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Abstract. The relationship between less detailed and more detailed versions of
data is one of the major issues in processing geographic information. Fundamen-
tal to much work in model-oriented generalization, also called semantic gener-
alization, is the notion of an equivalence relation. Given an equivalence relation
on a set, the techniques of rough set theory can be applied to give generalized
descriptions of subsets of the original set. The notion of equivalence relation, or
partition, has recently been significantly extended by the introduction of the no-
tion of a granular partition. A granular partition provides what may be thought
of as a hierarchical family of partial equivalence relations. In this paper we show
how the mechanisms for making rough descriptions with respect to an equiva-
lence relation can be extended to give rough descriptions with respect to a granu-
lar partition. In order to do this, we also show how some of the theory of granular
partitions can be reformulated; this clarifies the connections between equivalence
relations and granular partitions. With the help of this correspondence we then
can show how the notion of hierarchical systems of partial equivalence classes
relates to partitions of partial sets, i.e., partitions of sets in which not all members
are known. This gives us new insight into the relationships between roughness
and vagueness.

1 Introduction

In processing geographic information, handling multiple levels of detail is of consid-
erable practical importance. This is true both of cartographic generalization [MLW95],
where the geometric presentation of the data is a major factor, and also of ‘model-
oriented generalization’ in the sense of [M

�
95]. In model-oriented generalization, the

relevant attributes of the data are not geometric, but might for example be thematic
classifications. In such a case the generalization might replace several distinct specific
classifications with one more general one. As, say, in the process of ignoring the dis-
tinction between different kinds of road (motorways, major roads, minor roads, etc)
and reducing to the single concept ‘road’. A conceptually similar kind of generalization
can be performed on raster data when deliberately reducing the resolution. In this case a
number of pixels, which might be given a number of different colours could be replaced
by a single pixel bearing just one colour.

An alternative terminology is used in Jones [Jon97, p271] where semantic gener-
alization is described as being “. . . concerned with the meaning and function of a map



and it depends on being able to identify hierarchical structure in the geographical in-
formation.” This hierarchical structure has been used in making formal theories of the
process of semantic generalization. The most obvious is a thematic classification given
as a tree, but a richer notion of hierarchical structure is found, for example, in the studies
of a lattice of resolution by Worboys [Wor98a,Wor98b].

In investigating the theory of semantic generalization we find the notion of equiva-
lence relation, or partition, is a fundamental ingredient. In collapsing multiple kinds of
road to a single one, we are imposing an equivalence relation on the available themes
and putting the various kinds of road into the same equivalence class. To this equiv-
alence class we give the label ‘road’. In the example of raster data, the equivalence
relation groups together the pixels at the more detailed level which become a single
pixel at the coarser level of detail. This example may also exhibit a second equiva-
lence relation which taking the labels of the more detailed pixels amalgamates them to
a single equivalence class which is used to label the single pixel at the coarser level.

The basic way in which an equivalence relation is used may be summarized as fol-
lows. An equivalence relation groups together entities which are in some sense similar.
Each collection of ‘similar’ entities forms new a single entity, called an equivalence
class. A subset of the original set of entities can be given a rough description by spec-
ifying the extent to which each of the equivalence classes lies within the subset. In the
most basic approach, this extent can be one of the three: wholly, partly, and not at all.
Within geographic information, the use of equivalence relations has been explored in
the context of rough sets [BS01], and the extension of equivalence relations on sets to
the analogous structure on graphs has also been considered [Ste99]. A formal theory of
partitions of space was provided by Erwig and Schneider [ES97].

An equivalence relation allows us to model the passage from one level of detail
to another, but does not, on its own, model the considerably more than two levels of
detail which are needed in practice. To deal with several levels of detail, a new concept
has been proposed: the granular partitions of Bittner and Smith [BS03a]. A granular
partition can be seen as an extension of the concept of equivalence relation, and it is
the purpose of this paper to examine how the rough descriptions of the theory of rough
sets can be extended from ordinary equivalence relations to the multi-level world of
granular partitions.

The paper is structured as follows. To generalize the use of partitions in the study of
roughness to granular partitions it is useful to present the theory of granular partitions
in a new way (section 3 below), and to prepare for that we review the key notions of
roughness (section 2 below). In section 4 we introduce systems of hierarchically ordered
stratified rough sets. The ordering hereby corresponds to the degree of roughness of
the underlying equivalence classes. In section 5 we generalize the notion of stratified
rough sets by considering partial equivalence classes or equivalence classes in partial
sets [MMO90]. In section 6 the notion of rough set is generalized in order to take into
account vagueness. Conclusions are presented in section 7.

In places the paper is rather technical. This apparent complexity seems unavoidable
and arises from the interaction between the granular partitions and the rough set con-
cepts. This interaction produces a more intricate theory than is found in either of the
two ingredients separately. Despite the technicality, the topic is, as explained above,



one of considerable importance and we have provided examples in the paper which are
designed to illustrate the main concepts.

2 Labelled partitions and rough sets

In this section we introduce the notions of
�

-labelled partitions and rough sets. We
show that maps are an important class of

�
-labelled partitions and that rough sets can

be used in order to approximate objects with indeterminate boundaries.

2.1 Labelled partitions

A partition here is understood in the standard mathematical sense: the subdivision of a
set into jointly exhaustive and pairwise disjoint subsets via a corresponding equivalence
relation. Partitions of a set, � , are often identified with functions of the form �����
	�

which are surjective (that is where for every �� �
, there is some ����� for which������� ).

Given such a function ������	 �
, we obtain a partition of � into subsets of the

form � ��������� �!�"�$#����"�%��& where �'� �
. The same partition however can arise

from different functions. Consider, for example the subdivision of a part of the plane
into subsets indicated by the 12 squares in Figure 1(i). In Figure 1(ii) and (iii) we have
two different labelled versions of the same partition: ��()�*�+	,��-/.102.43 3435. -/-/. -602& , and�87��9�:	;�6<�.>=?. 343 3@.>�A.>BC& . Two functions �D�E�F	 �

and �HGI�E�J	 � G give rise
to the same labelled partition if and only if there is a bijection KL� � 	 � G such thatKM�N�L� G .

A surjective function �O�P�Q	 �
thus corresponds to something more than a

partition of � : it is a partition of � together with a labelling (by the elements of
�

) of
the blocks of the partition. It is useful to use the terms blocks and cells so that blocks
are subsets of the partitioned set � , whereas cells are labels for these blocks. It may be
helpful to imagine that the cells are labelled boxes or locations which are used to house
the elements of � . The distinction between cells and blocks is then the distinction
between a location and the contents of that location. To emphasize the importance of
the labelling, we make the following definition.

Definition 1. Let
�

and � be sets. Then a
�

-labelled partition of � is a surjective
function from � to

�
.

An important class of
�

-labelled partitions are maps (in the cartographic rather
than the mathematical sense). Consider the left part of figure 2 which shows a part of
the United States. The labelling function � here maps every point of the United States
to names of federal states (Montana, Wyoming, Idaho, etc.).

2.2 Rough sets

Given a labelled partition of � (i.e. a surjective function �"�*�R	 �
for some

�
) we

obtain rough descriptions of the subsets of � in terms of the extent to which the cells
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Fig. 1. A partition of a subset of a plane (i) with two different labellings (ii) and (iii) and a subsetS
(iv) and its egg-yolk representation (v).

USA

Alaska      Alabama    ...  Montana   ...    Wyoming        

Beaverhead C.   ...   Yellowstone C

Fig. 2. A k-labelled partition (left); A rough approximation wrt. a k-labelled partition (middle);
A stratified labelled partition (right).

are occupied by the subset. So, for any TVUW� we obtain a function TYXZ��� � 	� T, B, F & . This function, read as ‘ T is coarsened by � ’ is defined as follows.

[ T�X\�H]^�_�
`a b T if c������Ed ( �e����T

B if f*�g.h�iGg���Ed ( �e���NT and ��G^j��T
F if c������ d ( �e�kj��T

where � d ( is the inverse image of � , so that � d ( � means �6�L�Z�l#M���m�n��& . The
notation T, B, F is chosen as these three values are the concepts True, Both, and False.
This is because if

[ ToXZ�H]p�q� T then � is definitely in T ; if the value is F, then �
is definitely not in T ; if the value is B, then � is both in and not in T . The structure
resulting from a coarsening operation is a rough set as defined in [Paw82].

The intuition is that the value of
[ TDXr�H]s� is T, B, or F according as the cell � is

completely, partially or not at all occupied by elements of the subset T . Consider 1 (iv).



Again, let � be the set of points of the part of the plane and let TntL� a subset. The
rough set approximation of T with respect to the labelled partition �u7 is given below.

��� � <q=�v�w"xy��z'{r|~}!�LB[ T�X\��7 ]^� F B B B F B T B F B B B

The rough subset T�XL� can be represented by a pair of ordinary subsets of
�

:��[ TDX��H]5d ( � T &u. [ TLX��H]1d ( � T,B &?� , leading to the usual ‘egg-yolk’ pictures (Figure 1
(v)). Here

[ TLX��H]5d ( � T & is the set �6��� [ �Ed ( ��]�# [ TLX��H]g�_� T & and marked by the
black square. Correspondingly

[ T�Xq�H]@d ( � T,B & is the set � ��� [ �9d ( ��]�# [ TZX\�H]E���� T . B &/& and corresponds to the union of the black and grey squares in the figure.
In the remainder we will use the phrases ‘the rough set T%XL� ’ and ‘the (rough)

approximation of T with respect to the labelled partition � ’ synonymously.
Rough set approximations play an important role for the representation of objects

with indeterminate boundaries [BS02], [BS03b]. Consider figure 2. In the middle we
have a

�
labelled partition of the northwestern US and we have the Cascade moun-

tains (CM), indicated by the ellipse, which cover parts of the states Washington (W),
Oregon (O), and California (C). The rough set representation of the cascade moun-
tains is

[��)� X��u�H���^]�� � B,
[��)� X��/�H���^]���� B,

[��)� X��/���u�^] � � B,[��)� XD�/�H���^]���� F, etc. Rough set representations do not force us to draw crisp
boundaries where no crisp boundaries exist.

3 Granular Partitions

Maps are often organized hierarchically. Consider the political subdivision of the US.
Here we have counties which form states, which themselves form the US as a whole.
This structure is visualized in the right part of figure 2. In this section we introduce the
notion of

�
labelled stratified partition in order to take this hierarchical structure into

account.

3.1 Cell Granulations

Above we considered only unstructured sets. Now we consider sets of cells upon which
a tree structure has been defined.

Definition 2. A cell tree is a finite, partially ordered set of cells,
[ � .4��] , which forms

a tree. The partial order, � , is called the sub-cell relation, and the maximum element in
this order will be the root of the tree. If a cell tree additionally satisfies the constraint
that no node have just a single descendant then it is said to be branching.

Consider figure 3 which shows a cell tree
�

with elements < , = , v , w , x , � , z , and { .
Here the cell < is the root of the tree and we have �"�m� if and only if the nodes � and� are connected by a line going upwards, or by a sequence of such lines.

The tree structure gives rise to a lattice (middle of figure 3), the elements of which
are the cuts of the tree, defined as follows [RS95]:
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Fig. 3. A cell granulation (left), the corresponding cut lattice (middle), and the corresponding
hierarchical subdivision of the point-set ¤ (right).

Definition 3. For any element � of a cell tree
�

, let d( � ) denote the set of immediate
descendants of � . A cut in

�
is a subset of

�
defined inductively as follows:

1. � ¥�& is a cut, where ¥ is the root of the tree,
2. let

�
be a cut and �y� �

where d( � ) j�D¦ , then
[��L§ �8��&?]A¨ d( � ) is a cut.

It follows that the sets �6<i& , �8=?.hv8& , �?w�.>x�.>��.hv8& , �8=?.�zA.>{�& , and �?w�.>xu.1��.�zA.>{�& are cuts in
the tree

�
in the left part of figure 3.

Let
�

and © be cuts in the cell tree
�

. The cuts of a tree form a lattice ordered by�Wª © if for each v)� �
there is some w��© with v)�mw . This lattice will be referred

to as the cut lattice of the cell tree
�

. The cut lattice of our example cell tree is shown
in the middle of figure 3.

The cut lattice carries additional structure, which we will discuss now. Given cuts�nª © there is a function «�� � 	$© where v_��«�v . The facts (i) that
�

and © are
cuts in a tree

�
and that (ii)

�Rª © ensure that « is a function. For example, in the
cut lattice seen in the middle of figure 3, with cuts

� �¬�6wi.hx�.>��.>v?& and ©�¬�?=?.>v?& ,
the function « is the following mapping: wy®	¯=?.>xp®	¯=?.>�'®	°=?.>v±®	°v . Note that when� ��© the function « will be the identity.

We have seen that a set of cells structured as a tree gives rise to a lattice, the elements
of which are sets of cells, and that these sets of sets are related by functions. All this
structure can be derived from the tree, but it is often more convenient to deal with it
directly than to always be thinking of it as generated from the tree. Thus we will refer
to the lattice and associated structure as a cell granulation; it consists of:

1. A lattice,
[³² . ª ] , of levels of detail

2. for each level of detail |´� ²
there is a set of cells

²sµ
, and

3. for each pair |1.�} of levels of detail, where | ª } , there is a function « µ·¶ � ²¸µ 	 ²^¶
.

It should be noted that not every structure of the above form will be a cell granulation, as
only lattices of a certain form can arise as lattices of cuts of trees. The cell granulation
is derived from the cell tree, and will be denoted simply as

²
when there is no danger of

confusing this with the underlying lattice. If it is necessary to emphasize the dependence
on the tree

�
we can write

²±[ � ] rather than just
²

. Cuts or levels of detail or levels of
granularity will be referred to by their index | or by the corresponding set

² µ
.



3.2 Stratified Labelled Partitions

Having described the granulation structure on the set of cells, we now see how these
are used to construct stratified labelled partitions. Recall that in the ordinary case a
partition of a set � labelled by a set of cells

�
is a surjective function from � to

�
.

In the granular case, the role of
�

is taken by the cell granulation
²±[ � ] introduced in

section 3.1 above, so it remains to explain what plays the role of the surjective function
in the ordinary case.

Definition 4. Let
²

be the cell granulation derived from a cell tree
�

, and let � be
a set. Then a

�
-labelled stratified partition consists of for each |¹� ²

a partial and
surjective function � µ ���º	 ² µ

such that whenever | ª }[ c������] [ « µ»¶ � µ ���L� ¶ ��]
whenever the left hand side of the equation is defined.

The introduction of partial functions here is significant, and is motivated by the theory
of granular partitions. At a particular level of detail, we allow that the collection of cells,
or labels, at our disposal may not cover all the entities to be classified. It should remem-
bered that the definition of a partial function allows for the function to be undefined for
some elements of its domain, but it does not exclude the possibility that the function
is total. Thus, partiality corresponds to the potential for having unclassified entities, it
does not mean that there have to be some things which are unclassified.

Consider the right part of figure 3 which shows the subdivision of the point set ¼ in
subsets which form partitions of ¼ at different levels of detail. (In this example we use
capital letters to denote sets and corresponding non-capital letters for their labels.) At
the top level we have the set ¼ as a whole. At the intermediate level we have a partition
of ¼ formed by the subsets ½ and

�
. At the finest level we have a partition of ¼ formed

by the subsets © , ¾ , ¿ , À , and Á . Also, the subsets © , ¾ and ¿ form a partition of
the set ½ and the subsets À and Á form a partition of

�
. For every partition of the set¼ into subsets there is now a corresponding labelled partition:

�/(I�u¼�	��6<i&u. �87Â�/¼�	��8=?.hv?&�.�8ÃÂ�u¼�	��6wi.hx�.>��.>v?&u. �?Ä)�/¼�	��8=?.�zA.>{�&u.�8ÅÂ�u¼�	��6wi.hx�.>��.�z�.1{H&�3 (1)

One can see that every co-domain of the labelled partitions � ( 3 3431�8Å corresponds to a
cut in the cell granulation

�
formed by the cells �6<�.1=?.hv8.>w�.>x�.>��.�zA.>{�& depicted in the

left part of figure 3. Now consider the labelled partitions �ÆÄ and � 7 and assume ����À .
It then follows that � Ä �N�Zz . Since z is a subcell of v we have « Ä 7¸z_�Dv . On the other
hand, since �\�!À and ÀÇt �

we also have �q� �
. Consequently we have �u7s�k�ov

and hence ��7È��� [ « Ä 7s� Ä ]g� .
Definition 4 can be neatly summarized by a diagram in the ordered category of sets

and partial functions:



² ¶
É É É É É� ¶ Ê

� ËÌ Ì Ì Ì Ì� µ Í ² µ
« µ»¶

Î

3.3 Granular partitions

We shall now establish the correspondence between the notion of a granular partition
introduced by [BS03a] and the notion of stratified labelled partitions introduced above.
Basic components of a granular partition are a cell tree

�
, a corresponding set � , and

mappings between them. However a granular partition does not have multiple surjective
functions from � to cuts in

�
but rather a single order-preserving mapping, Ï , from�

into the powerset of � . This notion of granular partition is very general. In this
subsection we will establish the equivalence of labelled stratified partitions and a class
of specific, particularly well-formed granular partitions:

Definition 5. Let
[ � .4��] be a cell tree, � be a set, Ð � � denote the set of non-empty

subsets of � , and let Ï"� � 	VÐ � � be a function such that for all �2(?.1�/7p� �
,[ |�]r� ( �m� 7�Ñ [ ÏN� ( ]ÒU [ Ï�� 7 ]5.[ |�|�]9Ïg� (´Ó Ïg� 7 j�D¦LÔ [ � ( �Õ� 7 or � 7 �m� ( ]53

The triple Öº� [h[ � .4��]5.h��.�Ïg] is then called a strict mereological monotonic granular
partition. Condition (i) expresses the constraint that Ï be an order-isomorphism.

This particular class of granular partitions is such that the mapping Ï preserves the tree-
structure of

�
, which is equivalent to saying that the subsets of � singled out by Ï have

a tree structure (with respect to the subset relation) which is isomorphic to that of the
cell tree

�
.

Consider the left and right part of figure 3. A granular partition then is a tripleÖR� [h[ � . ��]5.>¼p.�Ïg] such that
[ � . ��] is as depicted in the left part of the figure and Ï

is defined as follows: Ï�<��o¼ , Ï�=p�o½ , . . . , Ï�{��%Á , where capital letters refer to
sets in the right part of the figure.

Given a cell granulation, we can define ÏÇ� � 	×Ð � � by Ïg�Ø�,� �����×#Ù µ ��Z� for some |>& . The following result shows that this construction provides a strict
mereologically monotonic granular partition provided that the cell tree is branching (no
node having just a single descendant).

Theorem 1. If the cell granulation
[�²±[ � ]@.���. Ù (�.4343 3 ÙiÚ ] with

Ù µ �M�:	 ² µ
is a Û

branching labelled stratified partition then Ö�� [�[ � . ��]5.��'.�Ïg] is a strict mereologi-
cally monotonic granular partition.



Proof First we show that if Ïg�*( Ó Ïg�u7 is non-empty then either �*(Â�Õ�u7 or �u7Â�m�/7 .
If ��( and �u7 are unrelated in the order then some cut, say Ü , must contain both of them.
But then

Ù�Ý �����*( and
Ù�Ý �����u7 contradicting the unrelatedness of �2( and �u7 .

Next we tackle one half of the first condition for a strict mereologically monotonic
granular partition. Suppose that ��(Þ�o�u7 and let

Ù µ �!����( . Then there must be }'ß�|
with �u7)� ² ¶

, and « µ·¶ �*(����u7 . Hence
Ù ¶ ����/7 , and so ����Ïg�u7 .

Finally, we have to show that if Ïg�2(�U%Ïg�/7 then ��(����/7 . As Ïg��( Ó Ïg�u7 is non-
empty then either �*(k�Ç�u7 or �u7k�¬��( . If �u7!�n��( then we have Ïg�*('�nÏg�u7 . The
possibility that �u7)àm��( can be excluded. For �2( must have another descendant besides�/7 , say �2G , at level | where �u7/.>�2GE� ² µ

. Now, as
Ù µ

is surjective, there are distinct �g.��AG
where

Ù µ �N�D�/7 and
Ù µ �iGH�D�2G . But

Ù ¶ �iGH�D��( for some } , as ��G is a descendant of �*( ,
and so Ïg�*(~j�ZÏg�u7 . Hence, having ruled out ��7Âàm�*( , we conclude �2(±�Õ�u7 . áâ

We note that if the original cell tree is not necessarily branching, then we can only
prove that Ï is an order homomorphism (i.e. �2(Â�r�u7�ÔRÏg�*(±U�Ïg�u7 ).

In the opposite direction, we can start with a strict mereologically monotonic granu-
lar partition and construct a

�
-labelled stratified partition. For each cut | , Ù µ � is defined

if there is �\� ²Òµ
with �m�ÕÏg� . In this case,

Ù µ ���ã� . That this construction has the
appropriate properties is established in the following result.

Theorem 2. If Öº� [h[ � .4��]5.h��.�Ïg] is a strict mereologically monotonic granular par-
tition then the cell granulation

[³²I[ � ]5.h��. Ù (�.43 343 ÙiÚ ] with
Ù µ �u�¬	 ² µ

is a
�

labelled
stratified partition.

Proof The
Ù µ

are well defined, for if �!�"Ïg��( Ó Ïg�u7 we have �*()�o�/7 as ��(~à��/7
is impossible for distinct elements of the same cut. The

Ù µ
are clearly surjective. It

remains to show that if |¸�"} and
Ù µ � is defined, then

Ù ¶ � is defined and « µ»¶ Ù µ �� Ù ¶ � .
If

Ù µ �"�o��� ² µ
then we can find ��GÈ� ² ¶

with �'�Ø�2G , thus Ïg��ULÏg��G and �q�kÏg�2G .
As ���r� G we get « µ»¶ �_��� G and so « µ»¶ Ù µ �� Ù ¶ � .

áâ
It follows that the notions strict mereologically monotonic granular partition and Û

labelled stratified partition are equivalent. In the remainder we focus onto the latter.

4 Stratified Rough Sets

As mentioned in section 2 above, an ordinary labelled partition ���i��	 �
provides

for each T°UO� a rough set T%XD� . What happens to this process when we have a
stratified labelled partition? In order to answer this question we now extend the notion
of stratified rough set introduced by [Yao99].

Let
[h[ � . ��]5. [³² . ª ]5.�«�. Ù ( . 34343 Ù Ú ] a stratified labelled granular partition with a total

surjective function of the form
Ù µ �¸�ä	 ²¸µ

for each level of detail
² ( .43 3434. ² Ú

in[�² . ª ] . [Yao99] then defines a stratified rough set as a sequence of rough sets
[ ToXÙ ( ]5. 34343 [ TkX Ù�Ú ] as follows. Let

[ T"X Ù µ ]1d ( � T & be the ‘egg’, and
[ T"X Ù µ ]5d ( � T,F & be

the union of ‘egg’ and ‘yolk’ in the corresponding egg-yolk representation of T at the
level of detail formed by

² µ
(remember Figure 1 (v)). Then whenever | ª } the ‘egg’ at



level | is a subset of the ‘egg’ of level } which itself is a subset of T , which is in turn a
subset of the union of ‘egg’ and ‘yolk’ at level | and so on:[ |C] [ T�X Ù µ ]1d ( � T &pU [ TLX Ù ¶ ]5d ( � T &)UrTÈ.[ |�|�]MT�U [ TLX Ù µ ]1d ( � T,B &)U [ T�X Ù ¶ ]5d ( � T,B &

Let
[h[ � . ��]5. [³² . ª ]5.�«�. Ù (8. 34343 Ù�Ú ] as defined above and let å6æµ·¶ �D� [ T�X Ù µ ]��N#����[ « d (µ»¶�ç ]5& be the set of approximation values under

[³è X Ù µ ] with respect to the subcells[ « d (µ»¶Õç ]ÒUré µ
of the cell

ç � ² ¶
. We then define a stratified rough set as follows:

Definition 6. A stratified rough set is a family of rough sets
[ TYX Ù (@]5. 343 3 [ TYX Ù�Ú ] ,

such that whenever | ª } then there exists a mapping ê µ»¶ ��� T . B . F &±	�� T . B . F & such
that the following holds: [ ê µ»¶Â[ T�X Ù µ ]�]9�Þ� [�[ TLX Ù ¶ ]�« µ·¶ ]9�
with [ ê µ»¶ [ TLX Ù µ ]�]9�Þ�

`ëa ëb T iff å�ì»íCî»ï �5ðµ·¶ ��� T &
F iff å�ì»í î»ï �5ðµ·¶ ��� F &
B otherwise

Correspondingly we can draw the commutative diagram in figure 4.

ñAò Skó�ô ò õö
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Î

Fig. 4. Rough sets at different levels of granularity in a cumulative granular stratified partition.

Consider figure 5 which corresponds to the labelled stratified partition shown in
figure 3 with

Ù µ
corresponding to � µ in equation (1). In figure 5 (i) we have six subsets

of the set ¼ five of which form a partition and one (
è

) which lies skew to this partition.
Figures 5 (ii – iv) show stratified rough sets representations of

è
at different levels of

detail. Here the gray color of the set ¾ in figure 5 (ii) indicates that
[�è X Ù Å6]´x_� B.

Similarly the gray color of the set ½ in figure 5 (iii) indicates that
[³è X Ù 76]E=s� B. The

white color of the set À in figure 5 (ii) indicates that
[�è X Ù Å ]�z¹� F.

Let åMæµ»¶ be as defined above. In figure 5 (ii) we have åýüÅ�Ä ��� B . F & and å¸þ71( �� B . F & , and hence
[ ê ÅhÄ [³è X Ù Ä ]h]E=�� B and

[ ê975( [³è X Ù Ä ]h]g<Þ� B.



(i) (iii)(ii) (iv)T

E

D F H
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Fig. 5. A stratified rough set representations of
S

at different levels of detail.

5 Rough sets in non-cumulative labelled stratified partitions

An important assumption in the previous section was that in the stratified labelled parti-
tion

[�[ � .4��]@. [³² . ª ]@.�«�. Ù ( .43 343 Ù Ú ] the
Ù µ

are total surjective function. Consider the
�

labelled partition depicted as a map of the United States in the left part of figure 2. That
the labelling function is total here means that there is no ‘white space’ or no undiscov-
ered land in the space covered by this map. In this case we also say that the underlying
granular partition is cumulative.

Definition 7. Let
[�[ � .4��]@. [�² . ª ]@.�«�. Ù (?.43 343 Ù�Ú ] be a labelled stratified partition. The

level of granularity
² µ

is cumulative if and only if the function
Ù µ

is total. The partition
as a whole is cumulative if each level of granularity is cumulative.

However there are maps with ‘white space’, unexplored territories, or not well un-
derstood domains. In order to take this into account we now generalize the notion of
stratified rough sets by giving up this constraint of cumulativeness and allow the

Ù µ
to

be partial surjective functions. What results corresponds to what Mislove calls murky
sets [MMO90] in the theory of partial sets and to what Bittner and Smith call non-
cumulative granular partitions [BS03a]. In Mislove’s terminology we now consider
stratified rough sets in labelled partitions of murky sets. Roughly, murky sets are sets
which are such that we do not know all of their members. In the terminology of Bittner
and Smith we consider rough approximations with respect to non-cumulative granular
partitions [BS03b].

If the underlying labelling functions
Ù µ

are total surjective functions, then the rough
set representations at a coarser levels of detail can be derived from a rough set repre-
sented at finer level of detail. Consider levels of detail | ª } . Given a rough set

[ T'X Ù µ ]
we can determine the rough set

[ T�X Ù ¶ ] in the way described in definition 6. In general,
however, we cannot assume that the underlying labelling functions are total because this
assumes complete knowledge about the underlying set which may not be available.

Under circumstances where the labelling functions
Ù µ

are not total it will be im-
possible to define a unique generalization mapping ê µ·¶ in the way shown in figure 4.
Moreover a multitude of generalization mappings, each yielding one possible general-
ization of the rough set at hand will be needed. The example shown in figures 6 and 7
will help to explain this.

In figure 6 (i) we see the set ÿ with 12 elements, each of them labelled by a natural
number. Five of these form the subset ��t�ÿ and six of them form the subset �Zt�ÿ



1 2 3 4

5 6 7 8

9 10 11 12

(i) (ii) (iii)

Fig. 6. A set � , with 12 elements (i), a 5 element subset ����� (ii), and a 6 element subset� ��� (iii).

	 ô ù�
���
values of

ô ù
and



a

	 ô ��� � . . .
	 ô ����� �

b
	 ô � � � , 	 ô ��� � , 	 ô ��� �	 ô�� � � , 	 ô�� � � , 	 ô�� � �

c
	 ô � � � , 	 ô ��� � , 	 ô ��� � , 	 ô ��� � , 	 ô � ��� � , 	 ô � ��� �

g
	 ô � � � , 	 ô � � �

h
	 ô�� ��� � , 	 ô�� ��� �

Table 1. The mappings
ô �

� ô � � ô �
with

ñ � �
�@¡��

,
ñ � � �@�4�C @�

, and
ñ ��� �@� ���2�C���

.

(figure 6 (ii) and (iii)). The set ÿ can be given a stratified labelled partition, using the
cell tree and the granularity lattice shown in the left and middle of figure 3, and the
mappings

Ù µ
given in table 1. The table is read as follows: (row 1) the mapping

Ù (
maps all elements of ÿ onto the label < ; (row 2)

Ù 7 maps the elements 1, 5, and 9 onto= , and so does
Ù Ä . The other rows follow the same pattern. The mappings targeting the

granularity levels �6wi.hx�.1��.hv?& and �?w�.>x�.>��.�zA.>{�& are omitted here.
Table 1 tells us that the mapping

Ù ( is surjective and total. The other mappings are
surjective but partial. No

Ù µ
with | ��- maps the elements !�.#"�.4-?0�\ÿ to any cell in

their target domain
² µ

. Moreover
Ù Ä in addition also fails to map the elements $�.&%e��ÿ .

Consider figure 7: (i) depicts the rough set representation of � and � for the level of
granularity

² ÄI���8=?.�zA.>{�& ; (ii) depicts the rough set representation of � for the level of
granularity

² 7~���8=?.hv8& , and (iii) depicts the rough set representation of � for
² 7 . We

have
² Ä ª�² 7 . The color grey indicates the approximation value B as in

[ �eX Ù 7?]�vP� B,
black indicates the approximation value T as in

[ �mX Ù Ä ]gz_� T, and the diagonal line
pattern represents the approximation value F as in

[ ��X Ù Ä ]È=p� F. The white spaces
in the figures 7 (i–iv) indicates the partial character of the mappings

Ù 7 and
Ù Ä .

Two significant features appear in this example:

1. At the level of granularity
² Ä we cannot distinguish between the sets � and � –

both are are represented by the rough set depicted in figure 7 (i).
2. The rough approximation of � with respect to

² 7 cannot be derived from that at the
finer level of detail

² Ä using a generalization mapping êM7 Ä as defined in definition
6 – applying the generalization mapping defined in 6 to the rough set

[ �ØX Ù Ä ]
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Fig. 7. Rough set representations of � and
�

at the levels of granularity
ô �

and
ô �

.

yields the rough set depicted in figure 7 (iii) and not the one depicted in (ii) as one
would want.

This is due to the fact that the function
Ù Ä is to a larger degree partial than

Ù 7 : z and{ do not make up the whole of v . From the rough set representation of � and � at the
finer level of detail

² Ä alone we are unable to determine whether the part of ÿ labelledv is wholly or only partly covered by � and by � respectively. Consequently, given tha
partial character of the mapping

Ù Ä and the rough set depicted in figure 7 (i) the two
rough sets depicted in the figures 7 (ii) and (iii) equally good candidates for being the
result of performing a generalization on (i). This is indicated in figure 7 (iv).

It follows that we need to extend the notion of generalization mapping ê µ»¶ which
was set out in definition 6 in order to take into account the non-cumulative character of
the underlying labelled stratified partition. Let T�X Ù µ

be a rough set based on a non-
cumulative granularity-level

² µ
, let

ç
be a cell belonging to granularity level

² ¶
and let| ª } . We then need to distinguish three cases:

1. If we have � [ TYX Ù µ ]Ò�r#g��� [ « d (µ»¶ ç ]1&�¬� T & then there might be elements of
the underlying set � which are not labelled at granularity-level

² µ
which may or

may not belong T . Therefore we need to have two generalization mappings ê10 µ·¶ andê 0 � (µ»¶
such that

[ ê�0 µ»¶ [ T�X Ù µ ]h] ç � T and
[ ê 0 � (µ»¶ [ T�X Ù µ ]�] ç � B .

2. If we have � [ T�X Ù µ ]g�N#/�y� [ « d (µ»¶�ç ]5&I��� F & then, again, there might be elements
of � which are not labelled at granularity-level

² µ
which may or may not belong T .

Therefore we need two generalization mappings ê(0 µ·¶ and ê 0 � (µ»¶
such that

[ ê�0 µ·¶ [ TLXÙ µ ]�] ç � F and
[ ê 0 � (µ»¶ [ TDX Ù µ ]h] ç � B.

3. If we have B ��� [ T�X Ù µ ]9�N#���� [ « d (µ»¶ ç ]5& then we can apply definition 6.

Now compare the generalization from a cumulative level of granularity with gener-
alization from from a non-cumulative level of granularity. In a cumulative level of gran-
ularity there is a unique generalization function doing the transformation job. When we
generalize from a non-cumulative level of granularity

² µ
to a level of granularity

² ¶
with a single cell then there may be two generalization functions: ê (µ·¶ and ê 7µ·¶ . This
case is represented in figure 8: The generalization mappings ê (µ»¶ and ê 7µ»¶ satisfy the
equations in the left of the figure. A corresponding diagram representation is given in
the right part of the figure.

The more cells the target level of granularity
² ¶

has two cells the more generaliza-
tion functions need to be added. This reflects the phenomenon of vagueness which is
caused by the non-cumulativeness of the underlying stratified partition.
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Fig. 8. The multiplicity of possible generalizations in non-cumulative labelled stratified partitions.

6 Rough sets and vagueness

In the previous section we dealt with the problem of vagueness by adding more and
more generalization transformations – each yielding one possible rough set at the tar-
geted level of granularity. An alternative way of dealing with the problem of vagueness
is to introduce the notion of vague rough set and to provide an unique generalization
transformation between vague rough sets. The idea hereby is to considerer sets of ap-
proximation values rather than sets of possible approximations.

6.1 Vague rough sets

Let
[�[ � . �P]@. [³² . ª ]@.�«�. Ù ( .43 343 Ù Ú ] be a labelled non-cumulative granular partition withÙ µ �/�º	 ²¸µ

. In order to represent vagueness we consider the following subsets:
9: �Ø�/� F &u.@� B &u.@� F &u.@� T . B &�.@� B . F &u.@� T . B . F &/&

The ordering of
9:

corresponding to the subset relation is given in the diagram in figure
9.

Given a subset T:Uº� we define a vague rough set as a mapping of signature[ T<; Ù µ ]s� � 	 9:
(notice the difference between X and ; ). The value of

[ T<; Ù µ ]9�
is interpreted as a disjunction of possible relations between the subsets T and

[ Ù d (µ ��] .
For example, the value of

[ T<; Ù µ ]9� is � B . F & if either T contains some but not all of
elements of

[ Ù d (µ ��] or if there is no overlap between T and
[ Ù d (µ ��] at all. Under this

interpretation the ordering in the diagram in figure 9 represents an increasing degree of
vagueness.

Let
² µ

be a non-cumulative level of granularity. The rough set �ãX Ù µ
is a crisping

of the vague rough set T=; Ù µ
if and only if for every cell � the label

[ ��X Ù µ ]9� is one
of the disjuncts in

[ T<; Ù µ ]E� :1

CR
[ �ãX Ù µ ] [ T>; Ù µ ]1?rcH�y� ² µ � [ �ãX Ù µ ]9��� [ T>; Ù µ ]E�

1 In cumulative granular partitions crisping is more complicated. See [Bit03] for details.



Consider figure 7(iv). Let @t�ÿ be a set of which we know only the vague rough set
representation corresponding to the figure:

[ @A; Ù 76]�=��Ø� F & and
[ @B; Ù 7 ]AvP��� T . B & .

Crispings of @C; Ù 7 then are �ÕX Ù 7 and �NX Ù 7 as depicted in 7(ii) and 7(iii).�
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Fig. 9. Representing vagueness as sets of labels.

6.2 Generalization of vague rough sets

We now discuss generalization transformations of vague rough sets of the form
[ TQ; Ù µ ]

from granularity level
² µ

to
² ¶

with | ª } . Let å^æµ»¶ �Ø� [ TR; Ù µ ]E�#/�y��« d (µ»¶�ç &)trÐ 9:
be the set containing the sets of approximation values under

[ TS; Ù µ ] with respect to
the cells

[ « d (µ»¶Õç ]ÒU ² µ
.

Consider table 2 and assume sets �¹.#Ts.&U���ÿ of which we only know their vague
rough set representation with respect to the granularity level

² Ä as given in columns V�= ,
V6z , and V�{ of the table. In column åXWÄ 7 we have the subset of Ð 9:

corresponding vague
rough set in column V with respect to the cells zA.>{N� [ « d (Ä 7 v ] .

Y Y
�

Y
�

Y
�

G�Z� � F G�Z� � Lû 	 Y   �[ M'ô � �
B

� �
T

�
B

� �
F

�
B

� � �
T

�
B

�?�>�
F

�
B

� � �
B

� �
B

�
\�M'ô�� �

B

� �
T

�
B

�
F

� �
F

�
B

� � �
T

�
B

�
F

�?�>�
F

�
B

� � �
B

�
F

� �
B

�
F

�
]^M'ô � �

B

� �
T

� �
F

� �6�
T

�?�>�
F

�6� � � �
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�
Table 2. Examples for the generalization of vague rough sets from granularity level

ñ �
to

ñ �
.

We define the generalization mapping
9ê µ·¶ �gÐ 9: 	JÐ 9:

which transforms vague
rough sets from granularity level

² µ
to granularity level

² ¶
with | ª } by reading the

table in figure 9 row-wise as follows (using å be a shorthand for å8í î ï �µ»¶
):

Row1: if _kå\�D� B & then
[ 9ê [ T>; Ù µ ]�]9�Þ�Ø� B &

. . .
Row7: if _kå\�D�u& then

[ 9ê [ T<; Ù µ ]h]E�_�Ø� B &
Consider table 2. In the last two columns we see the values _ å`WÄ 7 and

9ê [ Vpv4] ac-
cording to the table in figure 9 for the corresponding rough sets in column V .



Definition 8. A stratified vague rough set is a family of vague rough sets
[ Ta; Ù (@]@.4343 3 [ Ta;Ù�Ú ] , such that whenever | ª } then there exists a mapping

9ê µ·¶ �eÐ�� T . B . F &L	Ðy� T . B . F & as defined in table 9 such that the following holds:[ 9ê µ»¶ [ T>; Ù µ ]h]E�_� [�[ Tb; Ù ¶ ]g« µ·¶ ]9�A3
One then can verify that if

[�[ � . ��]5. [³² . ª ]5.�«�. Ù ( .43 343 Ù Ú ] is a labelled non-cumulative
granular partition and

[ TH; Ù µ ] is a vague rough set then
9ê [ TH; Ù µ ] is the result of apply-

ing the generalization mapping
9ê µ»¶ to

[ TH; Ù µ ] if and only if every crisping of
9ê [ TH; Ù µ ]

is the result of a crisp generalization ê , of a crisping of
[ T>; Ù µ ] .

7 Conclusions and Further Work

In this paper we have shown how the technique of making rough descriptions of a
subset with respect to an equivalence relation can be extended to descriptions with
respect to a granular partition. The work has also revealed a new way of looking at a
granular partition as a generalization of an equivalence relation. In this generalization,
a set of names of equivalence classes is replaced by a tree structure and certain subsets
of the tree are extracted to form labels for equivalence classes. In this way we obtain a
hierarchy of equivalence classes. This is relevant to Spatial Information Theory because
(a) most spatial representations, in particular maps, are granular partitions, (b) those
representations are often hierarchical [PM97]; and (c) because approximations with
respect to sets of equivalence classes are important in order to deal with vagueness and
indeterminacy inherent in many geographic phenomena.

This identification of the way in which the equivalence classes at the various levels
of detail relate to each other is an important contribution. It enables us to understand
the relationship of granular partitions to the stratified map spaces of Stell and Wor-
boys [SW98]. The stratified map space concept is applicable to problems involving level
of detail in temporal data, as for example in the work of Hornsby and Egenhofer [HE99].
The extension to rough descriptions using granular partitions for temporal data is one
area for further work which we intend to pursue.

Another area for further work is to extend the results of this paper to richer structures
than sets. In particular, graphs represent a significant challenge, and have clear connec-
tions with practical issues in spatial information theory. To carry out the extension to
graphs would entail replacing the set which is subjected to the family of equivalence
relations in a granular partition, by a graph. This would require identification of the
appropriate generalization of equivalence relations for the richer context. A number of
possibilities for such a generalization have been discussed in the literature [Ste99], and
it is possible that more than one could be made to work with granular partitions. If the
work were extended in this way, we would expect it to yield new techniques for the
rough description of networks, such as those of roads, railways etc.

Acknowledgements

Support for the first author from the the Wolfgang Paul Program of the Alexander
von Humboldt Foundation and the National Science Foundation Research Grant BCS-



9975557: Geographic Categories: An Ontological Investigation, is gratefully acknowl-
edged. The second author acknowledges support from EPSRC under the project Digital
Geometry and Topology: An Axiomatic Approach with Applications to GIS and Spatial
Reasoning.

References

[Bit03] T. Bittner. Indeterminacy and rough approximation. In Proceedings of FLAIRS 2003.
AAAI Press, 2003.

[BS01] T. Bittner and J. Stell. Rough sets in approximate spatial reasoning. In W. Ziarko and
Y. Yao, editors, Proceedings of the Second International Conference on Rough Sets
and Current Trends in Computing (RSCTC’2000), volume 2005 of Lecture Notes in
Computer Science (LNCS), pages 445–453. Springer-Verlag, 2001.

[BS02] T. Bittner and J.G. Stell. Vagueness and rough location. GeoInformatica, 6:99–121,
2002.

[BS03a] T. Bittner and B. Smith. A theory of granular partitions. In M. Duckham, M. F. Good-
child, and M. F. Worboys, editors, Foundations of Geographic Information Science,
pages 117–151. London: Taylor & Francis, 2003.

[BS03b] T. Bittner and B. Smith. Vague reference and approximating judgments. Spatial Cog-
nition and Computation, 3(2), 2003.

[ES97] M. Erwig and M. Schneider. Partition and conquer. In S. C. Hirtle and A. U. Frank, ed-
itors, Spatial Information Theory, International Conference COSIT’97, Proceedings,
volume 1329 of Lecture Notes in Computer Science, pages 389–407. Springer-Verlag,
1997.

[HE99] K. Hornsby and M. Egenhofer. Shifts in detail through temporal zooming. In
A. Camelli, A. M. Tjoa, and R. R. Wagner, editors, Tenth International Workshop on
Database and Expert Systems Applications. DEXA99, pages 487–491. IEEE Computer
Society, 1999.

[Jon97] C. B. Jones. Geographical Information Systems and Computer Cartography. Long-
man, 1997.

[M c 95] J. C. Müller et al. Generalization - state of the art and issues. In J. C. Müller, J. P.
Lagrange, and R. Weibel, editors, GIS and Generalisation: Methodology and Practice,
pages 3–17. Taylor and Francis, London, 1995.

[MLW95] J. C. Müller, J. P. Lagrange, and R. Weibel, editors. GIS and Generalisation: Method-
ology and Practice. Taylor and Francis, London, 1995.

[MMO90] M. Mislove, L. Moss, and F. Oles. Partial sets. In R. Cooper, K. Mukai, and J. Perry,
editors, Situation Theory and Its Applications I, number 22 in CSLI Lecture Notes,
pages 117–131. Center for the Study of Language and Information, Stanford, CA.,
1990.

[Paw82] Z. Pawlak. Rough sets. Internat. J. Comput. Inform, 11:341–356, 1982.
[PM97] D. Papadias and Egenhofer M. Algorithms for hierarchical spatial reasoning. Geoin-

formatica, 1(3), 1997.
[RS95] P. Rigaux and M. Scholl. Multi-scale partitions: Application to spatial and statistical

databases. In M. Egenhofer and J. Herrings, editors, Advances in Spatial Databases
(SSD’95), number 951 in Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1995.

[Ste99] J. G. Stell. Granulation for graphs. In C. Freksa and D. Mark, editors, Spatial Infor-
mation Theory. Cognitive and Computational Foundations of Geographic Information
Science. International Conference COSIT’99, volume 1661 of Lecture Notes in Com-
puter Science, pages 417–432. Springer-Verlag, 1999.



[SW98] J. G. Stell and M. F. Worboys. Stratified map spaces: A formal basis for multi-
resolution spatial databases. In T. K. Poiker and N. Chrisman, editors, SDH’98 Pro-
ceedings 8th International Symposium on Spatial Data Handling, pages 180–189. In-
ternational Geographical Union, 1998.

[Wor98a] M. F. Worboys. Computation with imprecise geospatial data. Computers, Environment
and Urban Systems, 22:85–106, 1998.

[Wor98b] M. F. Worboys. Imprecision in finite resolution spatial data. GeoInformatica, 2:257–
279, 1998.

[Yao99] Y.Y. Yao. Stratified rough sets and granular computing. In R.N. Dave and Sudkamp.
T., editors, Proceedings of the 18th International Conference of the North American
Fuzzy Information Processing Society, pages 800–804. IEEE Press, 1999.


