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Abstract

To fix the semantics of different kinds of parthood rela-
tions we require axioms which go beyond those char-
acterizing partial orderings. I formulate such axioms
and show their implications for bio-ontologies. Specif-
ically, I discuss parthood relations among masses,
for example among body substances such as blood
and portions thereof, and among components of com-
plexes, for example between your stomach and your
gastro-intestinal system. I contrast these with the rela-
tion of being contained in (as your lungs are contained
in your thorax).
The axioms considered are rooted in mereology, the
formal theory of parts and wholes. By making ex-
plicit the differences between the different kinds of re-
lations they support different kinds of data integration
in bioinformatics.

Introduction
The growth of bioinformatics has led to an increasing
number of evolving ontologies which must be corre-
lated with the existing terminology systems developed
for clinical medicine. A critical requirement for such
correlations is the alignment of the fundamental onto-
logical relations used in such systems, and especially
of the relation of part-of [16, 26].
However, there is one problem that stands in the way of
achieving such integration: existing terminology sys-
tems and ontologies are marked by an inadequate de-
gree of semantic consistency at their foundations [27].
The ambiguities and inconsistencies which result from
the lack of a standard unified framework for under-
standing the basic ontological relationships that struc-
ture these domains are an obstacle to ontology align-
ment and data integration, and thus also to the sort of
automatic processing of biomedical data which is the
presupposition of advances in this field.
Part-whole relations play a critical role in medical con-
cept representation. As Rogers and Rector [20] point
out, this is most obvious in the modeling of anatomy;

but it also true of the representation of surgical pro-
cedures, as well as of many physiological and disease
processes, as also of the chemical pathways which lie
beneath all of these.

Part-whole relations have long been the subject of ex-
tensive study in philosophy [2, 24], linguistics [31],
knowledge representation [10, 9], and more recently
in bio-informatics [11, 22, 20, 17]. In particular, it has
long been recognized that several different subtypes of
the part-of relation may be identified [19, 31, 9, 13].
This recognition underlies the modeling of the part-
of relation in GALEN [20] and in the Foundational
Model of Anatomy (FMA) [21, 16]. All such relations
are, when taken singly, treated formally as partial or-
derings. However there does not exist a formal treat-
ment of what distinguishes such relations one from an-
other.

In this paper I give axiomatic theories for three sorts
of partial ordering relations: (i) the component-of re-
lation between components and the complexes they
form (my mouth, my oropharynx, and my gastro-
intestinal system are components of my alimentary
system); (ii) part-of relations among masses such as
body-substances in the sense of FMA (the blood in
your left ventricle is part of the blood in your body);
and (iii) containment relations (my brain is contained
in my skull, my lungs are contained in my thorax).

The formal characterization will be purely mereolog-
ical and will exploit the classification of formal theo-
ries given for example by Simons [23] or Varzi [29].
Thus no resources from topology or geometry are re-
quired. Moreover, in all that follows I consider entities
at a single moment in time. The full formal charac-
terization of all the part-whole relations contained in a
system like the FMA or GALEN will need to go fur-
ther than what is presented here. Distinctions of the
type here discussed will however be indispensable to
further progress in this field.



Partial ordering structures
In this paper formal theories of different kinds of par-
tial order relations are discussed. Each of the theo-
ries is presented in a single-sorted first-order predi-
cate logic with identity. I use the letters ����� , and �
for variables. Predicates always begin with a capital
letter. The logical connectors � ���	��
���
��������
have their usual meanings: not, identical-to, and, or,
if . . . then, if and only if (iff). I write � ��� to symbol-
ize universal quantification and ��� ��� to symbolize ex-
istential quantification. Leading universal quantifiers
are assumed to be understood and are omitted.

Properties of partial orderings
I introduce the binary primitive ����� interpreted as
the generic relation of proper partial ordering, i.e., �
stands to � in the relation of proper partial ordering.
In terms of � , I define the relations of (improper) par-
tial order and overlap: � and � are in the relation of
improper partial order iff either ����� or � and � are
identical ( ��� ); � and � overlap iff they share a com-
mon entity in the partial ordering hierarchy ( �! ):
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I now add axioms to the effect that the relation of
proper partial ordering, � , is asymmetric and transi-
tive (APO1-APO2).
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It then follows that proper partial ordering is irreflex-
ive (TPO1) and that (improper) partial ordering " is
reflexive, antisymmetric, and transitive (TPO2-4)1:
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Examples of partial ordering structures
I now discuss three examples of partial order relations:
the component-of relation, the containment relation,
and the part-of relation as it holds between masses.

The complement-of relation. Consider the
component-of relation between components and
complexes of my alimentary system. Figure 1 shows
the component-of structure of my alimentary system
according to the FMA [21]. My mouth, my orophar-
ynx, and my gastrointestinal system are components

1The formal proofs are omitted here but can be obtained
from the author.

of my alimentary system. In general, the nodes F andG
in the graph structure are connected by an arrow iff

entity F is a component of the complex
G
.

my Alimentary System

my Mouth my Oropharynx my Gastrointestinal system

my Upper gastrointestinal tract my Lower gastrointestinal tract

my Stomach my Duodenum my Esophagus

Figure 1: Component-of relations between the compo-
nents of my Alimentary system

To see that the component-of relation satisfies the ax-
ioms of proper partial orderings (APO1-2) consider
that components are distinct from the complexes they
form. Since my stomach is a component of my ali-
mentary system, the alimentary system is not a com-
ponent of my stomach. Also the alimentary system is
identical to itself but not a component of itself. More-
over, the component-of relation is transitive. My stom-
ach is a component of my upper gastro-intestinal tract.
My upper gastro-intestinal tract is a component of my
gastro-intestinal system. And also my stomach is a
component of my gastro-intestinal system.
As an example for overlap of complexes consider the
alimentary system and the respiratory system accord-
ing to the FMA. Both have the oropharynx as a compo-
nent and hence overlap in the sense of definition �  .

Containment is the second example of a proper par-
tial ordering relation. For a non-medical example
consider the relation between your backpack and the
books therein, or the relation between your wallet and
the coins therein, or the relation between the coins and
the backpack in the case where the wallet with the
coins is in the backpack.
For a medical example of containment consider the re-
lation which holds between my pericardial sac and my
thorax in the sense that my thorax forms a container
for my pericardial sac, which in turn is contained in
my thorax (Figure 2). The same relation of contain-
ment holds between my heart and my pericardial sac in
the sense that my pericardial sac is a container for my
heart. Clearly, containment understood in this sense
is asymmetric and transitive. For example. The peri-
cardial sac is a container for my heart, but the latter is
not a container for the former. Since my heart is con-



tained in my pericardial sac and my pericardial sac is
contained in my thorax, and it also holds that my heart
is contained in my thorax.

my Thorax

my Pericardial sac my Lung ...

my Heart

a volume of blood

a volume of air

Figure 2: Containment relations

Notice that the interpretation of the containment rela-
tion employed here is different from those in the FMA
[7] and GALEN [8]. Both interpret containment as a
relation between an entity and (a part of) a space that
is enclosed by a container. For example for GALEN
[8] the heart is contained in the mediastinum, which is
a part of the thoracic space.
Here, in contrast, the relation of containment always
holds between entities – the contained entity (e.g., a
volume of blood) and the container (e.g., my heart).
Containers can themselves be contained in other con-
tainers (e.g., my heart is contained in my pericardial
sac, which in turn is contained in my thorax).
Containers have properties, like having-a-cavity,
which distinguish them from non-containers. The
characterization of those properties, however, is be-
yond the realm of mereology. This requires at least the
resources of topology and a theory of location [3, 6].
The advantage of the interpretation applied here is
fourfold. Firstly, we focus on what containment means
and not on what a container is. The former question
can be answered within a mereological framework the
latter cannot. Secondly we need only a single category
in order to characterize containment – entities. In the
interpretation of containment applied in the FMA and
in GALEN one needs (at least) two categories: con-
tained entities like the heart; and regions, like the tho-
racic space, which are enclosed by container-like en-
tities. Thirdly, representing containment as relation of
partial order between entities allows us to characterize
the similarities and differences between parthood and
containment in a very explicit manner.
Fourthly, representing containment as relation be-
tween entities allows us to distinguish it from the re-
lation of location, which holds between entities and
regions [4]. Often both relations are used in combi-
nation, for example, in order to say that the heart is
contained in the thorax and within the thorax it is lo-
cated in a region to which we refer to as the middle

mediastinum, and which is a part of the region which
is enclosed by the thorax. In general for specifying
the semantics of relations in complex systems like the
FMA or GALEN it is important to characterize rela-
tions in separation first by employing the simplest pos-
sible theory. Complex relations then can be described
by combining the theories characterizing the compo-
nents of the complex relation.

The parthood relation among masses is the third
example of a partial ordering relation. Examples of
masses are body-substances like saliva, semen, cere-
brospinal fluid, inhaled air, urine, feces, blood, plasma,
etc. The relation I have in mind here is the relation
which holds between the blood in my body and the
blood in my left ventricle. Notice that we do not have
a relation of containment here. Rather names of con-
tainers like ‘my body’ or ‘my left ventricle’ are used
here only in order to refer to certain quantities or por-
tions of the blood in my body at a certain moment in
time.
One can now verify that the parthood relation among
masses is a proper partial ordering relation: the blood
in my heart is a proper part of the blood in my body
(but not vice versa), the blood in my right ventricle is
a proper part of the blood in my heart, and the blood in
my right ventricle is a proper part of the blood in my
body.
From these examples we can see that all three relations
share the property that they form partial ordering struc-
tures. Yet they are quite different in nature. It will our
task in the remainder of this paper to characterize these
distinctions formally.

Complexes
The characteristic property of complexes is that we can
represent their partonomic structure using trees as in-
dicated in Figure 1.
The formal theory of the relation component-of em-
ploys a binary primitive � � ��� � which is interpreted
as ‘the entity � is a component(-part) of the entity � ’.
We then add the axioms for asymmetry and transitivity
for � ��� (ACP1-2)
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together with definitions for the improper component-
of relation (which includes identity) and for
component-overlap (D ���	� and D  
��� )
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One can see that these axioms and definitions are ex-
actly analogous to what was presented in the section



on properties of partial orderings. As shown above it
then follows that the component-of relation, � ��� , is
irreflexive and that " ��� is a partial ordering.

Axioms for the tree structure

We now characterize the specific character of the
component-of relation beyond the fact that it has the
structure of a (proper) partial ordering. We do so
by adding axioms which constrain the partial order in
such a way that the resulting component-of hierarchy
is a finite tree structure.
For this purpose we introduce two additional predi-
cates, one which holds for the root of the tree structure
( � rootcp ) and another which holds for atomic compo-
nents, i.e., entities without a component ( � Atcp ).

� rootcp rootcp
��$ � �/� � �%" ��� ���

� Atcp Atcp
��$ � ��� �/� � �%� ��� ���

The component-of relation " ��� is now governed
by further axioms in addition to ACP1-2 (the � ��� -
counterparts of APO1-2). These additional axioms fall
into two groups, axioms which enforce the tree struc-
ture and the finiteness of this structure respectively. We
start by discussing the first group:
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�2��@3 C , ��� � �+� � �B" ��� �6
:�%� ��� ���2��@3�� ��� ��� �+� ���/� � ��� � ��� �6
 �:, ��� � � �

ACP3 demands that every component-tree has a root.
Using the antisymmetry of " ��� we can then prove
that there exists exactly one root. This rules out the
structure in Figure 3(d) from being a component-of
tree.
ACP4 is a version of what I shall call the no-partial-
overlap principle (NPO). It rules out the possibility of
partial overlap of components by demanding that if the
complexes � and � share a common component then
either � is a component of � , or � and � are identical,
or � is a component of � . From this it follows that
cycles like the one shown in Figure 3(c) cannot occur
in component-of-trees.
Notice that the no-partial-overlap principle (NPO) also
rules out the possibility that two different body sys-
tems which overlap (like the respiratory system and
the alimentary system which share the component
oropharynx) can exist within in the same component-
of tree. This is because the two systems belong to dis-
tinct partitions of the human body (in the sense of the
theory of granular partitions [1]), which is to say to
different anatomical views or perspectives.
For example, the respiratory system has as components
everything that is involved in the respiration process,

and the alimentary system has as components every-
thing that is is involved in the process of nutrition in-
take, digestion, and excretion. Clearly, there are parts
of the body which have multiple functions, and there-
fore are components of different bodily systems. Each
system has its own component-of tree with the partic-
ular system as a whole as the root. This corresponds
to the view defended by Rector et al. [18] who argue
that it is an important aspect of the design of ontolo-
gies to represent different views by means of separate
tree structures.

root

a b

c d e f

(a) Component tree

root

a

(b)
Chain

root

a b

c d f

(c) Partial
overlap
(cycles)

a

c d e

b

f

(d) Multiple roots

Figure 3: Component trees and non-trees.

ACP5 demands that if � is a component of � then there
exists a component � of � such that � and � do not
overlap. This rules out cases where a complex has only
a single proper component. In particular, it rules out
graphs like the one shown in Figure 3(b) from being
representations of component-of trees. ACP5 is a ver-
sion of what, following Simons [23], I call the weak
supplementation principle (WSP).

The second group of axioms that characterizes the
component-of relation beyond the properties of being
a partial ordering are axioms which enforce the finite-
ness of the component tree. ACP7 ensures that every
complex has at least one atom as component. This en-
sures that no branch in the tree structure is infinitely
long [30, 15]. Finally ACL8 is an axiom schema which
enforces that every complex is either an atom or has
only finitely many components. This ensures that com-



ponent trees cannot be arbitrary broad.
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Extensionality

Extensionality is a property of the component-of rela-
tion which tells us that two complexes are identical if
and only if they have the same components. For ex-
ample if the complex F : has the components A and B
and the complex FDC has the components A and B then
F : and FDC are the same complex. This kind of reason-
ing might seem trivial from a human perspective, but
it may be very useful to enable a computer to identify
and to distinguish complexes by means of their com-
ponents. Moreover, when specifying the semantics of
the component-of relation it is important that the prop-
erty of extensionality is covered by the formalism.
In this context it is important to stress once more that
we here assume an atemporal framework in which we
consider reality only as it exists at a single moment in
time. This means that we do not take into account the
fact that a complex can have different components at
different times. For example, I might lose one of my
fingers but still my hand before and after the accident
are the same complex. How things preserve their iden-
tity while undergoing changes in this way is a difficult
and controversial subject. For discussions see for ex-
ample [28, 12, 14].
Given the above axioms for the component-of rela-
tions, we can in fact prove that it has the property of
extensionality. This is because, using ACP1, ACP2,
ACP4, and ACP5, we can prove that two complexes
are identical if and only if they have the same compo-
nents (TCP1). Moreover using ACP6 we can prove in
addition that two complexes are identical iff they have
the same atomic components (TCP2).
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Notice that neither TCP1 nor TCP2 is derivable from
the axioms for a partial ordering alone. Both are conse-
quences of the partial ordering axioms in conjunction
with the specific axioms which we added in order to
characterize the component-of relation. Consequently,
relations which are only characterized to be a partial
ordering may or may not be extensional in the sense
described above. Therefore omitting axioms ACP3-7

means leaving important properties of the relation in
question unspecified.
To be sure, the principles discussed here are built im-
plicitly into systems like the FMA or GALEN. The
important point, however, is that in order to explicate
relations like component-of it is critical to make such
axioms explicit.
Theorem TCP2 is also interesting from a computa-
tional perspective. Clearly, when comparing com-
plexes it is much easier to check the identity only of
atomic components rather than of all components.

Parthood among masses
An important aspect of entities classified as masses is
that they do not have any compositional structure. This
means that parts can be carved out from the original
mass in an arbitrary fashion. Consider, for example,
body-substances like blood, plasma, urine, etc. They
can be separated arbitrarily into quantities, for exam-
ple, by pouring them into containers or – abstractly
– by applying fiat boundaries [25]. According to the
FMA [7] we can distinguish, for example, the blood in
containers like my right ventricle, my artery, my coro-
nary artery, and so on; we can apply fiat boundaries
and distinguish the blood in the left part and the right
part of my body or the blood in the upper and lower
parts of my body. All these operations carve out parts
or quantities of the original mass. (See also [9].)
We start the formal treatment of the parthood rela-
tion among masses by introducing the binary primi-
tive �B�FE � which is interpreted as ‘the mass � is a
proper part of the mass � ’. We then add the axioms
for asymmetry and transitivity (referred to as AM1-2)
together with definitions for the improper parthood re-
lation and for overlap (referred to as �  HG and � �1G ,
respectively) along the lines discussed in the opening
paragraphs of the section on complexes. In this section
we omit the statement of those axioms and definitions.
As discussed above we then can prove that " E is a
partial ordering relation.
In contrast to the component-of relation, the parthood
relation among masses does not form a tree struc-
ture. This is because partial overlap can occur between
masses. Consider, for example, the relation of over-
lap between the blood in the left part of my body and
the blood in the upper part of my body. They partly
overlap since they share a common quantity of blood,
namely the blood in the upper left part of my body,
but neither is part of the other. Consequently, we can-
not have the no-proper-overlap principle (NPO) as an
axiom or theorem in our theory of ��E .
On the other hand we clearly need the weak supple-
mentation principle (WSP) to be an axiom or theorem
of such a theory, since WSP ensures that there cannot



be a mass that has a single proper part. Adding WSP as
an axiom to this theory, however, is insufficient if we
want to be able to identify and to distinguish masses
in terms of their proper parts by means of a principle
of extensionality similar to the one for complexes dis-
cussed above. (For details on why this is the case see
[23].)
In order to characterize "�E beyond its structure as a
partial ordering we add an axiom to the effect that if �
is not a part of � then there exists a � such that � is part
of � and � does not overlap � (AM3).

2�� ? � �B"FE �%� ���/� � ��� "FE ��
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To see that AM3 is a sensible axiom consider the blood
in my heart and the blood in my left ventricle. Clearly,
the former is not a part of the latter. Moreover, the
blood in my heart has parts, for example the blood in
my right ventricle, which do not overlap with the blood
in the left ventricle.
Using AM3 we can then prove the � E -counterpart
of the weak supplementation principle (WSP) as a the-
orem (TM1), which then ensures that there cannot be a
mass that has a single proper part. Using AM4 we can
also prove that two masses are identical if and only if
they have the same proper parts (TM2).
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Consequently, the property of extensionality holds for� E .
The theory governing the compositional structure of
masses, formed by AM1-3 together with the defini-
tions for " E and , E , is known in the literature as
extensional mereology [23].

Containment
Consider Figure 2. Here we have a sequence of nested
containers: my heart, containing a certain quantity of
blood; my pericardial sac containing my heart; my tho-
rax containing, among other anatomical entities, my
pericardial sac. As pointed out above, containment un-
derstood in this sense is irreflexive, asymmetric, and
transitive.
In our theory of containment we now introduce a bi-
nary primitive �B� ��� � , which is interpreted as ‘the en-
tity � is contained in the entity � ’ together, with the
axioms of asymmetry and transitivity (referred to as
ACT1-2). We also add the usual definitions for over-
lap , ��� and for improper containment which includes
identity " ��� , exactly analogous to those in the open-
ing paragraphs of the section on complexes. We then
can prove that " ��� is a partial ordering relation.

Notice that, in contrast to the case of masses and com-
plexes, we cannot here have the weak supplementation
principle (WSP) either as an axiom or as a theorem
in a theory of containment. This is because there are
examples of containers with only one contained entity:
my brain is contained in my skull; my sister is carrying
a single baby in her uterus; my pericadial sac contains
my heart as the only entity, etc. Those examples would
be ruled out by a theory which contained WSP.
On the other hand, our theory of containment should
permit us to identify or distinguish containers – at a
given point in time – by means of the entities they con-
tain. We therefore add an axiom to the effect that if (i)� has at least one contained entity, and (ii) every entity
contained in � is also contained in � , then � is con-
tained in � (ACT3).
2 � = ? � �.�/� � � � ��� �B
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The idea of modeling containment using the axioms
ACT1-3 is due to Brock Decker. For details see [5].
Using the definition of " ��� and the axioms ACT1-
3 we can now prove that two containers � and � are
identical iff they are non-empty and they contain the
same entities (TCT1):
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Consider Figure 2. Like complexes, containers form
tree-like structures in the sense that (1) there is a max-
imal container and (2) containers do not partially over-
lap. The structure is tree-like since there can be con-
tainers with only a single contained entity and hence
nodes with a single child node in the corresponding
tree representation (as the one shown in Figure 3(b)).
Formally we define predicates for the root, rootct, and
for atoms, Atct, in terms of " ��� exactly analogous to
the definitions � rootcp and � Atcp in the section on com-
plexes.

� rootct rootct
�B$ � �1� � �%" ��� ���

� Atct Atct
�B$ � ��� �1� � �!� ��� ���

The root here is understood as the maximal container
and atoms are understood as entities which themselves
do not contain any other entities.
We then add axioms ACT4 and ACT5 in terms of
rootct

��� ��� ��" ��� and , ��� exactly analogous to ACP3
and ACP4.2 � = C �.� ��� rootct

�2 � = � , ��� � �+� � ��" ��� �	
)�+� ��� ���
Here ACT4 enforces the existence of a root container.
ACT5 is an instance of the no-partial-overlap principle
(NPO) and rules out the partial overlap of containers.



Finally we add axioms ACT6 and ACT7 enforc-
ing the condition that the resulting tree-like contain-
ment structures are finite. ACT6+7 are the � ��� -
counterparts of ACP6+7.
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Conclusions

The theories of the component-of, mass-part-of, and
contained-in relations presented in this paper share the
fact that they all are partial orderings and satisfy the
principle of extensionality. (In Table 1 this is indicated
by the + symbols.) That the principle of extensionality
is satisfied means that at a given moment in time we
can identify and distinguish masses in terms of their
proper parts, complexes in terms of their components,
and containers in terms of the entities they contain.
The fact that this kind of reasoning is permitted, how-
ever is not implied by the underlying partial ordering
structure. Other principles needed to be added in or-
der to support this kind of reasoning. I showed that the
same principles allow us to distinguish these relations
formally.

relation part. order WSP NPO EXT
component-of + + + +
mass-part-of + + � +
contained-in + � + +

Table 1: Theories of partial ordering relations and their
underlying principles.

The principles which allow us to distinguish the
three relations are the weak supplementation princi-
ple (WSP) and the no-proper-overlap (NPO) principle.
The former holds in the theories of the component-of
and the mass-part-of relations but not in the theory of
the contained-in relation (indicated by the � symbol).
The weak supplementation principle in the theories of
component-of and mass-part-of tells us that a mass or
a complex cannot have a single proper part or compo-
nent. The no-partial-overlap principle in the theories
of component-of and contained-in tells us that there
cannot be partial overlap among components of com-
plexes and among containers.
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