished by the presence of a temporal param-
eter or the lack thereof. In formalisms that exclusively work with binary relations it is therefore impor-
tant to make explicit whether a given binary relation symbol is implicitly time-indexed and refers to a
time-dependent (parthood, overlap, etc.) relation, or whether a given binary relation symbol refers to a
permanent (parthood, overlap, etc.) relation which, indeed, is binary.

4. Scale-sensitive mereogeometry of regions

The size of objects, their relative location with respect to one another, as well as connection, adjacency,
and attachment relations – all holding at given times – are characterized in the presented ontology in
terms of relations between the spatial regions at which these objects are located at those times (Casati and
Varzi, 1999). As in the RO, spatial regions are assumed to be the parts of an independent non-changing
background space in which all objects are located. Thus objects may change their location, their size, their
shape by being located at different regions at different times, while the regions themselves do not change.
For this reason the proposed ontology includes an atemporal mereogeometry of regions.

The ontology includes a mereogeometry of regions and not just a mereotopology, since adjacency is
a kind of distance relation which cannot be specified in mere mereotopological terms. Using the mereo-
geometry, scale-dependent notions are introduced which are critical for the definition of adjacency as a
relation implying close distance.

Technically, the mereological basis is a standard extensional mereology (Simons, 1987; Varzi, 1996).
Following Bittner and Donnelly (2006, 2007a) this basis will be extended by a same-volume-size relation
and a sphere primitive and scale will be introduced using the relations roughly-the-same-volume-size and
negligible-in-volume-size. The resulting mereogeometry is similar in spirit to those developed by Tarski
(1956), Bennett et al. (2000), and Schmidtke (2005). It differs from other approaches in the ways in which
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it integrates relations such as roughly-the-same-size and negligible-in-size. An exact formal analysis of
commonalities and differences of mereogeometries is not easy (Borgo and Masolo, 2007) and goes beyond
the scope of this paper. An overview of other mereogeometries can be found in (Borgo and Masolo, 2007).

4.1. Mereology

Letters from the beginning of the alphabet are used as variables for regions and the Sans serif font
for predicates whose parameters range over regions. A binary primitive P is introduced, where P ab is
interpreted as: region a is part of region b. In the standard ways the following definitions can be stated in
terms of P:

Region a is a proper part of region b if and only if a is part of b and b is not part of a (DPP); regions
a and b overlap if and only if they share a common region as a part (DO); region c is the sum of a and
b if and only if for all d, d overlaps c if and only if d overlaps a or d overlaps b (D+); region c is the
difference of b in a if and only if any object d overlaps c if and only if d overlaps some part of a and that
does not overlap b (D−). (If regions are modeled as point sets then ‘+’ is like set-union and ‘−’ is like
set-difference.)

DPP PP ab ≡ P ab ∧ ¬P ba
DO O ab ≡ (∃c)(P ca ∧ P cb)
D+ +abc ≡ (d)(Odc↔ (O da ∨ O db))
D− − abc ≡ (d)(O dc↔ (∃d1)(P d1a ∧ ¬O d1b ∧ O d1d))

The following axioms are included in the theory: P is reflexive (AR1), P antisymmetric (AR2); P is tran-
sitive (AR3); if everything that overlaps u also overlaps v then u is a part of v (AR4); P is reflexive(AR1);
and if a is not a part of b then there is a region c which is the difference of b in a (AR4); for any regions a
and b there is a region c that is the sum of a and b (AR5).

AR1 P aa
AR2 P ab ∧ P ba→ a = b
AR3 P ab ∧ P bc→ P ac

AR4 ¬P ab→ (∃c)(−abc)
AR5 (∃c)(+abc)

The following theorems can be derived: if everything that overlaps a also overlaps b, then a is a part of b
(TR1); a and b are identical if and only every c overlaps a if and only if c overlaps b (TR2). One can also
prove that sums and differences are unique whenever they exist (TR3-TR4). Thus AR5 in conjunction with
TR3 ensure that summation is a functional operator (mapping any pair of regions to their unique sum).

TR1 (c)(O ca→ O cb)→ P ab
TR2 a = b↔ (c)(O ca↔ O cb)

TR3 + abc1 ∧ + abc2 → c1 = c2

TR4 − abc1 ∧ − abc2 → c1 = c2

Notice that the mereology of regions is quite different from the mereology of objects: P is time indepen-
dent, P is antisymmetric and thus two regions are identical if and only if they have the same parts and
overlap the same regions.

4.2. Size ordering

A binary primitive ∼ is included in the theory, where, on the intended interpretation, a ∼ b holds if and
only if regions a and b have the same volume size. In terms of ∼ one can define that the size of a is less
than or equal to the size of b if and only if there is a region c that is a part of b and has the same size as a
(D≤).

D≤ a ≤ b ≡ (∃c)(c ∼ a ∧ P cb)
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On the intended interpretation, a ≤ b holds if and only if the volume size of a is less than or equal to the
volume size of b.

The following axioms are included: ∼ is reflexive (AR6); ∼ is symmetric (AR7); ∼ is transitive (AR8);
if a is part of b and a and b have the same size then b is part of a (AR9); for any a and b, the size of a is
less than or equal to the size of b or the size of b is less than or equal to the size of a (AR10); if the size of
a is less than or equal to the size of b and the size of b is less than or equal to the size of a, then a and b
have the same size (AR11).

AR6 a ∼ a
AR7 a ∼ b→ b ∼ a
AR8 a ∼ b ∧ b ∼ c→ a ∼ c

AR9 P ab ∧ a ∼ b→ P ba
AR10 a ≤ b ∨ b ≤ a
AR11 a ≤ b ∧ b ≤ a→ a ∼ b

In the theory one can prove: if a is identical to b, then a and b are of the same size (TR5); if a is part of
b and b is part of a, then a and b have the same size (TR6); if a is part of b and a and b have the same size
then a and b are identical (TR7); if a is a part of b, then the size of a is less than or equal to the size of b
(TR8); ≤ is reflexive (TR9); ≤ is transitive (TR10); if the size of a is less than or equal to the size of b and
b and c have the same size, then the size of a is less than or equal to the size of c (TR11); if c and a have
the same size and the size of c is less than or equal to the size of b then the size of c is less than or equal
to the size of a (TR12).

TR5 a = b→ a ∼ b
TR6 P ab ∧ P ba→ a ∼ b
TR7 P ab ∧ a ∼ b→ a = b
TR8 P ab→ a ≤ b

TR9 a ≤ a
TR10 a ≤ b ∧ b ≤ c→ a ≤ c
TR11 a ≤ b ∧ b ∼ c→ a ≤ c
TR12 c ∼ a ∧ a ≤ b→ c ≤ b

Thus, ∼ is an equivalence relation, ≤ is reflexive and transitive, and ∼, ≤, P, and = are logically interre-
lated in the expected ways. For more detailed discussions see (Bittner and Donnelly, 2006, 2007a).

4.3. Spheres

The primitive predicate S is included in the theory, where ‘S a’ is interpreted as a is a sphere. In terms
of S one can define: Region a is maximal with respect to b in c if and only if (i) a, b, and c are spheres,
(ii) a and b are non-overlapping parts of c, and (iii) every sphere u that has a as a part either is identical to
a, overlaps b, or is not a part of c (DMx) (Fig. 4(i)). Region a is a concentric proper part of b if and only if
(i) a and b are spheres, (ii) a is a proper part b and (iii) all spheres that are maximal with respect to a in b
have the same size (DCoPP) (Fig. 4(ii)).

DMx Mx abc ≡ S a ∧ S b ∧ S c ∧ P ac ∧ P bc ∧ ¬O ab ∧
(d)(S d ∧ P ad→ (a = d ∨ O db ∨ ¬Pdc))

DCoPP CoPP ab ≡ S a ∧ S b ∧ PP ab ∧ (d)(e)(Mx dab ∧ Mx eab→ d ∼ e)

c

b

a1

a2

a b

(i)

c

b

(ii) (iii)

Fig. 4. Illustrations for (i) DMx: Mx a1bc ∧ Mx a2bc, (ii) DCoPP: CoPP bc, and (iii) DC: C ab.



T. Bittner / Logical properties of mereogeometrical relations 11

The following spheres are required to exist: Every region has a sphere as a part (AR12). Every sphere
has a concentric proper part (AR13). If sphere a is a proper part of sphere b then there is a sphere c that is
maximal with respect to a in b (AR14).

AR12 (∃c)(S c ∧ P ca)
AR13 S a→ (∃b)(S b ∧ CoPP ba)
AR14 S a ∧ S b ∧ PP ab→ (∃c)(Mx cab)

4.4. Connectedness relations between regions

Similar to Bennett et al. (2000) the connectedness relation is defined as follows: two regions a and b are
connected if and only if there is a sphere c that overlap a and b and all spheres that are concentric proper
parts of c also overlap a and b (DC) (Fig. 4(iii)).

DC C ab ≡ (∃c)(S c ∧ O ca ∧ O cb ∧ (d)(CoPP dc→ (O da ∧ O db))

On the intended interpretation, the connection relation C holds between regions a and b if and only if
the distance between them is zero (where the distance between regions is here understood as the greatest
lower bound of the distance between any point of the first region and any point of the second region).

One can prove that C is reflexive (TR13), symmetric (TR14), and that if a is part of b, then everything
connected to a is connected to b (TR15). These are the usual axioms for C in a mereotopological framework
(Varzi, 1996).

TR13 C aa
TR14 C ab→ C ba

TR15 P ab→ (c)(Cca→ Ccb)
TR16 O ab→ C ab
TR17 P ab ∧ C ac→ C bc

In addition, the following theorems can be derived: if a and b overlap, then they are connected (TR16); if
a is part of b and a is connected to c then b is connected to c (TR17).

The following relations among regions are defined using the connection relation: a and b are externally
connected if and only if a and b are connected and a and b do not overlap (DEC); a and b are disconnected
if and only if a and b are not connected (DDC); region c is self-connected if and only if any two regions
that sum up to c are connected (DSC).

DEC EC ab ≡ C ab ∧ ¬O ab
DDC DC ab ≡ ¬C ab DSC SC c ≡ (a)(b)(+abc→ C ab)

For example, the region which is occupied by my feet at this moment of time is not self-connected, whereas
the region which is occupied by just my left foot is self-connected. One can prove that EC and DC are
irreflexive and symmetric.

4.5. Characterizing scale differences

To formalize adjacency relations the capability to formally characterize differences in scale is required.
For this purpose the theory of qualitative size relations of (Bittner and Donnelly, 2006, 2007a) is included
into the ontology.3 This is done by introducing the primitive roughly the same volume-size (≈) and asso-
ciated definitions and axioms.

3Bittner and Donnelly (2006, 2007a) use techniques from Order of Magnitude Reasoning from Artificial Intelligence (Raiman,
1991; Dague, 1993b,a; Mavrovouniotis and Stephanopoulos, 1988). For alternative approaches to introducing qualitative size
relations see also (Gerevini and Renz, 2002) and (Bennett, 2002).
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The informal meaning of r1 ≈ r2 for two specific regions r1 and r2 as, r1 and r2 have roughly the same
volume, is at least intuitively relatively clear. What is meant by a ≈ b in general for arbitrary regions a
and b is context-dependent and to a certain degree vague. That is, despite a given difference in volume size
two large regions (context 1) may be of roughly the same size, while the same difference in volume size
will make two much smaller regions (context 2) be of clearly distinct size. Moreover, in a single context
there will be regions that clearly are of roughly the same size and other regions that are clearly of different
size. In addition there will be boundary cases, i.e., regions that are neither clearly of roughly the same size
nor clearly of different size (Keefe and Smith, 1996). The vagueness and context dependency of roughly
the same volume size (≈) generalizes to all notions defined in terms of ≈.

The focus of the formal ontology is on logical properties of≈ and relations defined in terms of≈. These
properties hold in all contexts and are not affected by the underlying vagueness and thus can be used for
context-independent deductive reasoning. Context dependence and vagueness will be discussed in Section
9.

In terms of ≈ the relations negligible in size (�) and same scale (∼=) between regions can be defined:
Region a is negligible in size with respect to region b if and only if there are regions c1 and c2 such that (i)
a and c1 have the same size, (ii) c1 is a part of b, (iii) c2 is the difference of c1 in b and (iii) c2 has roughly
the same volume-size as b (D�). Regions a and b are of the same scale if and only if neither is negligible
in size with respect to the other (D∼=).

D� a� b ≡ (∃c1)(∃c2)(c1 ∼ a ∧ P c1b ∧ − bc1c2 ∧ c2 ≈ b)
D∼= a ∼= b ≡ ¬(a� b) ∧ ¬(b� a)

The following axioms are included:≈ is reflexive (AR15);≈ is symmetric (AR16); if a and b have roughly
the same size and b and c have the same size, then a and c have roughly the same size (AR17); if a and b
have roughly the same size and the size of a is less than or equal to the size of c and the size of c is less
than or equal to the size of b, then c and a, as well as c and b, have roughly the same size (AR18). If a is
negligible with respect to b and the size of b is less than or equal to the size of c, then a is negligible with
respect to c (AR19).

AR15 a ≈ a
AR16 a ≈ b→ b ≈ a
AR17 a ≈ b ∧ b ∼ c→ a ≈ c
AR18 a ≈ b ∧ a ≤ c ∧ c ≤ b→ (c ≈ a ∧ c ≈ b)
AR19 a� b ∧ b ≤ c→ a� c

Note that no transitivity axiom for ≈ is included in the theory. In many of the intended models of the
theory, it is possible to find regions c1, . . . , cn such that a ≈ c1, c1 ≈ c2, ... and cn ≈ b and but NOT
a ≈ b. Hence, adding a transitivity axiom for ≈ would give rise to a version of the Sorites paradox (Hyde,
1996; van Deemter, 1995).

One can prove: if a and b have the same size and b and c have roughly the same size, then a and c have
roughly the same size (TR18); if a and b have the same size, then a and b have roughly the same size
(TR19); if a is negligible with respect to b, then a is smaller than b (TR20); if the size of a is less than or
equal to the size of b and b is negligible with respect to c, then a is negligible with respect to c (TR21); if
a is a part of b and b is negligible with respect to c, then a is negligible with respect to c (TR22); if a is
negligible with respect to b and b is part of c, then a is negligible with respect to c (TR23);� is transitive
(TR24).

TR18 a ∼ b ∧ b ≈ c→ a ≈ c
TR19 a ∼ b→ a ≈ b
TR20 a� b→ (a ≤ b ∧ a 6∼ b)
TR21 a ≤ b ∧ b� c→ a� c

TR22 P ab ∧ b� c→ a� c
TR23 a� b ∧ P bc→ a� c
TR24 a� b ∧ b� c→ a� c
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The same-scale relation ∼= is reflexive and symmetric.
It follows that the relations ∼, ≈, ≤,�, P, and = are logically interrelated in the expected ways. For a

more detailed discussion see (Bittner and Donnelly, 2006, 2007a).

4.6. Adjacency among regions

Using the mereogeometry with size and scale relations one can now define the adjacency relation be-
tween regions as close but non-zero distance: Region a is adjacent to region b if and only if: a and b are
not connected and there is a region c such that (i) c is a sphere; (ii) c is negligible in size with respect to a
and b, and (iii) and c is connected to both a and b (DAdj).

DAdj Adj xyt ≡ ¬C ab ∧ (∃c)(S c ∧ C ca ∧ C cb ∧ c� a ∧ c� b)
TR25 Adj ab ∧ P aa1 ∧ P bb1 ∧ DC a1a1 → Adj a1b1

It follows that Adj is irreflexive and symmetric. One can also prove that if a is adjacent to b and a is part
of a1 and b is part of b1 and a1 and b1 are disconnected then a1 is adjacent to b1 (TR25).

Note that what exactly counts as ‘close’ distance is context dependent and will in any case depend on
the size of the related regions. This will be discussed in more detail in Section 8.

5. Location

To link the mereogeometry of regions to the sub-theory of objects, the ternary location relation L is
introduced. On the intended interpretation L xat means: object x is exactly located at region a at time
t (Casati and Varzi, 1999). In other words, at time t, x takes up the whole region a but does not extend
beyond a.

The following axioms for L are included in the theory: object x exists at t if and only if x is located at
some region at t (AL1); if x is located at a at t, y is located at b at t, and x is part of y at t then a is part of
b (AL2); it x is part of y at t and both, x and y are located at a at t then y is part of x at t (AL3).

AL1 E xt↔ (∃a)L xat
AL2 L xat ∧ L ybt ∧ P xyt→ P ab

AL3 P xyt ∧ L xat ∧ L yat→ P yxt
TL1 L xat ∧ L xbt→ a = b

One can prove that if x is located at a at t and x is located at b at t then a and b are identical, i.e., at any
time instant an object is located at at most one region (TL1). Note that the converse of AL2 is not a theorem
of this theory, i.e., it is not provable that if x is located at a at t and y is located at b at t and a is a part of b
then x is a part of y at t. To see that this cannot be a theorem consider the following example: The region
at which the synovial fluid of Joe’s PIP is located at t is part of the region at which the synovial cavity
of his PIP is located at t. However the synovial fluid is not part of the synovial cavity, since immaterial
objects such as cavities cannot have material entities such as portions of synovial fluid as parts. Note also
that, since the theory does not include an axiom of antisymmetry for P , the parthood relation between
objects, it does not follow from AL4 that two objects that have the same parts at a time and that occupy
the same region at that time are identical.

The location relations between objects are defined as follows (Donnelly, 2005): object x is located in
object y at t if and only if the spatial region at which x is located at t is a part of the spatial region at which
y is located at t (DLocIn); object x is contained in object y at t if and only if x is located in y at t but x and
y do not overlap at t (DContIn).

DLocIn LocIn xyt ≡ (∃a)(∃b)(L xat ∧ L ybt ∧ P ab)
DContIn ContIn xyt ≡ LocIn xyt ∧ ¬O xyt
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At time t, for example, the synovial fluid of Joe’s PIP is located in the synovial cavity of his PIP. Since the
fluid and the cavity do not overlap, it is also the case that the fluid is contained in the cavity. The proximal
parts of the middle phalanx of Joe’s left index finger (parts of the of the middle phalanx that are close to the
proximal interphalangeal joint) are located in the middle phalanx. Since the proximal parts of the middle
phalanx overlap the middle phalanx, the former is not contained in the latter. From Definition DLocIn it
immediately follows a weaker form of the converse of AL2: if x is located at a at t and x is located at b at
t and a is a part of b then x is located in y at t.

At fixed times LocIn is transitive. One can also prove: x exists at t if and only if x is located in itself at
t (TL2); if x is part of y at t, then x is located in y at t (TL3); if x is located in y at t and y is part of z at
t, then x is located in z at t (TL4); if x is part of y at t and y is located in z at t, then x is located in z at t
(TL5); if x is part of y at t an y is located in x at t then y is part of x at t (TL6).

TL2 E xt↔ LocIn xxt
TL3 P xyt→ LocIn xyt

TL4 LocIn xyt ∧ P yzt→ LocIn xzt
TL5 P xyt ∧ LocIn yzt→ LocIn xzt
TL6 P xyt ∧ LocIn yxt→ P yxt

It does not follow from the axioms that ContIn is asymmetric or transitive. See also (Donnelly et al., 2006;
Schulz and Hahn, 2004) for more extended discussions of location and containment relations.

Object x is permanently located in object y if and only if whenever x or y exist, x is located in y
(DpLocIn). Object x permanently contained in object y if and only if whenever x or y exist, x is permanently
contained in y (DpContIn).

DpLocIn pLocIn xy ≡ (t)((E xt ∨ E yt)→ LocIn xyt)
DpContIn pContIn xy ≡ (t)((E xt ∨ E yt)→ ContIn xyt)

One can prove that pLocIn is reflexive and transitive. In addition, one can prove counterparts of theorems
(TL3 - TL6) for pLocIn. One can also prove that x is permanently contained in y if and only if x is
permanently located in y and x and y do not overlap at any time (TL7).

TL7 pContIn xy ↔ (pLocIn xy ∧ (t)(¬O xyt))

From TL7 it immediately follows that if x is permanently contained in y then x is permanently located in y
and x and y do not overlap permanently. This theorem corresponds to the left-to-right direction of DContIn.
However there is no theorem for permanent relations corresponding to right-to-left direction of DContIn in
this theory. That is, the formula ‘if x is permanently located in y and x and y do not overlap permanently
then x is permanently contained in y’ is not a theorem. Again, this shows that there are subtle differences
between time-dependent and permanent relations.

6. Connection relations between objects

In this section time-dependent and permanent topological relations between objects are defined in terms
of the underlying mereogeometry of regions and the notion of location.

6.1. Time-dependent connection relations between objects.

Object x is connected to object y at time t if and only if x is located at a at t and y is located at b
at t and a and b are connected (DC). That is, object x is connected to object y at t if and only if the
distance between the region at which x is located at t and the region at which y is located at t is zero. The
definitions of external connectedness and disconnectedness between objects is similar to the definition of
connectedness (DEC, DDC). Object x is self-connected at t if and only x is located at a self-connected
region at t (DSC).
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DC C xyt ≡ (∃a)(∃b)(L xat ∧ L ybt ∧ C ab)
DEC EC xyt ≡ (∃a)(∃b)(L xat ∧ L ybt ∧ EC ab)
DDC DC xyt ≡ (∃a)(∃b)(L xat ∧ L ybt ∧ DC ab)

DSC SC xt ≡ (∃a)(L xat ∧ SC a)

At time t1 the following connectedness relations hold among the anatomical parts of the finger depicted
in Fig. 3(a): The proximal half of the middle phalanx of Joe’s left index finger is connected to the middle
phalanx and externally connected to the middle phalanx minus the proximal half 4; The articular cartilage
of the proximal phalanx is externally connected to the proximal phalanx; The articular cartilage of the
proximal phalanx is externally connected to the synovial cavity; The synovial fluid and the synovial cavity
are connected but not externally connected (see below). At time t the middle phalanx of Joe’s left index
finger is also self-connected.

C is symmetric at a time and EC and DC are irreflexive and symmetric at a time. One can prove
counterparts of theorems (TR14-TR17) for parthood, overlap, and connection relations between objects.
As an example, theorem (TC3), the counterpart of (TR15), is stated explicitly. In addition, the following
theorems can be derived: x exists at t if and only if x is connected to itself at t (TC1); if x is connected to
y at t and y is located in z at t then x is connected to z at t (TC2); if x is externally connected to y at t
then x is connected to y at t and x and y do not overlap at t (TC4); at all times disconnected objects are
not connected (TC5).

TC1 E xt↔ C xxt
TC2 C xyt ∧ LocIn yzt→ C xzt

TC3 P xyt→ (z)(C zxt→ C zyt)
TC4 EC xyt→ (C xyt ∧ ¬O xyt)
TC5 DC xyt→ ¬C xyt

Notice that the logical relations between overlap and connection between objects are not exactly analo-
gous to those between regions. In the sub-domain of regions it holds that a and b are externally connected
if and only if a and b are connected but do not overlap. In the sub-domain of objects one can prove that if x
is externally connected to y at t then x is connected to y at t and x and y do not overlap at t (TC4). But one
cannot prove the converse direction, i.e., it is possible that two objects are connected and do not overlap
at t but fail to be externally connected. Consider the synovial fluid (SF) and the synovial cavity (SC) of
Joe’s PIP at some fixed time t at which SF is contained in SC. Then SF is located in SC and SF and SC
do not overlap (DContIn). Thus SF’s region (the unique region at which SF is located at t) is a part of SC’s
region (the unique region at which SC is located at t) (DLocIn). Hence SF’s region overlaps SC’s region.
Consequently, SF’s region is connected to SC’s region (TR16). Form DC it follows that SF is connected
to SC at t. Thus SF and SC are an example of two objects that are connected and do not overlap. Assume
that SF and SC are externally connected at t. It follows that SF’s region and SC’s region are externally
connected (DEC). Thus SF’s region and SC’s region are connected and do not overlap (DEC). The latter
contradicts the fact that SF’s region and SC’s region do overlap since SF is contained in SC. Hence SF and
SC are not externally connected at t. This shows that it is possible that two objects are connected and do
not overlap at t but fail to be externally connected at t and the converse of (TC4) cannot be a theorem of
the presented axiomatic theory. For more theoretical background on the logical relations between overlap,
connectedness, and location see (Donnelly, 2004a). For more bio-medical examples see (Donnelly, 2004b,
2005).

Finally note that the converse of (TC5) cannot be a theorem of the presented theory since from ¬C xyt
it does not follow that x or y are located at some region at t.

6.2. Permanent connection relations between objects

Permanent connection relation between objects can be defined as follows: x is permanently connected
to y if and only if whenever x or y exist, x is connected to y (DpC); x is permanently externally connected

4To keep the example simple it is assumed that there is a unique crisp fiat boundary separating the left half and the right half
of the middle phalanx.
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to y if and only if whenever x or y exist, x is externally connected to y (DpEC); x and y are permanently
disconnected if and only if whenever x or y exist, x and y are disconnected (DpDC); x is permanently
self-connected if and only if whenever x exists, x is self-connected DpSC.

DpC pC xy ≡ (t)((E xt ∨ E yt)→ C xyt)
DpEC pEC xy ≡ (t)((E xt ∨ E yt)→ EC xyt)
DpDC pDC xy ≡ (t)((E xt ∨ E yt)→ DC xyt)

DpSC pSC x ≡ (t)(E xt→ SC xt)
TC6 pDC xy → (t)(¬C xyt)

One can prove that pC is reflexive and symmetric and that pEC is irreflexive and symmetric. One can also
prove theorems corresponding to (TR14–TR17) as well as theorems corresponding to (TC2–TC5). One
can also prove that if x and y permanently disconnected then they are not connected at all times (TC6).

As pointed out above, connection and external connectedness between anatomical entities in canonical
anatomy are of permanent nature. In Figure 2(b) permanent external connectedness relations among parts
of Joe’s PIP are represented as solid edges. In canonical anatomy most organs are permanently self-
connected.

7. Qualitative size relations between objects

Qualitative size relations are important for comparing anatomical entities and for distinguishing entities
at different scales. One can use the qualitative size and scale relations between regions to define qualitative
size and scale relations between objects. Qualitative size and scale relations between objects share many
properties with their counterparts in the realm of regions. But there are also differences between the
different kinds of relations.

7.1. Crisp qualitative size relations

Objects x and y have the same size at time t, x ∼t y, if and only if x is located at a at t and y is located
at b at t and a and b have the same size (D∼t). Similarly for less than or equal in size to (D≤t).

D∼t x ∼t y ≡ (∃a)(∃b)(L xat ∧ L ybt ∧ a ∼ b)
D≤t x ≤t y ≡ (∃a)(∃b)(L xat ∧ L ybt ∧ a ≤ b)

To distinguish the binary relation symbols that refer to relations between regions from the corresponding
ternary relation symbols that refer to time-dependent relations between objects, the latter are written as
time-indexed relation symbols.

Corresponding to axioms (AR6-AR11) and theorems (TR9 - TR12) one can prove that at a given time
t the following holds: the same-size relation between objects, ∼t, is reflexive (when restricted to objects
that exist at time t), symmetric and transitive; the size ordering between objects, ≤t, is reflexive (when
restricted to objects that exist at time t) and transitive; the relations ∼t and ≤t can be composed in the
expected ways.

One can also prove: if x is a part of y at t and x and y are of the same size at t then y is a part of x at t
(TO1); if x is a part of y at t and y is a part of x at t then x and y are of the same size at t (TO2). Moreover,
if x exists at t and y exists at t then either x is less than or equal in size to y or y is less than or equal in
size to x, i.e., at a given time t, ≤t is a total ordering on objects existing at t (TO3).

TO1 P xyt ∧ x ∼t y → P yxt
TO2 P xyt ∧ P yxt→ x ∼t y TO3 E xt ∧ E yt→ x ≤t y ∨ y ≤t x
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Note that there is no counterpart to theorem (TR7) in the realm of objects. That is, a formula stating that
‘if x is part of y at t and x and y have the same size at t then x and y are identical’ is not a theorem of this
theory. To see this consider, again, the synovial membrane of Joe’s PIP and the tissue that constitutes this
membrane at time t. As pointed out above, the membrane and the tissue are two distinct objects which, at
time t, have exactly the same parts. Therefore one is a part of the other at t and, by theorem (TO2), both
are of exactly the same size at t. Hence a counterpart to theorem (TR7) in the realm of objects cannot be
a theorem of the theory, since this would force the membrane and the tissue to be identical.

Permanent size relations between objects can be defined as follows:

D∼ x∼y ≡ (t)((E xt ∨ E yt)→ x ∼t y) D≤ x≤y ≡ (t)((E xt ∨ E yt)→ x ≤t y)

Corresponding to axioms (AR6-AR9), axiom (AR11), and theorems (TR9 - TR12) one can prove: the per-
manent same-size relation between objects, ∼, is reflexive, symmetric and transitive; the permanent size
ordering between objects, ≤, is reflexive and transitive; the relations ∼ and ≤ can be composed in the
expected ways.

One can also prove that if x is a permanent part of y and x and y are permanently of the same size then
y is a permanent part of x (TO4) and that if x is a permanent part of y and y is a permanent part of x then
x and y are permanently of the same size (TO5).

TO4 pP xy ∧ x∼y → pP yx TO5 pP xy ∧ pP yx→ x∼y

Note, again, there is no counterpart to theorem (TR7) in the realm of permanent relations between objects.
In addition it is not the case that for all x and y, either x is permanently less than or equal in size to y or y
is permanent less than or equal in size to x. That is,� is not a total ordering on the sub-domain of objects.

7.2. Vague qualitative size relations

Objects x and y have roughly the same size at time t, x ≈t y, if and only if x is located at a at t and y
is located at b at t and a and b have roughly the same size (D∼). The definitions for negligible in size and
same scale are similar.

D≈ x ≈t y ≡ (∃a)(∃b)(L xat ∧ L ybt ∧ a ≈ b)
D� x�t y ≡ (∃a)(∃b)(L xat ∧ L ybt ∧ a� b)
D∼= x ∼=t y ≡ (∃a)(∃b)(L xat ∧ L ybt ∧ a ∼= b)

As above, relations between objects are written as time-indexed relations.
Corresponding to axioms (AR15-AR17, AR19) and theorems (TR18 and TR21-TR24) one can prove that

at a given time t: the roughly-the-same-size relation ≈t is reflexive – for objects that exist at time t –
and symmetric; the negligible-in-size relation �t is irreflexive, asymmetric, and transitive; the relations
∼t and ≈t can be composed in the expected ways; the relations ≤t and �t can be composed in the
expected ways; the relations P and�t can be composed in the expected ways. One can also prove that
the same-scale relation ∼=t is reflexive and symmetric.

Permanent size relations between objects can be defined as follows:

D≈ x≈y ≡ (t)((E xt ∨ E yt)→ x ≈t y)
D� x�y ≡ (t)((E xt ∨ E yt)→ x�t y)
D∼= x∼=y ≡ (t)((E xt ∨ E yt)→ x ∼=t y)

Corresponding to axioms (AR15-AR17, AR19) and theorems (TR18 and TR21-TR24) one can prove that:
the permanent roughly-the-same-size relation ≈ is reflexive and symmetric; the permanent negligible-in-
size relation � is irreflexive, asymmetric, and transitive; the relations ∼ and ≈ can be composed in the
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expected ways; the relations ≤ and � can be composed in the expected ways; the relations pP and �
can be composed in the expected ways. One can also prove that the permanent same-scale relation ∼= is
reflexive and symmetric.

8. Adjacency and attachment

Objects x and y are adjacent_to one another when x and y are a negligible but non-zero distance
apart. Here, what exactly counts as negligible distance may vary from context to context and will in any
case depend on the size of x and y. For example, the articular cartilages of the proximal and the medial
phalanges of Joe’s PIP are adjacent and thus have some minimal positive distance that is negligible with
respect to their size. However two Hydrogen molecules that are the same distance apart would not count as
adjacent because this distance is not negligible with respect to the size of a Hydrogen molecule. Thus, the
adjacency relation can be characterized meaningfully only meaningful if one takes the size of the related
entities into account. To formally characterize the adjacency relation, the mereogeometry of regions and
its capability to take into account qualitative size and scale relations is utilized.

8.1. Adjacency

Consider the proximal interphalangeal joint (PIP) of Joe Doe’s left index finger as depicted in Figure 2.
The articular cartilage of the middle phalanx (AC-MP) is adjacent to the articular cartilage of the proximal
phalanx (AC-PP) in the sense that although the two objects are separated (not connected), the distance
between them is negligible. Formally, one can define adjacency between objects in terms of adjacency of
the regions at which they are located: object x is adjacent_to object y at time t if and only if there are
regions a and b such that x is located at a at t and y is located at b at t and a and b are adjacent (DAdj).
Object x is permanently adjacent to object y if and only if at all times at which x or y exist, x is adjacent
to y (DpAdj).

DAdj Adj xyt ≡ (∃a)(∃b)(L xat ∧ L ybt ∧ Adj ab)
DpAdj pAdj xy ≡ (t)((E xt ∨ E yt)→ Adj xyt)

It immediately follows that Adj and pAdj are irreflexive and symmetric. Clearly, the middle phalanx of
Joe’s PIP is not adjacent to itself, but from the fact that the articular cartilage of the middle phalanx (AC-
MP) is (permanently) adjacent to the articular cartilage of the proximal phalanx (AC-PP) it does follow that
AC-PP is also (permanently) adjacent to AC-MP. Permanent adjacency relations are depicted as dashed
and dotted edges in the graph of Figure 2(b).

One can prove that if at a given time two disconnected objects have adjacent parts then the objects
themselves are adjacent at that time. That is, if x is adjacent to y at t and x is part of x1 at t and y is part
of y1 at t and x1 and y1 are disconnected at t then x1 is adjacent to y1 at t (TA1). One can also prove
that if two objects that are permanently disconnected have permanently adjacent parts then the objects
themselves are permanently adjacent. That is, if x is permanently adjacent to y and x is a permanent part
of x1 and y is a permanent part of y1 and x1 and y1 are permanently disconnected then x1 is permanently
adjacent to y1 (TA2).

TA1 Adj xyt ∧ P xx1t ∧ P yy1t ∧ DC x1y1t→ Adj x1y1t
TA2 pAdj xy ∧ pP xx1 ∧ pP yy1 ∧ pDC x1y1 → pAdj x1y1
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8.2. Attachment

Consider, again, the proximal interphalangeal joint (PIP) of Joe Doe’s left index finger as depicted in
Figure 2. One can distinguish the mere permanent adjacency relation between the articular cartilage of the
middle phalanx (AC-MP) and the articular cartilage of the proximal phalanx (AC-PP) from the stronger
fixed permanent adjacency (or attachment) relation between the middle phalanx (MPB) and the synovial
membrane of the PIP. AC-MP and AC-PP are permanently adjacent but they can slide along one another,
i.e, AC-MP is adjacent to different permanent parts of AC-PP at different times and vice versa (Figures
1(a) and 1(b)).

The relation between the middle phalanx (MPB) and the synovial membrane of the PIP is different from
the mere permanent adjacency relation: they are fixed adjacent (or attached) in the sense that the middle
phalanx (MPB) and the synovial membrane cannot slide with respect to each other. This means that at all
times at which the joint as a whole exists, the same permanent parts of the middle phalanx and the synovial
membrane are in the permanent adjacency relation. The permanent adjacency is due to the fact that the
loose connective tissue fibers of the synovial membrane attach to the periphery of the articular cartilage
(Mejino, 2007). Similarly, the middle phalanx (MBP) and the ligament of the PIP are in the attachment
relation because some of the connective tissue fibers of the ligament intermingle with (or are embedded
in) the outer layer of the bone (Mejino, 2007).

These examples show that the fixed nature of attachment relations is often due to what Galton (2000)
calls interlocking, i.e., "their shapes and relative position are such that under a wide range of conditions
they cannot become separated" (Galton, 2000, p. 150). However, attachment is strictly different from the
relation of external connectedness in the sense of DEC, since both objects have distinct non-overlapping
boundaries, i.e., they have a very small but non-zero distance.

Formally one can define: x is attached (or fixed permanently adjacent) to y if and only if x and y are
permanently disconnected and there exist permanent proper parts x1 and y1 of x and y that are permanently
negligible in size with respect to x and y and x1 and y1 are permanently adjacent to one another (DAtt).5

DAtt Att xy ≡ pDC xy ∧ (∃x1)(∃y1)(pPP x1x ∧ pPP y1y ∧ x1�x ∧ y1�y ∧ pAdj x1y1)

It follows that Att is irreflexive and symmetric. One can also prove that attachment implies permanent
adjacency (TA3).

TA3 Att xy → pAdj xy

Attachment relations are depicted as dashed edges in the graph of Figure 2(b). The permanent adjacency
relations are depicted as dotted edges in the graph of Figure 2(b).

9. Context- and precification- dependent interpretation of vague relations

The discussions in Sections 4.5, 7 and 8 have focused on the logical properties of the roughly-the-same-
volume-size relation,≈, and the relations that were defined in terms of≈ such as�,∼=, Adj, Att, etc. These
logical properties, captured in the axioms, definitions, and theorems of the presented axiomatic theory, are
context-independent. That is, they hold in all models of the theory. Moreover the logical properties are not
affected by the underlying vagueness that characterizes the relations denoted by ≈,�, ∼=, Adj, Att, etc.6

Thus the logical properties of the relations can be used for context- and vagueness-independent deductive
reasoning.

For practical purposes, on the other hand, it is often important to take the context into account and
to specify the intended interpretations of formal relations in terms of numerical constraints. These con-

5Revised from its original version based on (Donnelly, 2007).
6Vagueness is understood as a semantic phenomenon in the sense of (?).
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straints, however, may be subject to vagueness and will be specific to certain classes of application do-
mains and certain contexts within those domains. Based on (Bittner and Donnelly, 2006), one specific class
of interpretations, which seems to be relevant in many practical application domains, will be discussed in
the remainder of this section.

9.1. A class of interpretations

In the considered class of interpretations the relations between the intended meaning of the relations ≈,
�, ∼=, Adj, Att can be specified by means of a class of simple constraints. Let ‖a‖ and ‖b‖ be functions in
the meta-language of the presented axiomatic theory that yield the exact volume-size of the regions a and b
and let ω be a parameter which determines the canonical interpretations of the primitives≈ and the defined
relations�, ∼=, Adj, Att, etc. The constraints that characterize the considered class of interpretations are
specified as follows:

– The context parameter ω ranges between 0 and 0.5, i.e., 0 < ω < 0.5;
– Regions a and b have roughly the same size if and only if 1/(1 + ω) ≤ ‖a‖/‖b‖ ≤ 1 + ω;
– Region a is negligible in size with respect to b if and only if ‖a‖/‖b‖ is smaller than ω/(1 + ω);
– Regions a and b are of the same scale if and only if ‖a‖/‖b‖ ≥ ω/(1+ω), and ‖b‖/‖a‖ ≥ ω/(1+ω).

Since all constraints contain the parameter ω, it follows that what counts as ‘roughly the same size’,
‘negligible’, ‘adjacent’, etc. depends on the context- and precification- dependence of ≈ represented by
different possible choices for ω. As an example consider Table 2. Let JB be the region at which Joe’s body
is located at time t and let JB have a volume of 70 liter. Similarly, let JH be the region at which Joe’s heart
is located at time t and let JH have a volume of 0.3 liter. JH is negligible in size with respect to JB for
choices of ω larger than 0.0042 and non-negligible otherwise. Regions at which cells are located (average
size 400 ∗ 10−15) are negligible in size with respect to JB for all choices of ω listed in the table.

ω JB ≈ b b ≤ JB ∧ b ∼= JB b� JB

0.2 58.333 ≤ ‖b‖ ≤ 84 11.666 ≤ ‖b‖ ≤ 70 ‖b‖ < 11.666

0.1 63.636 ≤ ‖b‖ ≤ 77 6.363 ≤ ‖b‖ ≤ 70 ‖b‖ < 6.363

0.01 69.307 ≤ ‖b‖ ≤ 70.7 0.693 ≤ ‖b‖ ≤ 70 ‖b‖ < 0.693

0.001 69.93 ≤ ‖b‖ ≤ 70.07 0.0699 ≤ ‖b‖ ≤ 70 ‖b‖ < 0.0699

Table 2
The parameter ω determines which regions are roughly the same size and which sizes of regions are negligible with respect to
others. Volume in liter: region of Joe’s body at t (JB) = 70 liter, region of Joe’s heart at t (JH) = 0.3 liter, region of an average
cell at t (JC) = 400 ∗ 10−15 liter. (Bittner and Donnelly, 2006)

More generally, consider Figure 5. If a and b have roughly the same size, then (‖a‖, ‖b‖) represents a
point lying within the area delimited by the dashed lines. If a is negligible with respect to b, then (‖a‖, ‖b‖)
represents a point lying between the positive vertical axis and the solid diagonal line near the vertical axis.
If a and b are of the same scale, then (‖a‖, ‖b‖) represents a point lying within the area delimited by the
solid lines.

Now consider a fixed entity a and imagine that different values of ω are appropriate for different con-
texts. The smaller the value of ω, the smaller the value of |‖a‖−‖b‖|must be for a to count as close in size
to b and the larger ‖b‖must be for a to count as negligible in size with respect to b. To picture this situation
graphically: the smaller the value of ω, the narrower the corridor between the dashed diagonal lines in
Figure 5 and also the narrower the corridor between the solid diagonal lines and the positive vertical and
horizontal axes.

Note that the constraints in the discussed class of interpretations are quite simple. In some application
domains the relationships between ‖a‖, ‖b‖ and ω may be more complex than considered here.
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Fig. 5. Graph for ω = 0.2.

9.2. At the boundary between ontology and science

To determine context parameters and numerical constraints that capture the intended interpretations of
relations such as≈,�,∼=, Adj, Att, etc. for a given domain (such as gross-level anatomy) is NOT a matter
of ontology or logic. To determine admissible ranges of precification parameters and numerical constraints
is a scientific and empirical question. This may be a difficult task for at least two reasons:

1. Due to the qualitative character of canonical anatomy (Neal et al., 1998; Bittner and Goldberg, 2007)
and normal variations between individual instantiations of canonical anatomy it may be difficult to
determine numerical admissible ranges parameters and constraints in biological/anatomical domains.

2. Relations relations such as ≈, �, ∼=, Adj, Att, etc. are vague, thus assigning precise ranges of ad-
missible parameters for fixing the interpretations may be impossible due to higher-order vagueness
(Keefe and Smith, 1996).

For those reasons in many actual practical contexts there may not exist precise ranges numerical param-
eters that can be discovered. In such cases it may be necessary to fix the admissible ranges of numerical
parameters by fiat.

In fact, fixing the admissible ranges of numerical parameters by fiat is a quite common practice in
biology and in the medical sciences. For example the exact normal blood pressure slightly varies from
individual to individual. Moreover ‘high blood pressure’ is a vague notion and thus no crisp boundary
between normal and high exists. For practical reasons, however, crisp parameters have been introduced by
fiat such that a blood pressure of 120/80 is normal and 140/90 or higher counts as high blood pressure.
Similar fiat conventions need to be introduced to fix parameters and numerical constraints that capture the
admissible interpretations of the relations ≈,�, ∼=, Adj, Att, etc. As pointed out above this is not a matter
of ontology or logic but a matter of science and of practicing medicine.

10. Computational representation

Current bio-medical ontologies are usually computationally represented in description logic (Baader
et al., 2002) languages such as OWL (Horrocks et al., 2003) or the language of the OBO foundry (Smith
et al., 2007). Unfortunately, current description logic based languages lack the expressive power that is
required to represent complex relationships between relations of the sort discussed in this paper (Bittner
and Donnelly, 2005, 2007b). For this reason it is important to understand computational representations
of the OBO ontologies as consisting of two complementary components:
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1. A description logic (e.g. OWL, OBO format, etc.) based component that enables automatic reasoning
and constrains meaning as much as possible;

2. A first- (or higher-) order logic based component that serves as meta-data and makes explicit logical
properties of top-level categories and relations. (In particular the logical properties of relations that
cannot be expressed in computationally efficient description logics.)

Existing publications on bio-medical ontologies mostly focus on the first component. For this reason
the computational representation of the axiomatic theory presented above is used as an example of an
‘implementation’ of the second component.

10.1. Development and representation of the theory

The presented theory is part of the top-level ontology ‘Basic Formal Ontology’ (BFO). BFO is being
developed using Isabelle, a computational system for implementing logical formalisms (Nipkow et al.,
2002). Isabelle is public domain software and can be downloaded for a wide range of operation systems
from the Isabelle website http://isabelle.in.tum.de/. The computational representation of BFO con-
sists of several hierarchically organized sub-theories. The sub-theories that were discussed in this paper
are listed in Table 3.

sub-theory discussed in content OBO-relations
TNEMO Section 3 non-extensional temporal mereology of objects: tempo-

rary and permanent parthood and overlap
part_of, overlap

EMR Section 4.1 extensional atemporal mereology of regions: parthood
and overlap

part_of, overlap

QSizeR, RGB Section 4.2– 4.5 scale-sensitive mereo-geometry of regions –
TORL Section 5 temporary and permanent location and containment located_in, contained_in
TMTL Section 6 temporary and permanent connection –
QSizeO Section 7 temporary and permanent size relations –
Adjacency Section 8 temporary and permanent adjacency; attachment adjacent_to

Table 3
Sub-theories of the computational representation of BFO and where they are discussion in this paper.

For example, Figure 6 depicts a portion of the computational representation of the sub-theory TORL
– the sub-theory which characterizes the location relations as presented in Section 5. The first line states
that TORL extends the theory TNEMO – the non-extensional temporal mereology of objects as presented
in Section 3, and the theory EMR – the extensional mereology of regions as presented in Section 4. Both
sub-theories in turn extend the Isabelle theory FOL (an Isabelle–implementation of a sorted first order
predicate logic with identity).

In the section consts the predicate symbols and their signatures are introduced. L :: "Ob =>
Rg => Ti => o" specifies that L (for location) is a ternary (three-place) predicate symbol whose first
parameter is of type Ob (objects), the second parameter is of type Rg (regions), and the third parameter
is of type Ti (time-instants). (The fourth parameter o is the computational representation of the fact that
L(x, a, t) is a predicate that is either true or false.) In the section axioms the axioms of the sub-theory
are given. The axioms L_exists and L_P_PR are the axioms AL1 and AL2 of TORL as discussed in
Section 4. In the section defs the definitions of the sub-theory are given. The definition LocIn_def is
the definition for the LocIn predicate and corresponds to definition DLocIn of TORL. (For details of the
syntax see (Nipkow et al., 2002).)

Isabelle, as a computational system for implementing logical formalisms, provides a range of tools that
are useful for the development of formal ontologies. Firstly, it includes a number of ‘object logics’ that
can be used as foundations for the development of a formal ontology. In the theory presented here the
object logic FOL was used. Other object logics include first order and higher order versions of set theory,
theories of lists, natural numbers, and others (Nipkow et al., 2002).
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theory TORL imports TNEMO EMR
begin
consts
L :: "Ob => Rg => Ti => o"
LocIn :: "Ob => Ob => Ti => o"
...
axioms
L_exists: "(ALL x t. (E(x,t) <-> (EX a. L(x,a,t))))"
L_P_PR: "(ALL x y a b t. (L(x,a,t) & L(y,b,t) & P(x,y,t) --> PR(a,b)))"
...
defs
LocIn_def: "LocIn(x,y,t)==(EX a b. (L(x,a,t) & L(y,b,t) & PR(a,b)))"
...
theorem LocIn_and_P_imp_LocIn: "[|LocIn(x,y,t);P(y,z,t)|] ==> LocIn(x,z,t)"
apply(insert P_imp_LocIn)
apply(insert LocIn_trans)
apply(auto)
done
...
end

Fig. 6. Computational representation of a portion of the sub-theory TORL.

Secondly, Isabelle is also an environment for automatic and interactive theorem proving. All theorems
of BFO discussed above were proved in Isabelle and their proofs can be found in the respective theory
files. In fact many theorems can be proved in Isabelle with little human assistance. Consider the theorem
labeled LocIn_and_P_imp_LocIn in Figure 6 which corresponds to Theorem (TL4) in Section 5. A
proof in Isabelle is a sequence of application of logical rules using the apply command. (For details see
(Nipkow et al., 2002).) The proof of theorem LocIn_and_P_imp_LocIn (Theorem TL4), for example,
is read as follows: (1) use theorem P_imp_LocIn (Theorem TL3); (2) use theorem LocIn_trans
(transitivity of LocIn); and (3) search for a proof automatically. Every successful proof ends with the
keyword done. Theorems can also be proved more or less step by step as demonstrated in the proof of
theorem LocIn_trans in module TORL. The important point is that if Isabelle ‘compiles’ a theory
module then all the proofs are machine-verified, i.e., correct.

Thirdly, Isabelle also provides support for the documentation of axiomatic theories and for publishing
theories on the internet. The Isabelle-generated HTML documentation of BFO can be accessed at http:
//www.ifomis.org/bfo/fol.

10.2. Automated reasoning

Isabelle is a system to design axiomatic theories and as such has an expressive power that goes well be-
yond the expressive power of First Order Logic. Once one has designed a theory and verified all theorems,
less expressive logics can be used to implement certain portions of the full theory to facilitate automatic
reasoning. Less expressive logics like description logics (Baader et al., 2002), for example, have better
computational properties and can be used for reasoning about large data sets. For example, all axioms and
theorems of BFO that have the form7

(a) R(x, y) ∧ R(y, z)→ R(x, z) (all transitive relations)
(b) R(x, y) ∧ S(y, z)→ R(x, z) (TL4, TC2, TR11, AR19, TR20, . . . )
(c) R(x, y) ∧ S(y, z)→ S(x, z) (TL5, TC3, TR12, TR18, TR19, . . . )

(1)

can be used as axioms in description logics that include a rule composition operator (Baader et al., 2006).
Axioms and theorems of the form (1a) facilitate transitivity reasoning. Axioms and theorems of the forms

7R and S in (1) are meta-variables for relations. Possible temporal parameters are omitted.
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(1b) and (1c) facilitate reasoning by relation composition. These kinds of reasoning have been identified
as being particularly important for bio-ontologies (Spackman, 2000).

Notice, however, that in those less-expressive logics one ‘only’ use these axioms and theorems to sup-
port certain forms of automated reasoning. They do not verify the validity of those inferences nor do they
specify the semantics of the terms used. Computationally efficient logics often lack the expressive power
that is required for those tasks. Thus, as pointed out above, one needs both: (i) computationally efficient
logics of restricted expressive power for certain forms of automated reasoning (Levesque and Brachman,
1985; Bittner and Donnelly, 2007b), and (ii) highly expressive logical tools like Isabelle to design formal
ontologies as axiomatic theories expressed in first order logic.

Isabelle is not the only computational system that can be used for the development of formal ontolo-
gies. Other computational frameworks exist or are being developed. In the future a system such as HETS
(Mossakowski et al., 2007), that integrates formal systems of different expressive powers, may be needed.
This is because such a system may not only facilitate the development of formal ontologies in languages
with high expressive power but may also provide automatic means to integrate those ontologies with on-
tologies represented in computationally efficient languages.

11. Conclusions

To improve the logical and ontological expressiveness and rigor of the OBO relation ontology, a formal
specification of the logical properties of the foundational relations listed in Table 1 was provided as an
axiomatic theory within the framework of First Order Logic. In addition a computational representation
of this theory was created which enabled the verification of the theory and its publication on the internet.
This in turn enables others to refine and to extend this theory, or to extract useful axioms and theorems for
automatic reasoning in less expressive but computationally tractable logics.

This paper also demonstrated how to expand the relation ontology (a) by incorporating qualitative size
and distance relations and (b) by incorporating the distinctions between time-dependent and permanent
versions of foundational relations. The importance of both expansions for representing and reasoning
about biological structures was demonstrated using the running example of the proximal interphalangeal
joint (PIP).

In the formal theory three classes of relations can be distinguished: relations among regions, time-
dependent relations among objects, and permanent relations among objects. There are corresponding re-
lations in the different classes. For example, there is a part_of relation among regions and there are time-
dependent as well as permanent part_of relations among objects. Similarly for many other mereogeomet-
rical relations. It was shown that corresponding relations share many properties but that there are also
important differences in the sense that the logical relationships between some of the relations among re-
gions are not exactly analogous to those between their counterparts among objects. Moreover, in the realm
of objects the logical relationships between some of the permanent relations are not exactly analogous
to those between their time-dependent counterparts. A summary of some important differences is given
in Table 4. It is important to be aware of those differences, since many bio-medical ontologies that are
expressed in less expressive but computationally tractable logics fail to explicitly distinguish between the
different kinds of relations.

The attachment relation discussed in Section 8 is different from the other relations in the following
senses: (i) Attachment is the only permanent relation and does not have a corresponding time-dependent
relation; (ii) Similarly to containment (ContIn) and unlike all other permanent relations discussed above,
attachment does not have a corresponding relation in the realm of regions; (iii) Attachment (and adjacency)
relations are qualitative distance relations and require a mereogeometrical framework.

There are a number of open questions that need to be addressed in future work. One of the most impor-
tant is the integration of context- and precification- dependent scientific variables (such as the parameter
ω in Section 9) into formal ontologies. The presented approach of separating context- and precification-
dependent scientific questions from context- and precification- independent ontological questions is ap-
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relations between regions relations between objects
time-dependent relations permanent relations

PP ab↔ P ab ∧ ¬P ba PP xyt↔ P xyt ∧ ¬Pyxt pPP xy → pP xy ∧ ¬pPyx

O ab↔ (∃c)(P ca ∧ P cb) O xyt↔ (∃z)(P zxt ∧ P zyt) (∃z)(pP zx ∧ pP zy)→ pO xy

– ContIn xyt↔ LocIn xyt ∧ ¬O xyt pContIn xy → pLocIn xy ∧ ¬pO xy

EC ab↔ (C ab ∧ ¬O ab) EC xyt→ (C xyt ∧ ¬O xyt) pEC xy → (pC xy ∧ ¬pO xy)

DC ab↔ ¬C ab DC xyt→ ¬C xyt pDC xy → ¬pC xy

a ≤ b ∨ b ≤ a E xt ∧ E yt→ (x ≤t y ∨ y ≤t x) –
P ab ∧ P ba→ a = b – –
P ab ∧ a ∼ b→ a = b – –

Table 4

Comparing logical relationships among different kinds of relations: relations among regions, time-dependent relations among
objects, and permanent relations among objects. Only the logically strongest theorem of a given form for a particular kind of
relation is displayed. (If there is one.)

propriate for the development and verification of formal ontologies. However for the use of those ontolo-
gies, methods need to be found to integrate context- and precification- dependent scientific variables into
formal ontologies.
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