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Abstract

We present a formal theory of qualitative distances be-
tween regions based on qualitative size relations. Us-
ing standard mereological relations, a sphere-predicate,
and qualitative size relations such as roughly-the-same-
size-as and negligible-in-size-with-respect-to, we define
qualitative distance relations such as close-to, near-to,
away-from, and far-away-from.

Relations such as roughly-the-same-size-as and
negligible-in-size-with-respect-to are context-
dependent and vague. The primary focus in the
formal theory presented in this paper is on the
context-independent logical properties of these sorts
of qualitative size and distance relations. We are
especially interested in how these relations interact
with familiar mereological relations. In developing
our formal theory, we draw upon work on order of
magnitude reasoning in Artificial Intelligence.

Introduction
Qualitative distance relations such as close-to, near-
to, and far-away are important in geography (Tobler
1970), in Artificial Intelligence (Hernandez, Clementini,
& Di Felice 1995; Clementini, Di Felice, & Hernández
1997; Davis 1989; 1999), spatial cognition (Talmy 1983;
Herskowitz 1986), and other disciplines. Most attempts
to formalize qualitative distance relations are based on
the order of magnitude reasoning pioneered in (Raiman
1988; 1991; Mavrovouniotis & Stephanopoulos 1988;
Dague 1993a; 1993b). Order of magnitude reason-
ing deals with qualitative relations between quantities,
such as roughly-the-same-size-as and negligible-with-
respect-to.

In this paper we present a mereological theory for
domains of spatial regions and extend this theory by
adding qualitative size relations and a ‘sphere’ pred-
icate. In the resulting theory we are able to define
qualitative distance relations such as close-to, near-to
and far-away-from, etc. It is important for characteriz-
ing qualitative distance relations between spatially ex-
tended regions to take the size of the regions into ac-
count. Whether, for example, the relation near-to holds
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between regions x and y which are a fixed quantitative
distance apart depends in part on the sizes of x or y.
For example, let x be negligible in size with respect to
y and suppose that the least distance between points
in x and y is very small with respect to the size of y
but large with respect to the size of x. Then y may be
near to x (on y’s scale) but x might not be near y (on
x’s scale). As pointed out in (Worboys 2001), in many
cases utterances involving qualitative distance relations
between extended objects can be understood only if the
size of the objects is taken into account.

The theory presented in this paper combines a version
of region-based qualitative geometry (RBG) (Tarski
1956; Borgo, Guarino, & Masolo 1996; Bennett et al.
2000) with work from order of magnitude reasoning,
especially (Dague 1993b). It gives a detailed account of
the logical properties of qualitative size and distance re-
lations. We show that qualitative size relations (essen-
tially ordering relations) can be defined within a mere-
ological framework extended by the primitive relations
same-size-as and roughly-the-same-size-as, while quali-
tative distance relations need to be defined within the
stronger framework of region-based geometry.1

Mereology
We present our formal theory of qualitative size and
distance relations in a first-order predicate logic with
identity. Variables range over regions of space. Spatial
regions are here assumed to be parts of an independent
background space in which all objects are located. On
the intended interpretation, regions are the non-empty
regular closed subsets of a three-dimensional Euclidean
space.

We introduce the primitive binary predicate P , where
Pxy is interpreted as: x is part of y. We define: x

1(Bennett 2002) sketches logical properties of region size
measures within the framework of RBG by introducing the
primitive ‘sphere of insignificant size’.

Qualitative size relations are also discussed in (Gerevini
& Renz 1998) in the context of a constraint based frame-
work based on the RCC theory. The paper does not give
an explicit axiomatization of relations such as roughly-the-
same-size-as and negligible-with-respect-to. Neither does it
consider qualitative distance relations.



overlaps y if and only if there is a z such that z is part
of both x and y (DO); x is a proper part of y if and only
if x is a part of y and y is not a part of x (DPP); z is
the sum of x and y if and only if for all w, w overlaps
z if and only if w overlaps x or w overlaps y (D+); z
is the difference of y in x if and only if any region w
overlaps z if and only if w overlaps some part of x that
does not overlap y (D−).

DO O xy ≡ (∃z)(P zx ∧ P zy)
DPP PP xy ≡ P xy ∧ ¬P yx
D+ +xyz ≡ (w)(Owz ↔ (O wx ∨ O wy))
D− − xyz ≡ (w)(O wz ↔

(∃w1)(P w1x ∧ ¬O w1y ∧ O w1w))

We add the usual axioms of reflexivity (A1), antisym-
metry (A2), and transitivity (A3). We also assume the
following existence axioms: if x is not a part of y then
there is a z such that z is a difference of y in x (A4),
for any regions x and y there is a region z that is the
sum of x and y (A5).

A1 P xx
A2 P xy ∧ P yx → x = y
A3 P xy ∧ P yz → P xz
A4 ¬P xy → (∃z)(− xyz)
A5 (∃z)(+xyz)

We can prove: x and y are identical if and only if they
overlap exactly the same regions (T1). We can also
prove that sums and differences are unique whenever
they exist (T2-T3). Together, A4 and T2 ensure that
summation is a functional operator.

T1 x = y ↔ (z)(O zx ↔ O zy)
T2 + xyz1 ∧ + xyz2 → z1 = z2

T3 − xyz1 ∧ − xyz2 → z1 = z2

EMR, extensional mereology for regions, is the theory
axiomatized A1-A5 (Simons 1987; Varzi 1996).

Ordering based on the exact size
In the next two sections, we present a modified ver-
sion of our theory of granular parthood and qualitative
cardinalities (Bittner & Donnelly 2006).2

We use ‖x‖ in the meta-language to refer to the exact
volume size of region x. In the formal theory we intro-
duce the same size relation ∼ where, on the intended

2Axioms A6-A11 correspond to AC7-AC10,AC12,AC13
in (Bittner & Donnelly 2006) (BD06). The axioms are
similar in structure. However in this paper we work in a
mereological framework formalizing size relations between
regions while in BD06 we worked in the framework of fi-
nite non-empty collections formalizing relations on cardi-
nalities of collections. Similarly, A12-A16 correspond to
AC14,AC15,AC17,AC18 in BD06. The axiom A14 of this
paper is a theorem in BD06. Unlike in GP06 we do not in-
clude an axiom constraining the relationships between size
relations the and summation operation. In BD06 granular
parthood for material objects is formalized. The size rela-
tions discussed in the present paper hold between arbitrary
regions and not only between parts.

interpretation, x ∼ y holds if and only if ‖x‖ = ‖y‖.
We then define that the size of x is less than or equal
to the size of y if and only if there is a region z that is
a part of y and has the same size as x (D≤).

D≤ x ≤ y ≡ (∃z)(z ∼ x ∧ P zy)

On the intended interpretation, x ≤ y holds if and only
if ‖x‖ is less than or equal to ‖y‖.

We require: ∼ is reflexive (A6); ∼ is symmetric (A7);
∼ is transitive (A8); if x is part of y and x and y have
the same size then y is part of x (A9); for any x and y,
the size of x is less than or equal to the size of y or the
size of y is less than or equal to the size of x (A10); if
the size of x is less than or equal to the size of y and
the size of y is less than or equal to the size of x, then
x and y have the same size (A11).

A6 x ∼ x
A7 x ∼ y → y ∼ x
A8 x ∼ y ∧ y ∼ z → x ∼ z
A9 P xy ∧ x ∼ y → P yx
A10 x ≤ y ∨ y ≤ x
A11 x ≤ y ∧ y ≤ x → x ∼ y

We can prove: if x is identical to y, then x and y are
of the same size (T4); if x is part of y and y is part of
x, then x and y have the same size (T5); if x is part
of y and x and y have the same size then x and y are
identical (T6); if x is a part of y, then the size of x is
less than or equal to the size of y (T7); ≤ is reflexive
(T8); ≤ is transitive (T9); if the size of x is less than or
equal to the size of y and y and z have the same size,
then the size of x is less than or equal to the size of z
(T10); if z and x have the same size and the size of z is
less than or equal to the size of y then the size of z is
less than or equal to the size of x (T11).

T4 x = y → x ∼ y
T5 P xy ∧ P yx → x ∼ y
T6 P xy ∧ x ∼ y → x = y
T7 P xy → x ≤ y
T8 x ≤ x
T9 x ≤ y ∧ y ≤ z → x ≤ z
T10 x ≤ y ∧ y ∼ z → x ≤ z
T11 z ∼ x ∧ x ≤ y → z ≤ y

Thus, ∼ is an equivalence relation, ≤ is reflexive and
transitive, and ∼, ≤, P , and = are logically interrelated
in the expected ways.

Roughly the same size, negligible in size
We introduce the relations roughly the same size (≈)
and negligible in size (�) as in (Bittner & Donnelly
2006). Let ω be a parameter such that 0 < ω < 0.5. On
one possible class of interpretations, x has roughly same
size as y if and only if 1/(1 + ω) ≤ ‖x‖/‖y‖ ≤ 1 + ω.
x is a negligible in size with respect to y if and only if
‖x‖/‖y‖ is less than ω/(1 + ω).

Consider Figure 1. Values for the size of x range along
the positive horizontal axis and values for the size of y



range along the positive vertical axis. If x and y have
the same size then (‖x‖, ‖y‖) represents a point on the
dotted line. If 1/(1 + ω) ≤ ‖x‖/‖y‖ ≤ 1 + ω (i.e., x has
roughly the same size as y), then (‖x‖, ‖y‖) represents
a point lying within the area delimited by the dashed
lines. If ‖x‖/‖y‖ is smaller than ω/(1 + ω) (i.e., x is
negligible with respect to y), then (‖x‖, ‖y‖) represents
a point lying between the positive vertical axis and the
solid diagonal line.
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Figure 1: Graph for ω = 0.2

Now consider a fixed region y and imagine that dif-
ferent values of ω are appropriate for different contexts.
The smaller the value of ω, the smaller the value of
|‖x‖ − ‖y‖| must be for x to count as close in size to y
and the smaller ‖x‖ must be for x to count as negligi-
ble in size with respect to y. To picture this situation
graphically: the smaller the value of ω, the narrower
the corridor between the dashed diagonal lines in Fig-
ure 1 and also the narrower the corridor between the
solid diagonal line and the positive vertical axis.

We require: ≈ is reflexive (A12); ≈ is symmetric
(A13); if x and y have roughly the same size and y
and z have the same size, then x and z have roughly
the same size (A14); if x and y have roughly the same
size and the size of x is less than or equal to the size of
z and the size of z is less than or equal to the size of y,
then z and x, as well as z and y, have roughly the same
size (A15).

A12 x ≈ x
A13 x ≈ y → y ≈ x
A14 x ≈ y ∧ y ∼ z → x ≈ z
A15 x ≈ y ∧ x ≤ z ∧ z ≤ y → (z ≈ x ∧ z ≈ y)

Notice that unlike (Raiman 1991) and (Dague 1993b)
we do not require ≈ to be transitive. In many of the
intended models of our theory, it is possible to find re-
gions z1, . . . , zn such that x ≈ z1, z1 ≈ z2, ... and
zn ≈ y and but NOT x ≈ y. Hence, adding a transi-
tivity axiom for ≈ would give rise to a version of the
Sorites paradox (Hyde 1996; van Deemter 1995).

We can prove: if x and y have the same size and y
and z have roughly the same size, then x and z have
roughly the same size (T12); if x and y have the same

size, then x and y have roughly the same size (T13).

T12 x ∼ y ∧ y ≈ z → x ≈ z
T13 x ∼ y → x ≈ y

Region x is negligible in size with respect to region y
if and only if there are regions z1 and z2 such that (i)
x and z1 have the same size, (ii) z1 is a part of y, (iii)
z2 is the difference of z1 in y and (iii) z2 and y have
roughly the same size (D�).

D� x � y ≡ (∃z1)(∃z2)(z1 ∼ x ∧ P z1y ∧
−yz1z2 ∧ z2 ≈ y)

As pointed out above, when ≈ is interpreted so that
z ≈ y holds if and only if 1/(1 + ω) ≤ ‖z‖/‖y‖ ≤ 1 + ω,
then x � y holds if and only if ‖x‖/‖y‖ is smaller than
ω/(1 + ω).

We require that if x is negligible with respect to y
and the size of y is less than or equal to the size of z,
then x is negligible with respect to z (A16).

A16 x � y ∧ y ≤ z → x � z

We can prove: if x is negligible with respect to y, then
x is smaller than y (T14); if the size of x is less than
or equal to the size of y and y is negligible with respect
to z, then x is negligible with respect to z (T15); if x
is a part of y and y is negligible with respect to z, then
x is negligible with respect to z (T16); if x is negligible
with respect to y and y is part of z, then x is negligible
with respect to z (T17); � is transitive (T18).

T14 x � y → (x ≤ y ∧ x 6∼ y)
T15 x ≤ y ∧ y � z → x � z
T16 P xy ∧ y � z → x � z
T17 x � y ∧ P yz → x � z
T18 x � y ∧ y � z → x � z

Thus, the relation negligible-in-size-with-respect-to has
the expected logical properties. We call the theory,
which extends EMR by axioms A6-A16, QSizeR.

Spheres and connectedness
We introduce the primitive predicate S where S x is
interpreted as x is a sphere. We define: x is maximal
with respect to y in z if and only if (i) x, y, and z are
spheres, (ii) x and y are non-overlapping parts of z,
and (iii) every sphere u that has x as a part either is
identical to x, overlaps y, or is not a part of z (DMx).
x is a concentric proper part of y if and only if (i) x
and y are spheres, (ii) x is a proper part y and (iii) all
spheres that are maximal with respect to x in y have
the same size (DCoPP).

DMx Mx xyz ≡ S x ∧ S y ∧ S z ∧
P xz ∧ P yz ∧ ¬O xy ∧
(u)(S u ∧ P xu → (x = u ∨ O uy ∨ ¬Puz)

DCoPP CoPP xy ≡ S x ∧ S y ∧ PP xy ∧
(u)(v)(Mx uxy ∧ Mx vxy → u ∼ v))

We require that the following spheres exist: Every re-
gion has a sphere as a part (A17). Every sphere has a



concentric proper part (A18). If sphere x is a proper
part of sphere y then there is a sphere z that is maximal
with respect to x in y (A19).

A17 (∃z)(S z ∧ P zx)
A18 S x → (∃y)(S y ∧ CoPP yx)
A19 S x ∧ S y ∧ PP xy → (∃z)(Mx zxy)

Similar to (Bennett et al. 2000) we then define that
two regions x and y are connected if and only if there is
a sphere z that overlap x and y and all spheres that are
concentric proper parts of z also overlap x and y (DC).

DC C xy ≡ (∃z)(S z ∧ O zx ∧ O zy ∧
(u)(CoPP uz → (O ux ∧ O uy))

On the intended interpretation, the connection relation
C holds between regions x and y if and only if the dis-
tance between them is zero (where the distance between
regions is here understood as the greatest lower bound
of the distance between any point of the first region and
any point of the second region).

We can prove that C is reflexive (T18a), symmet-
ric (T18b), and that if x is part of y, then everything
connected to x is connected to y (T18c).

T18a C xx
T18b C xy → C yx
T18c P xy → (z)(Czx → Czy)

We call the theory formed by axioms A1-A11 and A17-
A19 region-connection geometry RCG.

Qualitative distance relations

We now use the sphere primitive, the connectedness
relation, and the qualitative size relations of QSizeR
to define qualitative distance relations such as close-to,
near-to, and away-from.

Region x is close to region y if and only if either x
and y are connected or there is a sphere z such that z
is connected to both x and y and z is negligible in size
with respect to x (DCl). x is strictly close to y if and
only if x is close to y but not connected to y (DSN). x
is near to y if and only if either x and y are connected
or there is a sphere z such that z is connected to x and
y and the size of z is less than or equal to the size of
x (DN ). x is strictly near to y if and only if x is near
to y but not close to y (DSN). x is away from y if and
only if x is not near to y (DA). x is far away from y if
and only if (i) x and y are not connected and (ii) there
is a sphere z such that z is connected to x and y, and
(iii) x is negligible in size with respect to all spheres w
that are connected to x and y (DFA). x is moderately
away from y if and only if x is away from y but not far

away from y (DMA).3

DCl Cl xy ≡ C xy ∨
(∃z)(S z ∧ C zx ∧ C zy ∧ z � x)

DSCl SCl xy ≡ Cl xy ∧ ¬C xy
DN N xy ≡ C xy ∨

(∃z)(S z ∧ C zx ∧ C zy ∧ z ≤ x)
DSN SN xy ≡ N xy ∧ ¬Cl xy
DA A xy ≡ ¬N xy
DFA FA xy ≡ ¬C xy ∧ (∃z)(S z ∧ C zx ∧ C zy) ∧

(w)(S w ∧ C wx ∧ C wy → x � w)
DMA MA xy ≡ A xy ∧ ¬FA xy

Let d(x, y) be the greatest lower bound of the distance
between any point of x and any point of y and let d‖x‖
be the diameter of a sphere of size ‖x‖. When ≈ is
interpreted so that z ≈ y holds if and only if 1/(1+ω) ≤
‖z‖/‖y‖ ≤ 1 + ω, then the distance relations defined
above hold for the distance ranges specified in Table 1.

Relation holds for distance ranges
Cl xy 0 ≤ d(x, y) ≤ (ω ∗ d‖x‖)/(1 + ω)
SCl xy 0 < d(x, y) ≤ (ω ∗ d‖x‖)/(1 + ω)
N xy 0 ≤ d(x, y) ≤ d‖x‖
SN xy (ω ∗ d‖x‖)/(1 + ω) < d(x, y) ≤ d‖x‖
A xy d‖x‖ < d(x, y)
FA xy (d‖x‖ ∗ (1 + ω))/ω < d(x, y)
MA xy d‖x‖ < d(x, y) ≤ (d‖x‖ ∗ (1 + ω))/ω

Table 1: Distance ranges for which the qualitative dis-
tance relations hold on the intended interpretation in
context ω. (In this table < and ≤ refer to the total
(strict) ordering on the real numbers.)

Consider Figure 2. In the center of the concentric cir-
cles there is the circle-shaped region x of size ‖x‖ and
radius r(x). In the center of x is the origin of our coordi-
nate system. Using our qualitative distance relations we
can identify the following nested ring structure around
x for every context ω: The relation strictly-close holds
between x and any region y which has points in the SCl-
ring (the ring between r(x) and r(x)+(ω∗d‖x‖)/(1+ω)
excluding the boundary r(x)).

The relation strictly-near holds between x and any
region y which has points in the SN-ring (in the ring
between r(x) + (ω ∗ d‖x‖)/(1 + ω) and r(x) + d‖x‖, ex-
cluding the boundary r(x) + (ω ∗ d‖x‖)/(1 + ω)).

The relation moderately-far-away holds between x
and any region y which has points in the MA-ring (the
ring between r(x) + d‖x‖ and r(x) + (d‖x‖ ∗ (1 + ω))/ω,
excluding the boundary r(x) + d‖x‖).

The relation far-away holds between x and any region
y which has all points in the FA-ring (outside the circle
with radius r(x) + (d‖x‖ ∗ (1 + ω))/ω).

3Notice that, unlike the other distance relations, N
and A are crisp, i.e., their interpretations do not de-
pend on ω (See also Table 1). A possible definition that
takes the vagueness of ‘near’ better into account may be
N ′ xy ≡ C xy ∨ (∃z)(S z ∧ C zx ∧ C zy ∧ z ≈ x).
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Figure 2: Qualitative distance diagram for a circular
region x.

The following theorems are immediate consequences
of our definitions: x is close to y if and only if x is
connected to y or x is strictly close to y (T19); if x
and y are connected then x and y are not strictly close
(T20); x is near to y if and only if x is close to y or x is
strictly near to y (T21); if x and y are close then x and
y are not strictly near (T22); x is away from y if and
only if x moderately away from y or x is far away from
y (T23); if x and y are moderately away then x and y
are not far away (T24).

T19 Cl xy ↔ (C xy ∨ SCl xy)
T20 C xy → ¬SCl xy
T21 N xy ↔ (Cl xy ∨ SN xy)
T22 Cl xy → ¬SN xy
T23 A xy ↔ (MA xy ∨ FA xy)
T24 MA xy → ¬FA xy

The implication hierarchy and the sets of jointly ex-
haustive and pair-wise disjoint relations which follow
from these theorems are pictured graphically in Figure
3.

⊥

C SCL SN MA FA

CL

N A

⊤

{C,SCL,SN,MA,FA}

{CL,SN,MA,FA} {C,SCL,SN,A}

{CL,SN,A}

{N,A}

Figure 3: Implication hierarchy of the qualitative dis-
tance relations (left). Sets of JEPD qualitative distance
relations (right).

We can also prove that Cl and N are reflexive and
that SCl, SN, A, MA, and FA are irreflexive.

Notice that NONE of the defined distance relations
is symmetric. For example, a road-sized region may be
(on the scale of the road) close to a pebble-sized region
in an adjacent ditch, even if the pebble-sized region is
not (on the scale of the pebble) close to the road-sized
region. However we can prove: if the size of x is less
than or equal to y and x is close to y then y is also close
to x (T25); if the size of x is less than or equal to y and
x is strictly close to y then y is strictly close to x (T26);
if the size of x is less than or equal to y and x is near to
y then y is near to x (T27); if the size of x is less than or
equal to y and x is strictly near to y then y is near to x
(T28); if the size of x is equal to y and x is strictly near
to y then y is strictly near to x (T29); if the size of y is
less than or equal to x and x and y are away from one
another then y and x are away from one another (T30);
if the size of y is less than or equal to x and x and y are
far away then y and x are far away (T31); if the size of
y is less than or equal to x and x and y are moderately
away then y and x are away (T32); if the size of y is
equal to the size of x and x and y are moderately away
then y and x are moderately away (T33).

T25 x ≤ y ∧ Cl xy → Cl yx
T26 x ≤ y ∧ SCl xy → SCl yx
T27 x ≤ y ∧ N xy → N yx
T28 x ≤ y ∧ SN xy → N yx
T29 x ∼ y ∧ SN xy → SN yx
T30 y ≤ x ∧ A xy → A yx
T31 y ≤ x ∧ FA xy → FA yx
T32 y ≤ x ∧ MA xy → A yx
T33 x ∼ y ∧ MA xy → MA yx

Theorems T25-T33 reflect the logical interrelationships
between the qualitative distance relations and the rela-
tive size of the regions involved.

We can also prove the following theorems about logi-
cal interrelationships between parthood and the various
qualitative distance relations: if x and y are close and
z has y as a part then x and z are close (T34); if x and
y are near and z has y as part then x and z are near
(T35); if x is a part of y and y and z are away then x
and z are away (T36).

T34 Cl xy ∧ P yz → Cl xz
T35 N xy ∧ P yz → N xz
T36 P xy ∧ A yz → A xz

We call the theory which extends QSizeR and RCG by
the definitions for qualitative distance relations QDistR.

Conclusions
We have presented an axiomatic theory of qualitative
size and distance relations between regions. The the-
ory is based on the formal characterization of the prim-
itive predicates and relations: part-of (P ), sphere (S),
exactly-the-same-size (∼), and roughly-the-same-size
(≈). In our theory, we are able to formally distinguish:
i) regions that are negligible in size with respect to one
another, ii) regions that are close, near, far away, etc.



We thereby extend existing work on mereo-geometries
and order of magnitude reasoning.

The axiomatic theory presented in this paper is
part of the top-level ontology ‘Basic Formal Ontology’
(BFO). BFO is developed using Isabelle, a computa-
tional system for implementing logical formalisms (Nip-
kow, Paulson, & Wenzel 2002). The computational
representation of BFO consists of several hierarchically
organized sub-theories. An automatically generated
WEB presentation of the theory containing all axioms,
definitions, theorems, and the computer-verified proofs
can be accessed at http://www.ifomis.org/bfo/fol.

Relations such as roughly-the-same-size-as,
negligible-in-size-with-respect-to, close-to, far-away,
etc, are context-dependent and vague. Context is
represented abstractly in numerical parameters which
determine the canonical interpretations of the qualita-
tive size and distance relations of the formal theory.
Although the canonical models use precise numerical
parameters for fixing the interpretations, it is not
expected that precise numerical parameters are fixed in
actual practical contexts. Since the qualitative size and
distance relations are vague, in many cases (at best)
we can associate contexts demanding high precision
with a different range of numerical parameters than
contexts requiring only loose precision.

Since the logical properties of the relations of our
theory are valid over a range of numerical parameters,
the formal theory can be used for reasoning even where
qualitative size and distance relations lack precise nu-
merical definitions. Thus the primary focus in the for-
mal theory presented in this paper is on the context-
independent logical properties of these sorts of quali-
tative size and distance relations and the logical inter-
relations among one another and the mereotopological
relations.
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