
A temporal mereology for distinguishing between integral objects and portions of
stuff

Thomas Bittner1,2,3,4 and Maureen Donnelly1,3

1Department of Philosophy,2Department of Geography
3New York State Center of Excellence in Bioinformatics and Life Sciences

4National Center of Geographic Information and Analysis (NCGIA)
State University of New York at Buffalo

{bittner3,md63}@buffalo.edu

Abstract

We develop a formal theory of mereology that in-
cludes relations that change over time. We show
how this theory formalizes reasoning over domains
of material objects, which include not only integral
objects (my computer, your liver) but also portions
of stuff (the water in your glass, the blood in a vial).
In particular, we use different mereological sum-
mation relations to distinguish between the ways
in which i) integral objects, ii) portions of unstruc-
tured, homogenous stuffs (e.g. the water in your
glass), and iii) mixtures (the blood in a vial) are
linked to their parts over time.

1 Introduction
We present a formal theory for distinguishing between the
mereological properties of different kinds of material ob-
jects. We takematerial objectsto include, not only inte-
gral objects (your car, my computer), but also portions of
stuff, such as the water in a glass, the gold in a ring, or the
blood in a vial. Our theory is intended to serve as a ba-
sis for ontologies in fields like medical informatics where
parthood relations play a central role in data-structuring
and where domains include integral objects (livers, hearts,
blood cells), homogenous unstructured stuffs (oxygen, wa-
ter), and structured stuffs (in particular, mixtures such as
blood or urine). Examples of bio-medical ontologies are the
Foundational Model of Anatomy[Rosse and Mejino, 2003;
FME, 2003] and GALEN[Rogers and Rector, 2000; Open-
GALEN, 2003].

Unlike portions of stuff, integral objects may retain their
identities through a full-scale change of parts. A human body,
for example, is continuously rebuilt on a cellular level and
will retain very few of its cellular parts over a period of ten
years. By contrast, each portion of stuff necessarily retains
certain ”minimal” components for as long as it continues to
exist. For example, a specific portion of water is comprised
of the same water molecules throughout its duration and a
specific portion of blood is comprised of the same red and
white blood cells, platelets, and plasma throughout its dura-
tion. But unstructured stuffs, like water, and structured stuffs,
like blood, differ significantly in how they how they are linked
to their minimal components over time. For example, a given

portion of water continues to exist even if its molecules are
randomly scattered. It may become part of a chemical com-
pound or it may change its physical state (e.g., from liquid
to gas) but it is still, strictly, the same portion of water.1 By
contrast, a portion of blood ceases to exist if, e.g., its cells are
separated from its plasma.

Most bio-medical ontologies currently use only time-
independent parthood relations, which assume a frozen, fixed
time-slice view of organisms and their parts. There is gen-
eral agreement, however, that more complex time-sensitive
ontologies needed for data-tracking, and automated reason-
ing in medical fields concerned with physiological processes,
organism development, and diseases. Developers of these on-
tologies need to make systematic distinctions about the ways
in which the different sorts of items making up an organism
(organs, blood, water, and so on) are linked to their parts over
time. Our theory provides a vocabulary for making these dis-
tinctions as well as basis for reasoning about change in mere-
ological relations over time.

The formal theory developed in this paper builds on that
of [Simons, 1987, ch. 4]. Our theory differs in that it is
formulated in standard predicate logic (Simons uses a free
logic), uses a stronger set of axioms for the parthood rela-
tion, and, most importantly, introduces the different cross-
temporal parthood and summation relations which are used to
distinguish between the characteristic spatio-temporal prop-
erties of integral objects, unstructured stuffs, and structured
stuffs.

We follow Simons in adopting what is known in con-
temporary metaphysics as the ‘standard account’ of mate-
rial coincidence. According to this account, distinct mate-
rial objects, such as a liver and the liver tissue of which it
is made, may coincide (i.e.,occupy exactly the same place
at the same time). Other proponents of the ‘standard ac-
count’ include[Wiggins, 1980; Lowe, 2003; Doepke, 1982;
Fine, 2003]. Although the standard account is not univer-
sally accepted (see, e.g.[Rea, 1995], for several alternative
positions), it is generally adopted by philosophers who treat
objects as three-dimensional entities that gain and lose parts

1Notice, however, that the portion of water does not survive a
scattering of itsatoms. If its hydrogen atoms are separated from its
oxygen atoms, we are left with just oxygen and hydrogen, not water.
It is for this reason that the special constituting parts of the portion
of water are its molecules, not its atoms.



over time. Since medicine distinguishes between an organ
and the tissue of which it is made and treats organs and other
body parts as spatial objects that change over time, we think
that the standard account fits in better than alternative ac-
counts with the assumptions grounding current work in med-
ical informatics.

2 Examples
Before developing the formal theory, we first lay out some ex-
amples of the kinds of mereological relations among material
objects that we expect it to handle. The examples illustrate
characteristic distinctions in the cross-temporal mereological
properties of integral objects, unstructured stuffs, and struc-
tured stuffs. They will be used in the later sections of this
paper to illustrate the different kinds of parthood and summa-
tion relations introduced in our formal theory.

Although our theory is intended to serve as a basis for
spatio-temporal reasoning in medical informatics, we use
simple common-sense examples, and not medical examples,
to illustrate the theory. We do this because the distinction be-
tween different summation relations introduced in our theory
is somewhat complicated and difficult to grasp. We find that
the theory is more accessible when it is illustrated by sim-
pler sorts of items with which most readers are familiar. But
the reader should keep in mind that the points made below
about statues (integral objects), portions of gold (unstructured
stuffs), and portions of lemonade (structured stuffs), apply
equally to organs, portions of water (or oxygen, carbon, and
so on), and portions of blood (or urine, liver tissue, plasma,
and so on).

A. Suppose that a portion of gold (call it GOLD) is formed
into a statue of Julius Ceaser (call the statue Julius). Let TJ
be a time immediately after Julius is formed. According to
the standard account, at TJ, Julius and GOLD coincide, but
Julius and GOLD are not identical since Julius is only a few
minutes old at TJ, but GOLD is much older.

In sections 3 - 5, we develop a temporal mereology which
(like those of[Simons, 1987; Thomson, 1998]), assumes

(*) object x is part of objecty at timet if and only if
x is spatially included iny at t.

It follows from (*) thatx andy occupy the same place att (i.e.
coincide att) if and only if x andy have the same parts att.
Thus, every part of GOLD is part of Julius at TJ and every
part of Julius is part of GOLD at TJ. In particular, GOLD, all
sub-portions of gold in GOLD, and all gold atoms in GOLD
are part of Julius at TJ. Also, Julius, Julius’ head (JHead),
Julius’ right hand (JHand), and so on are part of GOLD at
TJ.2

Note, however, that Julius, JHead, and JRHand arediffer-
ent kindsof parts of GOLD than are its gold atoms or its gold
sub-portions. Let GOLDsAtoms be the collection of gold
atoms which are at TJ part of GOLD and let GOLDsSub-
Portions be the collection of sub-portions of gold which are
part of GOLD at TJ. All members of GOLDsAtoms and

2Not all proponents of the standard account accept (*). See, for
example,[Lowe, 2003] and[Doepke, 1982].

GOLDsSubPortions, unlike Julius, JHead, and JHand,must
be parts of GOLD whenever GOLD exists. Julius may cease
to be part of GOLD while GOLD continues to exist (if, e.g.
GOLD is melted down), but GOLD cannot survive the loss of
a single gold atom or sub-portion of gold.

Moreover, whenever all members of GOLDsAtoms (and
consequently also all members of GOLDsSubPortions) exist,
GOLD must also exist. Thus, even at times when the mem-
bers of GOLDsAtoms are distributed randomly throughout
the world, GOLD must exist (albeit as a scattered entity). By
contrast, Julius, JHead, JHand, and so on might all outlive
GOLD’s demise if, e.g., a single member of GOLDsAtoms
were removed from Julius and destroyed. Since GOLD is
bound in this way to the members of GOLDsAtoms and
GOLDsSubPortions, but not to Julius, JHead, JHand, etc, it
is natural that we think of the former, but not the later, as the
primary parts of GOLD.

By contrast, it is not clear that Julius has such strong ties to
any of its proper parts. By a step-wise replacement analogous
to that performed on the ship of Theseus, Julius can survive
the loss of any portion of gold (including the loss of GOLD
itself, if GOLD is gradually replaced by another portion of
metal), JHead, JHand, and perhaps any other structural proper
part. Also, JHead, JHand, and other of Julius’ structural parts
may exist at times when Julius does not exist (e.g., if JHand,
JHand, and other structural parts of Julius were constructed
before Julius was assembled).

To create a more complex example for illustrating differ-
ent aspects of our theory, we assume that GOLD and Julius
undergo a few changes after time TJ. Suppose that by time
TH, JHand has been removed from Julius and subsequently
melted down. At TH, JHand is no longer a part of either Julius
or GOLD. Indeed, since JHand does not exist at TH, JHand
is not a part of anything at TH. Also, the portion of gold (call
it GHand) which has been melted down is no longer a part
of Julius at TH. But GHand is still a part of GOLD at TH.
Thus, at TH, GOLD and Julius no longer coincide. Instead,
Julius coincides at TH with a proper part of GOLD– that sub-
portion of gold in GOLD which has not been melted down
(call it GHand-Minus).

Now suppose that at some time after TH, GHand-Minus is
also melted down and at time TB all of GOLD is formed into
a statue of Marcus Brutus. Call the second statue Brutus. At
TB, Julius, JHead, and so on are no longer parts of GOLD,
but GOLD now coincides with a new statue. Thus, GOLD
has acquired new parts– at TB, Brutus, Brutus’ head, Brutus’
right hand, and so on are all parts of GOLD. Notice, though,
that throughout these changes GOLD neither gains nor loses
parts which are gold atoms or portions of gold.

B. In addition to distinguishing between the mereological
properties of integral objects (Julius) and portions of stuff
(GOLD), we would also like to use the mereology devel-
oped in this paper to clarify distinctions, made informally
in [Barnett, 2004], between different types of portions of
stuff. Barnett’s distinctions can be illustrated by contrast-
ing GOLD with a portion of stuff that is a mixture. Sup-
pose we have some sugar (SUGAR), some water (WATER),



and some citric acid (ACID) in separate containers on our
kitchen counter. When we mix SUGAR, WATER, and ACID
together, each of these portions of stuff continues to exist.
But we have in addition new portion of stuff: some lemon-
ade (LEMONADE).3 Just as all members of GOLDsAtoms
must be parts of GOLD whenever GOLD exists, so also
all members of LEMsMolecules (the collection consisting
of SUGAR’s sugar molecules, WATER’s water molecules,
and ACID’s acid molecules) must be parts of LEMONADE
whenever LEMONADE is made. However, unlike GOLD
and GOLDsAtoms, the mere existence of all members of
LEMsMolecules is not sufficient to guarantee LEMONADE’s
existence– all members of LEMsMolecules are present before
LEMONADE is made. LEMONADE exists only when mem-
bers of LEMsMolecules are suitably mixed together: every
sugar molecule in LEMsMolecules must be mixed with water
and acid molecules in LEMsMolecules, and so on. Nonethe-
less, LEMONADE, like GOLD and unlike Julius or Brutus,
can survive quite a bit of scattering. We could, e.g., divide
LEMONADE into a thousand cups. As long as the division
is accomplished in such a way that each of the cups contains
a portion of lemonade and each member of LEMsMolecules
is part of one of these portions, LEMONADE survives the
scattering.

Let TL1 be a time immediately after LEMONADE’s cre-
ation. At TL1, LEMONADE has as parts not only mem-
bers of LEMsMolecules, but also sub-portions of lemonade.
Let LEMsSubPortionsTL1 be the collection of all portions of
lemonade which are part of LEMONADE at TL1. (Notice
that some portions of stuff which are part of LEMONADE at
TL1 are not portions of lemonade. For example, SUGAR,
WATER, are ACID are parts of LEMONADE at TL1, but
these are not portions of lemonade and thus are not members
of LEMsSubPortionsTL1.)

Like GOLD and GOLDsSubportions, LEMONADE must
exist whenever all members of LEMsSubPortionsTL1 exist.
However, unlike GOLD and GOLDsSubportions, the mem-
bers of LEMsSubportionsTL1 need not be parts of LEMON-
ADE whenever LEMONADE exists.4 Suppose that at some
time after TL1, LEMONADE is whipped in a blender. Let
TL2 be a time after the whipping. We presume that at
TL2 all members of LEMsMolecules are still appropriately
mixed with other members of LEMsMolecules and thus that
LEMONADE still exists at TL2. But some members of
LEMsSubportionsTL1 will no longer exist at TL2, since since
their water, acid, and sugar molecules will have been scat-
tered (within LEMONADE) as a result of the mixing.

To illustrate this, let L-SMALL be some member of
LEMsSubPortionsTL1 that is significantly smaller than
LEMONADE. The members of only a small portion of
LEMsMolecules are molecular parts of L-SMALL. Call this
sub-collection L-SMALLsMolecules. Just as LEMONADE
persists only so long as members of LEMsMolecules remain
appropriately mixed with other members of LEMsMolecules,
so L-SMALL persists only so long as members of L-

3For an alternative account of this situation, see[Burge, 1977].
4This point is taken from[Barnett, 2004] where an analogous

example involving a portion of crude oil is developed in detail.

SMALLsMolecules remain appropriately mixed with other
members of L-SMALLsMolecules. But given that L-
SMALLsMolecules includes only a small portion of
LEMsMolecules, it is highly unlikely that all members of L-
SMALLsMolecules are still appropriately mixed with one an-
other after the whipping. Given, further, that LEMsSubPor-
tionsTL1 includes very many portions of lemonade that are at
least as small as L-SMALL, we can safely assume that not all
members of LEMsSubPortionsTL1 exist at TL2 even though
LEMONADE exists at TL2. On the other hand, we can also
assume that new collections of molecules have been mixed
together as a result of the whipping. and thus that LEMON-
ADE has acquired new sub-portions between TL1 and TL2.
Thus, while GOLD can neither lose nor gain parts which are
portions of gold, LEMONADE can both lose and gain parts
which are portions of lemonade.

It is our task in the remainder of this paper to develop an
axiomatic theory that allows for clear characterization of ex-
amples such as those presented above.

3 Non-extensional temporal mereology
We present a non-extensional temporal mereology in a sorted
first-order predicate logic with identity. We distinguish three
disjoint sorts. We usew, x, y, z as variables ranging over
material objects;p, q as variables ranging over collections of
material objects;t, t1, t2 as variables ranging over instants
of time. All quantification is restricted to a single sort and
leading universal quantifiers are generally omitted. Restric-
tions on quantification will be understood by conventions on
variable usage.

3.1 Time-dependent parthood relations among
material objects

Material objects are material entities that exists at certain
times and have at each moment of their existence a unique
spatial location. They include both integral objects (Julius,
Brutus) and portions of stuff (LEMONADE, GOLD).

We introduce the primitive ternary relationP which holds
between two objects at a time instant wherePxyt is inter-
preted as: objectx is part of objecty at time instantt. We
then define:x overlapsy at t if and only if there is an object
z such thatz is part ofx at t andz is part ofy at t; x is a
proper partof y at t if and only if x is a part ofy at t andy
is not part ofx at t (DPP); x existsat t if and only if x is part
of itself att (DE); x andy aremereologically equivalentat t
if and only if x is part ofy at t andy is part ofx at t (D≈).
It follows from these definitions that at any fixed time:O is
symmetric;PP is asymmetric;≈ is symmetric, and transitive.

DO O xyt ≡ (∃z)(P zxt ∧ P zyt)
DPP PPxyt ≡ P xyt ∧ ¬P yxt
DE E xt ≡ P xxt
D≈ x ≈t y ≡ P xyt ∧ P yxt

GOLD is mereologically equivalent to Julius at TJ. When
JHand is removed from Julius, GOLD is no longer mereo-
logically equivalent to Julius. Later, at TB, GOLD is mereo-
logically equivalent to the new statue, Brutus.

We add axioms requiring: every object exists at some time
(AP1); if x is a part ofy at t thenx andy exist att (AP2);



at any fixed time parthood is transitive (AP3); ifx exists att
and everything that overlapsx at t overlapsy at t thenx is a
part ofy at t (AP4).

AP1 (∃t)E xt
AP2 P xyt → E xt ∧ E yt
AP3 P xyt ∧ P yzt → P xzt
AP4 E xt ∧ (z)(O zxt → O zyt) → P xyt

Using (AP1 - AP4), we can prove: ifx exists att thenx and
y are mereologically equivalent att if and only if x and y
have the same parts att (T1); if x exists att thenx andy are
mereologically equivalent att if and only and they overlap
the same objects att (T2); the following are equivalent: (i)x
exists att, (ii) x overlaps itself att, (iii) x is mereologically
equivalent with itself att (T3); if x is part ofy at t andx and
y are not mereologically equivalent att thenx is a proper part
of y at t (T4).

T1 E xt → (x ≈t y ↔ (z)(P zxt ↔ P zyt))
T2 E xt → (x ≈t y ↔ (z)(O zxt ↔ O zyt))
T3 E xt ↔ O xxt ∧ E xt ↔ x ≈t x
T4 P xyt ∧ ¬x ≈t y → PPxyt

Notice that it does NOT follow from our axioms that (i) if
two objects have the same parts at a time then they are iden-
tical; and (ii) if two objects overlap exactly the same things
at a time, then they are identical. For example, GOLD and
Julius are not identical but they have exactly the same parts
and overlap the same things at time TJ.

3.2 Constant and bound parts
Though our basic mereological relations are time-dependent,
we can define useful time-independent parthood relations in
terms of the time-dependent relations.

Objectx is aconstantpart of objecty if and only if when-
every exists,x is a part ofy (DCP). Objectx is a constant
proper partof objecty if and only if whenevery exists,x is
a proper part ofy (DCPP).

DCP CPxy ≡ (t)(E yt → P xyt)
DCPP CPPxy ≡ (t)(E yt → PPxyt)

For example, each atom in GOLDsAtoms is a constant proper
part of GOLD and each portion of gold in GOLDsSubPor-
tions is a constant part of GOLD. Also, all members of
LEMsMolecules are constant proper parts of LEMONADE.
But not all members of LEMsSubPortionsTL1 are constant
parts of LEMONADE, since some of these portions of lemon-
ade are destroyed in the whipping.

Statues may also have constant parts. In our example
JHead is a constant proper part of Julius. GHand-Minus is
a constant part of Julius. But, as pointed out in Section 2, un-
like the atoms in GOLD and the molecules in LEMONADE,
Juliuscouldsurvive the loss of these parts.

We can prove that constant parthood is reflexive and tran-
sitive and that constant proper parthood is asymmetric and
transitive. Notice, however, that the logical relations between
CP andCPP are not exactly analogous to those betweenP
andPP (seeDPP). We can prove that ifx is a constant proper
part ofy thenx is a constant part ofy andy is not a constant
part ofx (T5):

T5 CPPxy → CPxy ∧ ¬CPyx.

But we cannot prove the converse of this theorem. Our the-
ory allows, e.g., that GHand-Minus is a constant part of Julius
and Julius is not a constant part of GHand-Minus, but GHand-
Minus is not a constant proper part of Julius (since after
JHand is removed, GHand-Minus is mereologically equiva-
lent to Julius).

Objectx is abound partof objecty if and only whenever
x exists,x is a part ofy (DCP). Objectx is a bound proper
part of objecty if and only if wheneverx exists,x is a proper
part (DCPP).

DBP BPxy ≡ (t)(E xt → P xyt)
DBPP BPPxy ≡ (t)(E xt → PPxyt)

For example, Julius (as well as JHead and JHand) is a
bound part of GOLD. But no member of GOLDsAtoms or
GOLDsSubPortions (including GOLD itself) is a bound part
of Julius. In general, the parts that are assembled to con-
struct an artifact are not be bound parts of the artifact because
they must exist before the assembly. Similarly, members of
LEMsMolecules are not bound parts of LEMONADE.

By contrast, organisms typically have many bound proper
parts. Any cell which is manufactured and destroyed within
my body is a bound, though not necessarily constant, proper
part of my body.

We can prove that bound parthood, like constant parthood,
is reflexive and transitive and that bound proper parthood is
asymmetric and transitive. Also, we can prove that ifx is a
bound proper part ofy thenx is a bound part ofy andy is not
a bound part ofx. But we cannot prove the converse of this
theorem: for example, Julius is a bound part of GOLD and
GOLD is not a bound part of Julius, but Julius is not a bound
proper part of GOLD (since at TJ, Julius exists but is not a
proper part of GOLD).

4 Collections and time-dependent sums
4.1 Collections
We use∈ to stand for the member-of relation between ob-
jects and collections of objects. We refer to a finite collec-
tion havingx1, . . . , xn as members, as:{x1, . . . , xn}. Since
collections and objects are disjoint sorts,∈ is irreflexive and
asymmetric.

All collections have at least two members (AC1). Conse-
quently there are no empty collections and no singleton col-
lections. We require that two collections are identical if and
only if they have the same members (AC2).

AC1 (∃x)(∃y)(x ∈ p ∧ y ∈ p ∧ x 6= y)
AC2 p = q ↔ (x)(x ∈ p ↔ x ∈ q)

The collectionp is a sub-collectionof the collectionq
(p v q) if and only if every member ofp is also a mem-
ber ofq (Dv). The collectionp is aproper sub-collectionof
the collectionq (p @ q) if and only if p andq are not identical
andp is a sub-collection ofq.

Dv p v q ≡ (x)(x ∈ p → x ∈ q)
D@ p @ q ≡ p v q ∧ p 6= q

We can prove thatv is reflexive, antisymmetric, and transi-
tive (a partial ordering) and that@ is asymmetric and transi-
tive (a strict partial ordering).



Note that collections are identified through their members
and thus cannot have different members at different times. In
particular, collections do not lose members that cease to ex-
ist. But we can distinguish collections according to whether
or not all of their members exist at a given time. We say that
a collectionp is fully presentat t if and only if all of its mem-
bers exist att (DFP).

DFP FP pt ≡ (x)(x ∈ p → E xt)

Notice that if p is fully present att then all of its sub-
collections are fully present att. For example, whenever
GOLD (the portion of gold) exists, every sub-collection of
GOLDsAtoms (the gold atoms in GOLD) is fully present.

A collection p is discreteat time t if and only if distinct
members ofp do not overlap att (DD).

DD D pt ≡ (x)(y)(x ∈ p ∧ y ∈ p ∧ O xyt → x = y)

For example, the collection GOLDsAtoms is at all times dis-
crete. By contrast, the collection of sub-portions of gold in
GOLD is never discrete while GOLD exists. Notice that ifp
is discrete att andq is a sub-collection ofp thenq is discrete
at t (e.g. all sub-collections of GOLDsAtoms are discrete at
all times).

4.2 Time-dependent sums
We say that objectz is a sumof (the members of) the col-
lection p at time t, SM zpt, if and only if p is fully present
at t and any object overlapsz at t if and only if it overlaps a
member ofp at t (DSM). In this case, we will also say thatp
sums toz at t or thatz is ap-sum att.

DSM SMzpt ≡ FP pt ∧ (w)(O wzt ↔ (∃x)(x ∈ p ∧ O xwt))

Thus, at any timet at which it exists, Julius is a sum of the col-
lection of the objects which are part of it att. Also, GOLD is
at TJ a sum of{GOLD, Julius} and is at TB a sum of{GOLD,
Brutus}. A collectionp may sum to more than one object at
t. For example, both GOLD and Brutus are sums of{GOLD,
Brutus} at TB. Also, an object may be at a given time a sum
of more than one collection. For example, GOLD is at TB a
sum of{GOLD, Brutus}, a sum of GOLDsAtoms, and a sum
of GOLDSSubPortions.

We can prove: ifx is a sum of a collection att, thenx
exists att (T7); if z is a sum ofp at t then every member ofp
is part ofz at t (T8); if x is a sum ofp at t theny is a sum of
p at t if and only if x andy are mereologically equivalent at
t (T9); if x is a sum ofp at t, y is a sum ofq at t, andp is a
sub-collection ofq, thenx is part ofy at t (T10).

T7 (∃p)SMxpt → E xt
T8 x ∈ p ∧ SMzpt → P xzt
T9 SMxpt → (SMypt ↔ x ≈t y)
T10 SMxpt ∧ SMyqt ∧ p v q → P xyt

T10 tells that if GOLDsAtoms* is a sub-collection of GOLD-
sAtoms and GOLD is a sum of GOLDsAtoms att, then any
sum of GOLDsAtoms* is a part of GOLD att. For example,
all portions of gold made out of sub-collections of GOLD-
sAtoms (i.e. the members of GOLDsSubPortions) are parts
of GOLD at t. Also, any other objects which happen to be

made out of (are mereologically equivalent to) sums of sub-
collections of GOLDsAtoms att (e.g. Julius’ head, Julius
right hand, and so on) are parts of GOLD att.

We say thatx is partionedby the collectionp at t (or, p
partitionsx at t) if and only if x is a sum ofp at t andp is
discrete att.

DDSM DSMxpt ≡ SMxpt ∧ Dpt

For example, whenever GOLD exists, GOLDsAtoms parti-
tions GOLD. When Julius exists, GOLDsAtoms also parti-
tion Julius. By contrast{GOLD, Julius} sums to both GOLD
and Julius while Julius exists, but{GOLD, Julius} never par-
titions either GOLD or Julius. Also, GOLDsSubportions
sums to GOLD when ever GOLD exists, but never partitions
GOLD.

SinceDSMxpt impliesSMxpt, DSMcounterparts of the-
orems T7 - T10 are also theorems. In addition, discrete sums
have the following useful properties. Ifx is partitioned byp
att, thenx is not a member ofp (T11). If x is partitioned byp
at t, y is partitioned byq at t, andp is a proper sub-collection
of q, thenx is a proper part ofy at t (T12). If x is partitioned
by p at t andy is a member ofp, theny is a proper part ofx
(T13).

T11 DSMxpt → x 6∈ p
T12 DSMxpt ∧ DSMyqt ∧ p @ q → PPxyt
T13 x ∈ p ∧ DSMzpt → PPxzt

5 Time-independent sums and partitions
In section 3.2, we used the time-dependent mereological re-
lations to define several time-independent parthood relations.
In this section, we use the time-dependent sum and partition
relations to define several different time-independent sum and
partition relations. Among other things, we will show how
these time-independent relations are useful for clarifying im-
portant differences between GOLD and more complicated
portions of stuff such as LEMONADE.

5.1 Constant sums
Objectx is aconstantsum of collectionp (a constantp-sum)
if and only if wheneverx exists,x is a sum ofp (DSMC

).

DSMC SMC xp ≡ (t)(E xt → SMxpt)

For example, GOLD and Brutus are both constant sums of
GOLDsAtoms. In addition, Brutus is a constant sum of
{Brutus, GOLD} and of the union of GOLDsAtoms and
{Brutus, GOLD}. Also, LEMONADE is a constant sum of
LEMsMolecules. By contrast, Julius is not a constant sum of
GOLDsAtoms– after JHand is removed Julius continues to
exist but no longer has some members of GOLDsAtoms as
parts. Also, although GOLD is (necessarily) a constant sum
of GOLDsSubportions, LEMONADE is not a constant sum
of LEMsSubPortionsTL1.

We can prove: ifx is a constant sum ofp then wheneverx
exists,p is fully present (T14); ifx is a constant sum ofp and
y is a member ofp theny is a constant part ofx (T15).

T14 SMC xp → (t)(E xt → FP pt)
T15 SMC xp ∧ y ∈ p → CPyx



Notice thatSMC xp andSMC yp may hold even thoughx
andy never overlap. Notice also that ifx is a constantp-sum,
then the members ofp must be constant parts ofx but they
will not in general be bound parts ofx. For example, none
of the water, acid, or sugar particles in LEMsMolecules are
bound parts of LEMONADE – each of these particles exists
at times when they are not part of LEMONADE.

5.2 Bound sums
Objectx is a boundsum of collectionp (a boundp-sum) if
and only ifp is fully present at some time and at all times at
whichp is fully presentx is a sum ofp (DSMB

).

DSMB SMB xp ≡ (∃t)(FP pt) ∧ (t)(FP pt → SMxpt)

For example, GOLD is a bound sum of GOLDsAtoms.
Whenever all of the atoms in GOLDsAtoms exist, GOLD also
exists and is a sum of GOLDsAtoms. By contrast, LEMON-
ADE is not a bound sum of LEM’sMolecules. At times before
the sugar, water and acid are mixed together LEM’sMolecules
is fully present, but LEMONADE does not yet exist. On the
other hand, LEMONADE is a bound sum of LEMsSubpor-
tionsTL1, the collection of all sub-portions of lemonade in
LEMONADE at time TL1. Whenever all of these portions
of lemonade exist, LEMONADE also exists and is a sum of
LEMsSubportionsTL1. LEMONADE is also a bound sum of
LEMsSubportionsTL2 and GOLD is a bound sum of, as well
as a constant sum of, GOLDsSubPortions.

These examples show thatx may be a constantp-sum,
but not a boundp-sum– LEMONADE is a constant sum of
LEMsMolecules, but not a bound sum of LEMsMolecules.
Also, x may be a boundp-sum but not a constantp-sum–
LEMONADE is a bound sum of LEMsSubportionsTL1, but
not a constant sum of LEMsSubportionsTL1.

We have seen thatx may be a boundp-sum even if some
members ofp are not constant parts ofx. (Not all members of
LEMsSubportionsTL1 are constant parts of LEMONADE.)x
may also be a boundp-sum even if some members ofp are
not bound parts ofx. For example, we may assume that at
least one of the members of GOLDsAtoms exists at times
when GOLDsAtoms is not yet fully present. Call this atom
GAFirst. GAFirst is a constant part of GOLD, but not a bound
part of GOLD even though GOLD is a bound sum of GOLD-
sAtoms.

We can prove: ifx is a boundp-sum, then wheneverp is
fully presentx exists (T16); ifx is a boundp-sum andy is a
boundp-sum, then wheneverp is fully present,x andy are
mereologically equivalent (T17); ifx is a boundp-sum andy
is a constantq-sum andp is a sub-collection ofq thenx is a
constant part ofy (T18).

T16 SMB xp → (t)(FP pt → E xt)
T17 SMB xp ∧ SMB yp ∧ FP pt → x ≈t y
T18 SMB xp ∧ SMC yq ∧ p v q → CPxy

As an example of (T18), let WMolecules be the sub-
collection of LEMsMolecules consisting of the water
molecules in LEMONADE. Then, WATER, the portion of
water in LEMONADE, is a constant sum of WMolecules,
since, unlike LEMONADE, WATER’s existence does not de-
pend on its molecules being appropriately mixed together.

(T18) tells us that WATER is a constant part of LEMONADE.
For analogous reasons, SUGAR and ACID are also constant
parts of LEMONADE.

5.3 Permanent sums
Objectx is apermanentsum of collectionp (a permanentp-
sum) if and only ifx is both a constantp-sum and a bound
p-sum (DSMP

).

DSMP SMP xp ≡ SMC xp ∧ SMB xp

For example, GOLD is a permanent sum of both GOLD-
sAtoms and GOLDsSubportions. But LEMONADE is not
a permanent sum of LEMsMolecules, since it is not a bound
sum of LEMsMolecules.

We can prove: ifx is a constantp-sum andx is itself a
member ofp, thenx is a permanentp-sum (T19); ifx is a
permanentp-sum then the following are equivalent for allt:
p is fully present att, x is a sum ofp at t, x exists att (T20);
if x is a permanentp-sum andy is a permanentp-sum then
the following are equivalent for all values oft: x exist att, y
exists att, x andy are mereologically equivalent att (T21).

T19 SMC xp ∧ x ∈ p → SMP xp
T20 SMP xp → (t)(FP pt ↔ SMxpt ∧ SMxpt ↔ E xt)
T21 SMP xp ∧ SMP yp → (t)(E xt ↔ E yt ∧ E xt ↔ x ≈t y)

5.4 Time-independent partitions
For our purposes, it is useful to have stronger partition coun-
terparts of the time-independent sum relations introduced in
the previous section.

Collectionp is aconstant partitionof objectx if and only
if p partitionsx wheneverx exists (DDSMC

). Collectionp is
a bound partitionof objectx if and only if p is fully present
at some time andp partitionsx wheneverp is fully present
(DDSMB

). Collectionp is a permanent partitionof objectx
if and only if p is both a constant and a bound partition ofx
(DDSMP

).

DDSMC DSMC xp ≡ (t)(E xt → DSMxpt)
DDSMB DSMB xp ≡ (∃t)(FP pt) ∧ (t)(FP pt → DSMxpt)
DDSMP DSMP xp ≡ DSMC xp ∧ DSMB xp

For example, GOLDsAtoms is a constant partition of both
GOLD and Brutus. GOLDsAtoms is also a bound partition
(and thus also a permanent partition) of GOLD, but GOLD-
sAtoms is not a bound partition of Brutus. LEMsMolecules is
a constant partition of, but not a bound partition of, LEMON-
ADE.

Clearly, each of the time-independent partition relations
entails its sum relation counterpart. In addition, we can derive
the following theorems concerning time-independent parti-
tions: if p is a constant partition ofx andy is a member of
p, theny is a constant proper part ofx (T22); if p is a bound
partition of x and y is a member ofp, then wheneverp is
fully present,y is a proper part ofx (T23); if p is a bound
partition ofx, q is a constant partition ofy, andp is a proper
sub-collection ofq, thenx is a constant proper part ofy (T24).

T22 DSMC xp ∧ y ∈ p → CPPyx
T23 DSMB xp ∧ y ∈ p ∧ FP pt → PPyxt
T24 DSMB xp ∧ DSMC yq ∧ p @ q → CPPxy



6 Conclusions
In the presented theory, we used parthood and summation re-
lations to distinguish key mereological properties of (i) inte-
gral objects such as Julius (ii) portions of homogenous un-
structured stuff such as GOLD, and iii) structured stuffs such
as LEMONADE. Every portion of gold is a permanently par-
tition by the collection of its gold atoms and is a permanent
sum of the collection of its gold sub-portions. By contrast, the
collection of its molecules is typically only a constant parti-
tion, not a bound partition, of a portion of lemonade. Also,
the portion of lemonade is typically only a bound sum of, not
a constant sum of, the collection consisting of its sub-portions
at a given time.

In general, integral objects will have even loser ties to a
constituting collection of atoms or molecules than do portions
of mixtures. For example, Julius is neither a constant sum
nor a bound sum of any collection of atoms or molecules.
Also, Julius is neither a constant sum nor a bound sum of any
collection consisting of portions of stuff.

The theory presented in this paper is useful for reason-
ing about parthood and composition relations among integral
objects and portions of stuff, particularly in application in,
e.g., medicine where changes in objects are tracked over time.
Related work in Artificial Intelligence also includes[Hayes,
1985] and[Collins and Forbus, 1987].

One important area for further work is in expanding the
theory included in this paper to include modality. With
modality, we could distinguish more sharply between inte-
gral objects, homogenous stuffs, and mixtures. For example,
Brutus, like GOLD and unlike Julius, is a constant sum of
GOLDsAtoms. However, unlike GOLD and like Julius, Bru-
tus might not have been a constant sum of GOLDsAtoms. In
general, it is possible for all medium-sized integral objects to
lose atomic parts. Similarly, it is possible for all mixtures to
lose parts which are smaller portions of the same type of stuff.

References
[Barnett, 2004] D. Barnett. Some stuffs are not sums of stuff.

Philosophical Review, 113:89–100, 2004.

[Burge, 1977] T. Burge. A theory of aggregates.Nous,
11(2):97–117, 1977.

[Collins and Forbus, 1987] John W. Collins and Kenneth D.
Forbus. Reasoning about fluids via molecular collections.
In Proceedings of the Sixth National Conference on Ar-
tificial Intelligence (AAAI-87, pages 590–595, Los Altos,
CA, 1987. Morgan Kaufmann.

[Doepke, 1982] F.C. Doepke. Spatially coinciding objects.
Ratio, 24:45–60, 1982.

[Fine, 2003] K. Fine. The non-identity of a material thing
and its matter.Mind, 112, 2003.

[FME, 2003] FME. Foundational Model Explorer,
http://fme.biostr.washington.edu:8089/fme/index.html,
2003.

[Hayes, 1985] Patrick J. Hayes. Native physics i: ontology
for liquids. In Jerry R. Hobbs and R. C. Moore, editors,

Formal theories of the commonsense world, pages 71–108.
Ablex Publishing Corporation, New Jersey, 1985.

[Lowe, 2003] E. J. Lowe. Substantial change and spatiotem-
poral coincidence.Ratio, pages 140–160, 2003.

[OpenGALEN, 2003] OpenGALEN.
http://www.opengalen.org, 2003.

[Rea, 1995] M.C. Rea. The problem of material constitution.
Philosophical Review, 104:525–552, 1995.

[Rogers and Rector, 2000] J. Rogers and A. Rector.
GALEN’s model of parts and wholes: experience and
comparisons. InProceedings of the AMIA Symp 2000,
pages 714–8, 2000.

[Rosse and Mejino, 2003] C. Rosse and J. L. V. Mejino. A
reference ontology for bioinformatics: The Foundational
Model of Anatomy. Journal of Biomedical Informatics,
36:478–500, 2003.

[Simons, 1987] P. Simons. Parts, A Study in Ontology.
Clarendon Press, Oxford, 1987.

[Thomson, 1998] J. J. Thomson. The statue and the clay.
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