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Abstract

Parthood, componenthood, and containment rela-
tions are commonly assumed in biomedical ontolo-
gies and terminology systems, but are not usually
clearly distinguished from another. This paper con-
tributes towards a unified theory of parthood, com-
ponenthood, and containment relations. Our goalin
this is to clarify distinctions between these relations
as well as principles governing their interrelations.
We first develop a theory of these relations in first
order predicate logic and then discuss how descrip-
tion logics can be used to capture some important
aspects of the first order theory.

ilarities these relations are not always clearly distisged in
ontologies such as, e.g., GALEN [6] or SNOMED [12].
However, there are important differences between these re-
lations. There can be a container with a single containgeg (e.
the screw-driver is the only tool in my tool box) but no object
can have single proper part. Also the components of complex
artifacts form tree-structures. Thus, two componentseshar
a component only when one is a sub-component of the other.
(Itis because components form tree structures that trgdhgra
of component structures can be given in assembly manuals.)
The parthood relation does not have this property: The left
half of my car and the bottom half of my car share the bottom
left part of my car but they are not proper parts of each other.
Ontologies are tools for making explicit the semantics of

terminology systems [2]. In this paper we develop ontolo-
gies which explicate the distinct properties of proper part
hood, componenthood and containment relations. These on-

My car has components, for example, its engine, its oil pump'EOk’gieS can be used to specify the meaning of terms such

its wheels, etc. (See Figure 1.) Roughlc@mponenbfan 25 ‘Proper-part-of’, ‘component-of’, and ‘contained-iwe
object is a proper part of that object which has a completétart by characterising important properties of binargtiehs

bona fide boundary (i.e., boundary that correspond discontPnd then study how these properties can be expressed both in
nuities in reality) and a distinct function. Thus all compo- ontological theories formulated in first order logic and m o

nents of my car are parts of my car, but my car has also parf9!0gies formulated in a description logic.

that are not components. For example, the left side my car has

neither a complete bona fide boundary nor a distinct function

My car is also acontainer It contains the driver in the seat

area and a tool box and a spare-tire in its trunk. Containment

is here understood as a relation which holds between disjoin

material objects when one object (the containee) is located

within a space partly or wholly enclosed by the container. engine Heater

In this paper, we study formal properties of proper parthood

componenthood, and containment relations and demonstrate

how they can be represented and distinguished from one other

in formal ontologies expressed in languages of different ex

pressive power. . .
At first sight, these three relations seem to have quite sim—2 Binary relations

ilar properties. All three are transitive and asymmetribeT In this section, we define properties of binary relationstru

screw-driver is contained in my tool box and the tool box istures that will be useful for distinguishing proper parttpo

contained in the trunk of my car, therefore the screw-driveicomponent-of, and containment relations.

is contained in the trunk of my car. And if an object (e.g., a

tool box) is contained in the trunk of my car, then the trunk2-1 R-structures

of my car isnot contained in that object. It is easy to see A R-structure is a pairA, R), that consists of a non-empty

that the componenthood (See Figure 1) and proper parthoatbmainA and a binary relatiofi # R C A x A. We write

relations are also asymmetric and transitive. Due to thir s R(x,y) to say that the binary relatioR holds between the
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individualsz,y € A, i.e., (z,y) € R. We can define the
following relations onA in terms ofR:

Dr_ R=(z,y) =4 R(z,y) orz =y
Dr, Ro(z,y) =4 3z € A: R_(z,2) & R=(2,y)
Dr;  Ri(z,y) =ar R(z,y)&(=3z € A: R(z,2) & R(2,9))

For a givenR-structure, the defined relatios, Rp, or R;
may be empty or identical t&. For example, ifR is the
identity relation onA, i.e., R = {(z,z) | * € A}, then
R_ = R = Rp andR; = 0.

2.2 Propertiesof binary relations

An R-structure(A, R) may have or lack the properties listed

in Table 1. For example, for ang the identity relation on

A is reflexive, symmetric and transitive. Moreover, for any

(A, R), Ro is symmetric,R; is intransitive, andr_ is reflex-

ive. As pointed out above, on their respective domains prope
parthood, componenthood, and containment are asymmetr

and transitive.

property description
reflexive Vz € A: R(z,x)
irreflexive | Vz € A: notR(z, x)
symmetric | Vz,y € A: if R(z,y) thenR(y, z)
asymmetric| Vz,y € A:if R(z,y) then notR(y, =)
transitive Vz,y,z € Al if R(z,y) andR(y, z) thenR(z, 2)
intransitive | Vz,y € A:if R(z,y) andR(y, z) then notR(z, z)
up-discrete | Vz,y € A: if R(z,y) thenR;(z,y) or
dz € A: R(z, z) andR;(z,y)
dn-discrete | Vz,y € A: if R(z,y) thenR;(z,y) or
dz € A: Ri(z,z) andR(z,y)
discrete up-discrete & dn-discrete
dense Va,y € Arif R(z,y) then
3z € A: R(w,2) andR(z,y)
WSP Va,y € Arif R(z,y) then
3z € A: R(z,y) &not Ro(z, z)
NPO Vz,y € Arif Ro(z,y) then
x =y orR(z,y) or R(y,x)
NSIP Va,y € Arif Ri(x,y) then
Jz € A: Ri(z,y) &notz = z
SIS Va,y,z € Al if Ri(z,y) andR;(z, z) theny = =

Table 1: Properties of binary relations

We say (A, R) has theweak supplementation property
(WSP) if and only if for allz,y € A if R(z,y) then there
isaz € A such thatR(z,y) but NOT Ro(z,z). As an ex-

tells us that ifx is a component of then there exists a com-
ponentz of y such that andx do not have a common compo-
nent. For example, since the engine of my car is a component
of my car there is some component of my car (e.g., the body
of my car) which does not have a componentin common with
the engine. (See Figure 1.)
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Figure 2: Nested containers

._Consider the structur@Ac, contained-in) with A =
fCl, Cy,C3,Cy, By, Bo} as depicted in Figure 2. The block
B, is immediately contained in the contain€s which in
turn is immediately contained in the contain€r. B is
contained, but not immediately contained, @\. Note
thatcontained-in does NOT have the weak-supplementation
property: B; is the only entity contained if;. Thus, every
entity contained inCs stands in theontained-ing relation

to B;.

We say(R, A) has theno-partial-overlapproperty (NPO)
if and only if for all z,y € A: if Ro(z,y) thenz = y or
R(z,y) or R(y,z). The structurg A 4,conmponent - of )
has the NPO property. As a representative example consider
the substructure ofA 4, component-of) depicted in Figure
1: Two distinct car components share a component only if
one is a subcomponent of the other.

The structure(Ag, proper - part - of ), on the other
hand, does not have the no-partial-overlap property. As
pointed out earlier, the left half of my car and the lower half
of my car overlap partially. Note also that containmentetru
tures (domains with a containment relation) often do noehav
the NPO property: Consider the tool box in the trunk of my
car. Itis also contained in my car. My car and the trunk of
my car share a containee (the tool box), icntained-inp
holds, but my car is not contained in the trunk of my car nor
is the trunk contained in the car.

Containment structures ardiscrete For example
(A¢, contained-in) is up- and dn-discrete: if is contained
in y then eitherr is an immediately contained inor (a) there

ample of a relation that has the weak supplementation progexists az such thatr is an immediately contained inandz
erty, consider the proper parthood relation on the domajn  is contained iny , and (b) there exists asuch thatr is con-
of spatial objects(Ag, proper-part-of). In this structure tained inz andz is immediately contained ig. Similarly, the
proper-part-of,, is the overlap relation. WSP tells us that structure(A 4, conponent - of ) is discrete. Ifz is a com-
if = is a proper part of then there exists a proper parbf  ponent ofy then eitherr is a immediate component gfor
y that does not overlap. For example, since the left side of (a) there exists a such thatr is a immediate component of
my car is a proper part of my car there is some proper part cindz is a component of , and (b) there exists asuch that
my car (e.g., the right side of my car) which is discrete fromz is a component andz is an immediate component gf
the left side of my car. Again, Figure 1 is a representative example.

Another example of a structure that has the weak The structurgAg,proper-part - of ), is densedue to

supplementation property is the componenthood relatiothe existence ofiat parts (parts which lack a complete bona

on the domain of artifacts(A 4, component-of). Here

fide boundary) [11]. Consider my car and its proper parts.

component-of, is the relation of sharing a component. WSP My car does not have an immediate proper part — Whatever



proper partr we chose, there exists another slightly biggerAs an example of a parthood-containment-component struc-
proper part of my car that hasas a proper part. ture consider the seh formed by all parts of my car and
(R, A) has thesingle-immediate-successproperty (SIS)  everything that is contained in my car. The substructure
if and only if nox € A can stand in the?; relation to two (A, CmpOf) is depicted partly in Figure 1.
distinct members ofA. Again, a representative example is  (iv) ensures that parts are contained in the container of the
the component-of structure depicted in Figure 1. In thecstru whole, e.g., my head is part of my body and my body is con-
ture (Ag, pr oper - par t - of ) SIS trivially holds since this tained in my car, so my head must also be contained in my car.
structure has the density property and no immediate propdk) ensures that if a part of some whole contains something
parts exist. But note that containment structures oftenado n then so does the whole, e.g., since my tool box is contained
have the SIS property: Consider again the tool box in then the trunk of my car and the trunk is part of my car, my tool
trunk of my car. It is also contained in my car. My car and box is also contained in my car. (vi) tells us that component-
the trunk of my car are distinct immediate containers for myhood is a special case of parthood, e.g., since the engine is a
tool box. component of my car, it is also a proper part of my car.
(R, A) has theno-single-immediate-predecesgwmoperty
(NSIP) if and only if for allz, y € A: if Ri(z,y) thenthere 3 A formal ontology of parthood,

exists az € A such thatR;(z,y) and notz = 2. Again, .
the componenthood structure depicted in Figure 1 is a rep- containment, and componenthood

resentative example for a structure that has the NSIP propFhe formal theory developed in this section is presented in
erty. Again, inthe structur@\ g, pr oper - part - of ) NSIP  standard first-order predicate logic with identity. We usg,

is trivially true since no immediate proper parts exist. Butandz for variables. Leading universal quantifiers are gener-
containment structures liké\(-, cont ai ned- i n) lack the  ally omitted. Names of axioms begin with the capital letter

NSIP property. ‘A, names of definitions begin with the capital letter ‘Dnd
Given the properties in Table 1 we can classiit =~ names of theorems begin with the capital letter ‘T".
structures according to the properties of the relatitnIn We include the primitive relation symbolP, Cntln, and

Table 2 we list classes aR-structures that will be useful CmpOfin the language of our theory. The intended interpre-
for modelling proper parthood, componenthood, and containtations are the relatiorBP, CntIn, and CmpOf respec-

ment relations. tively of parthood-containment-component structures.
R-structure | properties 3.1 Axiomsfor PP
partial ordering (PO) | asymmetric, transitive We introduce the symboRP_, PPy, and define thaPP—
discrete PO PO + discrete y N — Y

holds if and only if eitherPP zy or x andy are identical
(Dpp_); PPy xy holds iff x andy share a common part or
are identical Dpp,, ).

parthood structure PO + WSP + dense
component-of structure¢ PO + WSP, NPO, discrete

Table 2: Classes aR-structures Dpp_. PP_a2y=PPaxyva=y
Dpp, PPy zy = (32)(PP= zz A PP= zy)
Finally, note the following facts abowR structures: (F1) . . o

If (A, R) has the no-partial-overlap property then it has theWe then include the axioms of asymmetry and transitivity
single-immediate-successor property; (F2)Af, R) is finite _(APPl—AP_PZ) as well as an axiom (APP3) that_ensures that
and has the single-immediate-successor property thersit haterpretations oPPhave the weak supplementation property
the no-partial-overlap property; (F3) (f\, R) is up-discrete
and has also the no-partial-overlap property, th&nR) has APP1 PPzy — —-PPyz
the v_veak—_supplementation property if and only if it ha_ls the 4ppo (PPzy A PPyz) — PPz
pe‘?lzggéetmfr?;dftg predecessor property; (FANTR) IS 4pp3 PPuy — (32)(PPzy A —PPo zz)  (WSP)

) The theory that includes APP1-3 as axioms is known as basic
2.3 Parthood-containment-component structures mereology [10]. Finally we add a density axiom to include
The relations that we are interested in do not exist in sepfiat parts into our domain (APP4).
aration but form complex structures involving more than
one relation. The structureA, PP, CntIn, CmpOf) is APP4 PPay — (32)(PPzz A PPzy)
a parthood-containment-component structifrand only if: — Models the the theory that includes APP1-4 as axioms are
(i) the substructurg A, PP) is a parthood structure; (ii) parthood structures as defined in Table 2.
(A, Cntln) is a discrete partial ordering; (iijA, CmpOf)
is a component-of structure; and addition the following-con 3.2 Axioms for CmpOf

d-|t|ons hold: We introduce the symbolSmpOf. andCmpO#f, and add the
(iv) If CntIn(z,y) andPP(y, z) thenCntlIn(z, 2); respective definitionsl{cmpor. and Dempot, )-

(V) If PP(x,y) andCntIn(y, z) thenCntIn(z, z); Dempot. CMpOE. 2y = CmpOfey v z =y
(vi) If CmpOf(z,y) thenPP(z,y); Dcmpos, CmpOf, zy = (32)(CmpOL zz A CmpOL zy)



We then include an axiom of transitivity (ACP1).
ACP1 (CmpOfzy A CmpOfyz) — CmpOfzz

4 Representation in a description logic
Description Logics (DLs) are a family of logical formalisms

Corresponding to (vi) we add an axiom that ensures tha‘f"h?Ch are signifipantly Iess_, po_werfulthan first order logit b
CmpOfzy implies PP zy (ACP2) and can then prove that which are (relatively) easily implemented on the computer

CmpOfis asymmetric (TCP1).
ACP2 CmpOfzy — PPy
TCP1 CmpOfzry — -CmpOfyx

We introduce the symb&@mpOf and defineCmpOf zy to
hold iff CmpOf zy and there is ne such thaCmpOf zz and

[1]. The task of this section is to investigate to what extent
and howFO-PCCcan be approximated by a theory expressed
in a description logic. For this task, we consider DLs with di
ferent expressive capabilities, some of which are betiezdu
than others for formulating properties of parthood, compo-
nenthood and containment relations. Notice, that it is het t

CmpOf 2y (Dcmpog). We then add an axiom that enforces purpose of this paper to provide a complexity analysis for
that interpretations o€mpOfhave the discreteness property these DLs.

(ACP3).
Dcmpos CmpOf xy = CmpOfzy A
—(32)(CmpOfzz A CmpOfzy)
ACP3 CmpOfzy — (CmpOf xy V

((32)(CmpOf zz A CmpOfzy)
A (3z)(CmpOfzrz A CmpOf zy)))
From Dcmpos We can prove immediately th&@mpOf is in-
transitive (TCP2).
TCP2 CmpOf zy A CmpOf yz — -CmpOf zz
We then add axioms that require th@mpOfhas the no-
partial-overlap property (ACP4) and th@mpOfhas the no-
single-immediate-predecessor property (ACP5).
ACP4 CmpOfzy — (CmpOf zy vV CmpOfzx)
ACP5 CmpOf zy — (32)(CmpOf zy A -z = x)

4.1 Thesyntax and semantics of description logics

Basic expressions in description logics amnceptandrole
descriptions Concepts are interpreted as sets. Roles are inter-
preted as binary relations. General rules for forming cphce
and role descriptions (based on [1]) are given below. Note,
however, that specific DLs typically allow for the formula-
tion of some, but not all, of the complex concept and role
descriptions listed.

Every concept name is a concept description (atomic con-
cept),T is thetop-concept L is thebottom-conceptf Cand
D are concept descriptions th@11 D (concept-intersection),
C U D (concept-union)~ C (concept-complement) are also
concept descriptions. Every role nanf®,is a role descrip-
tion (an atomic role). IfS andT are role descriptions, then
S M T (role-intersection),S U T (role-union),~ S (role-

We now can prove that the the weak-supplementation prinCicomplement)So T (role-composition), an&~ (role-inverse)
ple holds (TCP3) and that nothing has two distinctimmediateyre also role descriptionkd is the name of the identity role.

successors (TCP4).

TCP3 CmpOfry — (32)(CmpOfzy A =CmpO§, zx)
TCP4 CmpOfzz1 A CMpOf 2 — 21 = 22

3.3 Axiomsfor Cntln

We introduce the symbol€ntin_, Cntiny, andCntln; and
add the respective definition®¢nun_ , Dentin, » @ndDenn, )-

Dcngn. Cntlne zy = Cntlnzy V oz =y
Dcniin,  Cntlng zy = (32)(Cntlne za A Cntlne zy)
Dcntn,  Cntln; 2y = Cntinzy A

—(3z)(Cntinzz A Cntln zy)

We then include axioms of asymmetry, transitivity, and dis-

creteness (ACT1-3).

ACT1 Cntinzy — —Cntlnyx
ACT2 (Cntlnzy A Cntinyz) — Cntlnzz
ACT3 Cntlnzy — (Cntln; zy V
((3z)(Cntln; zz A Cntin zy)
A (Fz)(Cntinzz A Cntln; zy)))

We add axioms, corresponding to (iv) and (v), parts are con-
tained in the container of the whole (ACT4) and that if a part

contains something then so does the whole (ACT5).

ACT4 PPxzy A Cntinyz — Cntlnzz
ACT5 Cntinzy A PPyz — Cntinzz

We call the theory consisting of the axioms APP1-4, ACP1-
5 and ACT1-5FO-PCC Parthood-composition-containment

structures are models of this theory.

If Cis a concept description aitis a role name the(dR.C),
(VR.C), and(= 1R) are concept descriptiodsThe semantics
of the various constructors is given in Table 3.

A terminologyis a set of terminological axioms of the form
C = DandS = T (called equalities) o€ C DandS C T
(called inclusions), wher€ and D are concept descriptions
andS andT are role descriptions. An interpretatidrsatisfies
an inclusionC' C D iff T € D? andS C T iff ST C TZ.
(See [1].) It satisfies an equality = D iff C* = D? and
S =Tiff ST =17,

4.2 Stating ontological principles

Let Lwspbe a language that includes at least the constructors
(ia, iia, iii, via-c, vii, viii, ix). In this language we cantate

a DL-version ofFO-PCC In particular, ifR is the name of

a relationR then we are able to state in this language that
has the WSP property, we are able to define the relatipn

in terms ofR, and we are able to state thiatis a discrete (or
dense) relation:

(WSP) R CRo~((R UId)o(RUI))
(def-i) R =RM~ (RoR)

(discrete) RER U(RoR MR oR)

(dense) RC RoR

But sinceLwspis undecidable [9], it is important to identify
less complex sub-languages@f;spthat are still sufficient to

}(= 1R) is a weak form of number restrictions. Usually stronger
forms are used, e.g., [7, 4].



Unfortunately, including role negation into a DL-language
significantly increases the complexity of the underlying-re
soning [5]. ThoughL™'9Y is less expressive thafiwsp
(we cannot state WSP or discreteness axioms or d&imhe

it is an open question whethel™' 9 is decidable. (It is
known though thatd £C-DLs that include axioms of the form
RoSC T, U...UT, are undecidable [13].)

(ia—b) TT=A,17 =0,

(iia —c) (Cn D) =c*n DT (CuD)*=ctuDbDi,

~ O =A%

JR.C)Y ={a € A| (3)((a,b) € RT Abe CT)}
VR.C) = {a e A| (b)((a,b) € RT - be CT)}

(
E
E 1R ={ac A||{b]| (a,b) € RT}| =1}
(
(

via — c) EITT)I:SZHTZ,(S’UT)Z::S’IUTI7
A A - ay .
B ~8) =AxA\S 4.3 Describing parthood-composition-containment
(vid) SoTy ={(a,c) EAXA] structuresin £
(3b)((a,b) € S* A (b,c) € T7)} N
(vii) 1d% = {(a,a) | a € A} We choseL as the DL to formulate aapproximationof FO-
(iz) (R)E ={(b,a) € A x A (a,b) € RT} PCC becausel is decidable and does include the compo-

sition operator which is important for expressing intearel
) . . tions between relation and for reasoning (particularlyioy b

Table 3: Concept and role constructors with their semanticSnedical ontologies) [12, 6, 3].
7 is the interpretation function anfl is the domain of indi- We add the symbol€P, PP andCT as well asCP; , PP,
viduals. andCT; to £. The intended interpretations of these symbols

are the relationCmpOf, PP, CntIln, CmpOf;, PP;,
state axioms distinguishing parthood, componenthood, andnd CntIn; of parthood-composition-containment struc-
containment relations. Otherwise the DL versior@-PCC  tures. We then include the following axioms 0P andPP:

would have no computational advantages over the first order component-of proper-part-of
theory. (Al) Cp, CCP (A5) PP, CPP
Let £ be the DL which includes only the constructors (ia- (A2) CPoCPLC CP (A6) PPoPPLC PP
b, iia, iii, vii, ix, and v) and in which the role composition (A3) (=1)CP.TC L (A7) (=1)PP . TC L
operator (vii) only occurs in acyclic role terminologiesthwi (A4) 3CP,.TC (=1)CP.T —

inclusion axioms of the formlrRo RC R, So R C R, and
Ro S C R Unlike Lwspthe DL L is decidable [3]. iom
If Ris the name of the relatioR then we are able to state
in £ that R is transitive Ro R C R). Moreover, in we can ABCT; CCT A9CToCTLCCT
very naturally represent DL-versions of the axioms ACP2 an({N . . . L
ACTA4-5. Unfortunately, inC we are not able to state either "€ include also axioms A10-12 corresponding to (iv-vi) in
that R asymmetric, thaf? has the WSP property, or th&  Section 2.3.
has the NPO property. Also we cannot state a DL-version of A10 cPC PP A1l PPoCTC CT Al12 CToPPLC CT
the definition ofR in terms ofR (as in def-i). B B B
Let R be an undefined relation name interpreted?asn ~ We call the theory formed by A1-1RL-PCC. The sub-theory
the R-structure(A, R) (e.g., ascontained-in; in a contain-  formed by Al-4 is similar to the theories proposed by Sattler
ment structure). IrC we are able to use this additional prim- [7] and Lambrix and Padgham [4].
itive to say thatR has the no-single-immediate-predecessor But, as discussed in the previous subsection, we are not
property (NSIP) and the single-immediate-successor ptppe able to add toDL-PCC the following axioms and defini-

For CT we include a subrelation axiom and a transitivity ax-

(SIS). tions that are needed to constrain the models to parthood-
(SIS) IR.TC(=1)R.T composition-containment structures: (1) We are not able to
(NSIP) (=)R.TC L state thaCP, PP, andCT are asymmetric and irreflexive; (2)

We are not able to state a discreteness axionChor CT or

a density axiom folPP; (3) We are not able to definéP; ,

PP; , andCT; in terms ofCP, PP, andCT respectively; (4)

We are not able to state the weak supplementation principle
(WSP) for interpretations d?P.

Consider (1). Sinc®L-PCC lacks asymmetry axioms it
admits models in whictCP, PP, andCT are interpreted as
reflexive relations. In those model®; , PP, , andCT; are
all interpreted as the empty relation (making the axioms A3,
A4, and A7 trivially true). (See also F4 in Section 2.2.) For
example the structur@\ ., identical-to) is a model ofDL-
PCC (but not of FO-PCQ) if we interpretCP, PP, andCT as

Notice however that, since we introdud&das an undefined
relation name we do not know that the interpretatiorRof
is an intransitive subrelation d® unless additional axioms
are included in the theory. If we can state tha® is a
subrelation ofR but we cannot not say thd& is intransi-
tive. Notice also, that i, we cannot say thaR is irreflexive
(Rold C 1) sinceL does not include a constructor for the
identity relation.

Let £~'9Y pe the DL obtained by extending with the
identity relation (viii), negation restricted to relatiorames
(a restricted version of vic), and role union (vib). In thit D
we can say thaR; is intransitive, thatR is asymmetric, and identical-to andCP; , PP, , andCT, as(). Clearly, this model

that 2 has the NPO property. is not a parthood-component-containment structure.
(intrans) RoR C(~R) Consider (3). We include@P; , PP;, andCT; as unde-
(asym) R C(~R fined primitives inDL-PCC and added axioms (Al, A5, and
(NPO) (RRoR) CRUIdUR" A8) that require their interpretations to be sub-relatiofs



the interpretations o€P, PP, andCT. Unfortunately,DL-
PCC admits models in whiclPP; and PP are the same re-

efficient description logics. The first order theory then can
be used by a human being to decide whether or not the DL-
lation (similarly for CP and CP; or CT and CT;). Con- ontology in question is applicable to her domain. Moreover,
sider Figure 2 and interpreZP and CP;, as the relation meta-data can also be used to write special-purpose prggram
icr = {(C3,C4),(Cs3,C4)} (immediately-contained-in-the- that phrase knowledge bases and enforce the usage of rela-

root-containej, andPP, PP; , CT, CT; all ascontained-in.
Then(A¢, contained-in, icr) is a model oDL-PCC (but not

tions in accordance to the meta-data.

of FO-PCQ). This particular kind of unintended interpreta- Refer ences

tions of PP, andCT; can be avoided by requiring that the [1]
interpretation of these relations are intransitive. Hosven

L we are not able to require that a given relation is intransi-
tive.

Consider (4). The closest we can get to requiring that thé2]
interpretation ofPP has the WSP property is to require that
the NSIP property holds (axiom 7). However the NSIP prop-
erty is strictly weaker than the WSP propettgonsequently, [3]
DL-PCC admits models that would have been rejected by a
theory including an axiom that requires WSP for interpreta-
tions of PP (e.g.FO-PCQ. Similar comments apply to (2).

These are strong limitations if the purpose of the presente[jA]
theory is to serve as amntologythat specifies the meaning
of the terms ‘proper part of’, ‘component of’ and ‘contained
in’ rather than to support automatic reasoning in some spe-
cific and possibly finite domai. If the DL £~'9 is de-  [5]
cidable we can get a better DL approximationk®-PCC
that is computationally tractable. But everca' 9~ version
of FO-PCCwill fall short of FO-PCCin expressivity since
we cannot state WSP f&P or weaker versions of WSP that
are useful in dense domains lilRP~ T PP~ o ~ PP and

a - el
PP-CPP o~Id.

5 Conclusions [7]

We studied formal properties of parthood, componenthood
and containment relations. Since it is the purpose of an on-
tology to make explicit the semantics of terminology sys-
tems, it is important to explicitly distinguish relationsch  [g]
as proper parthood, componenthood, and containment. We
demonstrated that first order logic has the expressive power
required to distinguish important properties of thesetimte.

In description logics likeL several important properties of
these relations cannot be specified.

DLs are best used as reasoning tools for specific tasks iL?]
specific domains (as suggested in [8, 7, 4]). DLs are not
appropriate for formulating complex interrelations betwe
relations. Thus we need to understand a computational on-
tology as consisting of two complementary components: (1§10
a DL based ontology that enables automatic reasoning and
constrains meaning as much as possible and (2) a first ord[-,\ﬂ]
ontology that serves as meta-data and makes explicit propef
ties of relations that cannot be expressed in computational 12

2NSIP entails WSP only in conjunction with discreteness and
NPO. But we cannot require that interpretation®Bfare discrete or
have the NPO property since then, for example, the propénquza
relation on the domain of spatial objects could not be anpnéta-
tion for PP. (See Section 2.2).

3If we constrain our models to finite domains then, for example
it is indeed sulfficient to include (A3) and (A4) as axioms tquiee
the WSP and the NPO properties foP (F1-3).
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