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Abstract portion of water continues to exist even if its molecules are
randomly scattered. It may become part of a chemical com-
pound or it may change its physical state (e.g., from liquid
to gas) but it is still, strictly, the same portion of wateBy
contrast, a portion of blood ceases to exist if, e.g., its cells are
separated from its plasma.

Most bio-medical ontologies currently use only time-
independent parthood relations, which assume a frozen, fixed
time-slice view of organisms and their parts. There is gen-
eral agreement, however, that more complex time-sensitive
ontologies needed for data-tracking, and automated reason-
ing in medical fields concerned with physiological processes,
organism development, and diseases. Developers of these on-
tologies need to make systematic distinctions about the ways
in which the different sorts of items making up an organism
1 Introduction (organs, blood, water, and so on) are linked to their parts over
ime. Our theory provides a vocabulary for making these dis-
inctions as well as basis for reasoning about change in mere-
ological relations over time.

The formal theory developed in this paper builds on that

f [Simons, 1987, ch. 14 Our theory differs in that it is

We develop a formal theory of mereology that in-
cludes relations that change over time. We show
how this theory formalizes reasoning over domains
of material objects, which include not only integral
objects (my computer, your liver) but also portions
of stuff (the water in your glass, the blood in a vial).
In particular, we use different mereological sum-
mation relations to distinguish between the ways
in which i) integral objects, ii) portions of unstruc-
tured, homogenous stuffs (e.g. the water in your
glass), and iii) mixtures (the blood in a vial) are
linked to their parts over time.

We present a formal theory for distinguishing between th
mereological properties of different kinds of material ob-
jects. We takematerial objectsto include, not only inte-

gral objects (your car, my computer), but also portions of

stuff, such as the water in a glass, the gold in a ring, or th . . A X
blood in a vial. Our theory is intended to serve as a ba_ormulated in standard predicate logic (Simons uses a free

sis for ontologies in fields like medical informatics where logic), uses a stronger set of axioms for the parthood rela-

parthood relations play a central role in data—structuring'on’ and, most importantly, introduces the different cross-
and where domains include integral objects (livers, hearts€MpPOral parthood and summation relations which are used to
blood cells), homogenous unstructured stuffs (oxygen, wadistinguish between the characteristic spatio-temporal prop-
ter), and structured stuffs (in particular, mixtures such aLrties of integral objects, unstructured stuffs, and structured
blood or urine). Examples of bio-medical ontologies are th tuffs. . . . . .
Foundational Model of AnatomjRosse and Mejino, 2003; We follow Simons in adopting what is known in con-

FME, 2003 and GALEN[Rogers and Rector, 2000; Open- [€mporary metaphysics as the ‘standard account’ of mate-
GALfEN 2004. ' ' rial coincidence. According to this account, distinct mate-

rial objects, such as a liver and the liver tissue of which it

Unlike portions of stuff, integral objects may retain their . d incide (i tv th |
identities through a full-scale change of parts. A human body'S Made, may coincide (i.e.,occupy exactly the same place

: : ; at the same time). Other proponents of the ‘standard ac-
for example, is continuously rebuilt on a cellular level and . e i ) i
will retain very few of its cellular parts over a period of ten count zlggl:fd?o[\mggmh&t#%?' ngg’ 2003; [t)(_)epket, 1982;
years. By contrast, each portion of stuff necessarily retain§ Irllle’ e oug Re S alnggaBr faccoun :S Irt]o ur;_lver-
certain "minimal” components for as long as it continues to>a1y accepted (see, e.gRea, or several alternative
exist. For example, a specific portion of water is compriseooos't'ons)’ it is generally adopted by philosophers who treat

of the same water molecules throughout its duration and gbjects as three-dimensional entities that gain and lose parts

specific portion of blood is comprised of the same red an INotice, however, that the portion of water does not survive a

white blood cells, platelets, and plasma throughout its duragcatering of itsatoms If its hydrogen atoms are separated from its
tion. But unstructured StuffS, like Wa.ter, and structured Stuﬁ50xygen atoms, we are left with just oxygen and hydrogen, not water.

like blood, differ significantly in how they how they are linked It is for this reason that the special constituting parts of the portion
to their minimal components over time. For example, a giverof water are its molecules, not its atoms.



over time. Since medicine distinguishes between an orga@OLDsSubPortions, unlike Julius, JHead, and JHandst
and the tissue of which it is made and treats organs and othée parts of GOLD whenever GOLD exists. Julius may cease
body parts as spatial objects that change over time, we thinto be part of GOLD while GOLD continues to exist (if, e.g.
that the standard account fits in better than alternative adsOLD is melted down), but GOLD cannot survive the loss of
counts with the assumptions grounding current work in meda single gold atom or sub-portion of gold.

ical informatics. Moreover, whenever all members of GOLDsAtoms (and
consequently also all members of GOLDsSubPortions) exist,
2 Examples GOLD must also exist. Thus, even at times when the mem-

bers of GOLDsAtoms are distributed randomly throughout

Before developing the formal theory, we first lay out some ex ; . ;
amples of the kinds of mereological relations among materiaj€ World, GOLD must exist (albeit as a scattered entity). By
ontrast, Julius, JHead, JHand, and so on might all outlive

objects that we expect it to handle. The examples illustrat OLD's demise if, e.g., a single member of GOLDsAtoms

characteristic distinctions in the cross-temporal mereologlcaWere removed from Julius and destroyed. Since GOLD is

properties of integral objects, unstructured stuffs, and Strucf)ound in this way to the members of GOLDsAtoms and

tured stuffs. They will be used in the later sections of this ) . :
paper to illustrate the different kinds of parthood and summal O -DsSubPortions, but not to Julius, JHead, JHand, ec, it
tion relations introduced in our formal theory. is natural that we think of the former, but not the later, as the

Although our theory is intended to serve as a basis foPrimary parts O.f.GOLD' . .
spatio-temporal reasoning in medical informatics, we use By contrast, it is not clear that Julius has such strong ties to

simple common-sense examples, and not medical example&V Of its proper parts. By a step-wise replacement analogous

to illustrate the theory. We do this because the distinction bel that performed on the ship of Theseus, Julius can survive
he loss of any portion of gold (including the loss of GOLD

tween different summation relations introduced in our theor} > ! X
is somewhat complicated and difficult to grasp. We find thattS€lf, if GOLD is gradually replaced by another portion of

the theory is more accessible when it is illustrated by sim.Metal), JHead, JHand, and perhaps any other structural proper

pler sorts of items with which most readers are familiar. ButPa't- Also, JHead, JHand, and other of Julius’ structural parts
the reader should keep in mind that the points made beloW'®Y exist at times when Julius does not exist (e.g., if JHand,
about statues (integral objects), portions of gold (unstructuregiand, and other structural parts of Julius were constructed
stuffs), and portions of lemonade (structured stuffs), apphP€fore Julius was assembled). _ o
equally to organs, portions of water (or oxygen, carbon, and 10 create a more complex example for illustrating differ-

so on), and portions of blood (or urine, liver tissue, plasma€nt aspects of our theory, we assume that GOLD and Julius
and so on). undergo a few changes after time TJ. Suppose that by time

TH, JHand has been removed from Julius and subsequently
. . . melted down. At TH, JHand is no longer a part of either Julius
A. Suppose that a portion of gold (call it GOLD) is formed o 55| p. 'Indeed, since JHand doeg not%xist at TH, JHand
into a statue of Julius Ceaser (call the statue Julius). Let ik o1 5 hart of anything at TH. Also, the portion of gold (call
be a time immediately after Julius is formed. According t0; pjanq) which has been melted down is no longer a part
the standard account, at TJ, Julius and GOLD coincide, bul¢ 5 lius at TH. But GHand is still a part of GOLD at TH
Julius and GOLD are not identical since Julius is only a feWThus at TH GbLD and Julius no longer coincide. Instea{d
m||nutes old at3TJl,5but GdOLDl is much olde:. | HicpUlius coincides at TH with a proper part of GOLD- that sub-
n sections 3 - 5, we develop a temporal mereology whicty,, tion of gold in GOLD which has not been melted down

(like thos.e of[Si'mons, 198?; Thoms.on, 1'9298assum§s (call it GHand-Minus).
() objectz is part of objecty at timet if and only if Now suppose that at some time after TH, GHand-Minus is
x is spatially included iry att. also melted down and at time TB all of GOLD is formed into

It follows from (*) thatz andy occupy the same placetai.e. @ statue of Marcus Brutus. Call the second statue Brutus. At

coincide att) if and only if z andy have the same partsat ~ TB, Julius, JHead, and so on are no longer parts of GOLD,
Thus, every part of GOLD is part of Julius at TJ and everybut GOLD now coincides with a new statue. Thus, GOLD
part of Julius is part of GOLD at TJ. In particular, GOLD, all has acquired new parts— at TB, Brutus, Brutus’ head, Brutus’
sub-portions of gold in GOLD, and all gold atoms in GOLD right hand, and so on are all parts of GOLD. Notice, though,
are part of Julius at TJ. Also, Julius, Julius’ head (JHead)that throughout these changes GOLD neither gains nor loses
Julizus' right hand (JHand), and so on are part of GOLD atParts which are gold atoms or portions of gold.

TJ:

Note, however, that Julius, JHead, and JRHandl#fer- . T .
ent kindsof parts of GOLD than are its gold atoms or its gold B: !N addition to distinguishing between the mereological
sub-portions. Let GOLDsAtoms be the collection of gold Properties of integral objects (Julius) and portions of stuff
atoms which are at TJ part of GOLD and let GOLDsSub-(GOLD), we would also like to use the mereology devel-
Portions be the collection of sub-portions of gold which are®P€d in this paper to clarify distinctions, made informally

part of GOLD at TJ. All members of GOLDsAtoms and " [Barnett, 2004 between different types of portions of
stuff. Barnett’s distinctions can be illustrated by contrast-

2Not all proponents of the standard account accept (*). See, foilng GOLD with a portion of stuff that is a mixture. Sup-
example[Lowe, 2003 and[Doepke, 198p pose we have some sugar (SUGAR), some water (WATER),



and some citric acid (ACID) in separate containers on ouliSMALLsMolecules remain appropriately mixed with other
kitchen counter. When we mix SUGAR, WATER, and ACID members of L-SMALLsMolecules. But given that L-
together, each of these portions of stuff continues to existSMALLsMolecules includes only a small portion of
But we have in addition new portion of stuff: some lemon- LEMsMolecules, it is highly unlikely that all members of L-
ade (LEMONADE)? Just as all members of GOLDsAtoms SMALLsMolecules are still appropriately mixed with one an-
must be parts of GOLD whenever GOLD exists, so alsoother after the whipping. Given, further, that LEMsSubPor-
all members of LEMsMolecules (the collection consistingtionsTL1 includes very many portions of lemonade that are at
of SUGAR’s sugar molecules, WATER’s water molecules,least as small as L-SMALL, we can safely assume that not all
and ACID’s acid molecules) must be parts of LEMONADE members of LEMsSubPortionsTL1 exist at TL2 even though
whenever LEMONADE is made. However, unlike GOLD LEMONADE exists at TL2. On the other hand, we can also
and GOLDsAtoms, the mere existence of all members ofissume that new collections of molecules have been mixed
LEMsMolecules is not sufficient to guarantee LEMONADE'’s together as a result of the whipping. and thus that LEMON-
existence— all members of LEMsMolecules are present beforADE has acquired new sub-portions between TL1 and TL2.
LEMONADE is made. LEMONADE exists only when mem- Thus, while GOLD can neither lose nor gain parts which are
bers of LEMsMolecules are suitably mixed together: everyportions of gold, LEMONADE can both lose and gain parts
sugar molecule in LEMsMolecules must be mixed with waterwhich are portions of lemonade.

and acid molecules in LEMsMolecules, and so on. Nonethe- It is our task in the remainder of this paper to develop an
less, LEMONADE, like GOLD and unlike Julius or Brutus, axiomatic theory that allows for clear characterization of ex-
can survive quite a bit of scattering. We could, e.g., divideamples such as those presented above.

LEMONADE into a thousand cups. As long as the division

is accomplished in such a way that each of the cups contair@ Non-extensional temporal mereology

%p(gﬂogf oofr::n;?rt]ﬁgseeangrﬁgﬁz TETA%&XEEEZJ?M%ZC;:Z%% present a non-extensional temporal mereology in a sorted
scaptterin P ’ first-order predicate logic with identity. We distinguish three
9. disjoint sorts. We usev,z,y, z as variables ranging over

Let TL1 be a time immediately after LEMONADE'S cre- 1 aaria| objectsp, ¢ as variables ranging over collections of
ation. At TL1, LEMONADE has as parts not only mem- aarial objectst, ¢, o as variables ranging over instants
bers of LEMsMolecules, but also sub-portions of lemonade ¢ e - Al quantification is restricted to a single sort and
Let LEMsSubPortionsTL1 be the collection of all portions of o5 4ing universal quantifiers are generally omitted. Restric-
lemonade which are part of LEMONADE at TL1. (Notice yong on quantification will be understood by conventions on
that some portions of stuff which are part of LEMONADE at variable usage.

TL1 are not portions of lemonade. For example, SUGAR,
WATER, are ACID are parts of LEMONADE at TL1, but 3.1 Time-dependent parthood relations among
these are not portions of lemonade and thus are not members  material objects

of LEMsSubPortionsTL1.) Material objects are material entities that exists at certain

Like GOLD and GOLDsSubportions, LEMONADE must a4 and have at each moment of their existence a unique
exist whenever all members of LEMSSubPortionsTL1 exiStgoaiia| jocation. They include both integral objects (Julius,
However, unlike GOLD and GOLDsSubportions, the mem'Brutus) and portions of stuff (LEMONADE, GOLD).
bers of LEMsSubportionsTL1 ”‘?ed not be parts of LEMON- We introduce the primitive ternary relatid? which holds
ADE whenever LEMONADE exist8. Suppose that at some between two objects at a time instant wheteyt is inter-

time after TL1, LEMONADE is whipped in a blender. Let preted as: object is part of objecty at time instant. We

TL2 be a time after the whipping. We presume that aty,o gefine: overlapsy att if and only if there is an object
TL2 all members of LEMsMolecules are still appropriately - such thatz is part ofz att and is part ofy att; z is a
mixed with other members of LEMsMolecules and thus thatproper partof y att if and only if z: is a part ofy at't andy

LEMONADE still exists at TL2. But some members of ; . ; : P
; . . ; ! is not part ofz att (Dpp); x existsatt if and only if z is part
i_hEl_\/IsSutbportlc_)dnsTLj will no Ioniqer ?X'St a_t”TrI]_Z, S'Ece smcetof itself att (Dg); z andy aremereologically equivalerat ¢
€ir water, acid, and sugar molecules will have been SCaly 5nq only if 1 is part ofy at¢ andy is part ofz att (Dx).

tered (within LEMONADE) as a result of the mixing. It follows from these definitions that at any fixed tim@:is

To illustrate this, let L-SMALL be some member of qymmetric;PPis asymmetricz is symmetric, and transitive.
LEMsSubPortionsTL1 that is significantly smaller than

LEMONADE. The members of only a small portion of Do Oyt = (32)(P zxt A P zyt)
LEMsMolecules are molecular parts of L-SMALL. Call this gPF’ EP zyt If P zyt A ~Pyat
sub-collection L-SMALLsMolecules. Just as LEMONADE E vt = Pzt

D~ r~ry=Payt N Pyxt

persists only so long as members of LEMsMolecules remain
appropriately mixed with other members of LEMsMolecules,GOLD is mereologically equivalent to Julius at TJ. When
so L-SMALL persists only so long as members of L- JHand is removed from Julius, GOLD is no longer mereo-
logically equivalent to Julius. Later, at TB, GOLD is mereo-
3For an alternative account of this situation, §Barge, 1977. logically equivalent to the new statue, Brutus.
“This point is taken fron{Barnett, 200 where an analogous We add axioms requiring: every object exists at some time
example involving a portion of crude oil is developed in detail. (APY); if z is a part ofy att thenx andy exist att (AP2);



at any fixed time parthood is transitive (AP3)zifexists att But we cannot prove the converse of this theorem. Our the-
and everything that overlapsatt¢ overlapsy at¢ thenxzisa  ory allows, e.g., that GHand-Minus is a constant part of Julius

part ofy att (AP4). and Julius is not a constant part of GHand-Minus, but GHand-
AP1 (3t)Euxt Minus i_s not a constant proper part of Julius (since a_fter
AP2 Pyt — Ext AEyt JHand is removed, GHand-Minus is mereologically equiva-
AP3 Payt A Pyzt — Pzt lent to Julius).

AP4 Euxt A (2)(0 zat — O zyt) — P ayt . . . .
Objectz is abound partof objecty if and only whenever

Using (AP1 - AP4), we can prove: if exists att thenz and . exists,z is a part ofy (Dcp). Objectz is abound proper

y are mereologically equivalent atif and only if z andy  part of objecty if and only if whenever: exists,z is a proper
have the same parts@&fT1); if z exists att thenx andy are part (Dcpp).

mereologically equivalent &tif and only and they overlap B

the same objects a(T2); the following are equivalent: (i} gBF’ gggy :_(t)(Eé*"t - PP“F?U

exists att, (i) = overlaps itself at, (iii) 2 is mereologically BPP zy = (1)(Eat — PPayt)

equivalent with itself at (T3); if « is part ofy att andz and ~ For example, Julius (as well as JHead and JHand) is a

y are not mereologically equivalentfahenz is a proper part  bound part of GOLD. But no member of GOLDsAtoms or

of y att (T4). GOLDsSubPortions (including GOLD itself) is a bound part

of Julius. In general, the parts that are assembled to con-
T2 Eat — (v~ y o (2)(0 zat = O zyt)) struct an artifact are not be bound parts of the artifact because
T3 Eate Oxrt NExt ez~ o they must exist before the assembly. Similarly, members of
T4 Payt A —x =~y — PPyt LEMsMolecules are not bound parts of LEMONADE.

. ! , o By contrast, organisms typically have many bound proper
Notice that it does NOT follow from our axioms that (i) if harts. Any cell which is manufactured and destroyed within
two objects have the same parts at a time then they are ide iy body is a bound, though not necessarily constant, proper
tical; _and (i) if two objec.ts ovgrlap exactly the same things 3t of my body.
at a time, then they are identical. For example, GOLD and \wg can prove that bound parthood, like constant parthood,
Julius are not identical but they have exactly the same partg yeflexive and transitive and that bound proper parthood is
and overlap the same things at time TJ. asymmetric and transitive. Also, we can prove that i a
3.2 Constant and bound parts bound proper part af thenz is a bound part of andy is not _

. . . . a bound part ofc. But we cannot prove the converse of this
Though our basic mereological relations are time-dependenfyaorem: for example, Julius is a bound part of GOLD and
we can define useful time-independent parthood relations igso| p is not a bound part of Julius, but Julius is not a bound

terms of the time-dependent relations. , proper part of GOLD (since at TJ, Julius exists but is not a
Objectx is aconstantpart of objecty if and only if when- proper part of GOLD).

every exists,z is a part ofy (Dcp). Objectz is aconstant

proper partof objecty if and only if wheneven exists,z is 4 Collections and time-dependent sums
a proper part ofy (Dcpp). ]
4.1 Collections

Dcp  CPzy = (t)(Eyt — P zyt)

T1 Euxt— (z =ty < (2)(P zat < P zyt))

Dcpp  CPPzy = (t)(Eyt — PPxyt) We usec to stand for the member-of relation between ob-
) ) jects and collections of objects. We refer to a finite collec-
For example, each atom in GOLDsAtoms is a constant propgggn havingzy, . ..,x, as members, a1, . .., z,}. Since

part of GOLD and each portion of gold in GOLDsSubPor- gjlections and objects are disjoint sorsis irreflexive and
tions is a constant part of GOLD. Also, all members of gsymmetric.

LEMsMolecules are constant proper parts of LEMONADE.  a|| collections have at least two members (AC1). Conse-
But not all members of LEMsSubPortionsTL1 are constanigyently there are no empty collections and no singleton col-
parts of LEMONADE, since some of these portions of lemon-jactions, We require that two collections are identical if and

ade are destroyed in the whipping. only if they have the same members (AC2).
Statues may also have constant parts. In our example ACL (30) @)z Ephycphasty)
z) )z EPAYyEPATFY

JHead is a constant proper part of Julius. GHand-Minus is AC2 -

a constant part of Julius. But, as pointed out in Section 2, un- p=qo@@eporeq)

like the atoms in GOLD and the molecules in LEMONADE,  The collectionp is a sub-collectionof the collectiong

Juliuscould survive the loss of these parts. (p C g) if and only if every member op is also a mem-
We can prove that constant parthood is reflexive and tranber ofg (Dc). The collectiorp is aproper sub-collectiorof

sitive and that constant proper parthood is asymmetric anthe collectiony (p T ¢) if and only if p andg are not identical

transitive. Notice, however, that the logical relations betweer@ndp is a sub-collection of.

CP and CPP are not exactly analogous to those betwétn Dc pCqg=(z)(z€p—z€q)

andPP (seeDpp). We can prove that if is a constant proper D- pCqg=pCqgAp#g

part ofy then is a constant part of andy is nota constant  \ye can prove that is reflexive, antisymmetric, and transi-

part ofz (T5): tive (a partial ordering) and that is asymmetric and transi-

T5 CPPzy — CPxy A —=CPyz. tive (a strict partial ordering).



Note that collections are identified through their memberamade out of (are mereologically equivalent to) sums of sub-
and thus cannot have different members at different times. loollections of GOLDsAtoms at (e.g. Julius’ head, Julius
particular, collections do not lose members that cease to exight hand, and so on) are parts of GOLDx at
ist. But we can distinguish collections according to whether
or not all of their members exist at a given time. We say that We say thatr is partionedby the collectionp at ¢ (or, p
a collectionp is fully preseniatt if and only if all of its mem-  partitions  at ¢) if and only if = is a sum ofp att andp is
bers exist at (Dep). discrete at.

D FPpt = (2)(z € p — Ext) Dpsm DSMazpt = SMapt A Dpt

Notice that if p is fully present att then all of its sub- For example, whenever GOLD exists, GOLDsAtoms parti-
collections are fully present at For example, whenever tions GOLD. When Julius exists, GOLDsAtoms also parti-
GOLD (the portion of gold) exists, every sub-collection of tion Julius. By contrasfGOLD, Juliug sums to both GOLD

GOLDsAtoms (the gold atoms in GOLD) is fully present. ~ and Julius while Julius exists, b§&OLD, Juliug never par-
A collection p is discreteat timet if and only if distinct ~ titions either GOLD or Julius. Also, GOLDsSubportions

members op do not overlap at (Dp). sums to GOLD when ever GOLD exists, but never partitions
GOLD.
Dp Dpt=(2)(y)(z€pAyeEpAOayt —z=y) SinceDSM xzpt implies SMapt, DSMcounterparts of the-

For example, the collection GOLDsAtoms is at all times dis-2rems T7-T10are also theorem_s. In qdd't'or_]'_ discrete sums
have the following useful properties. dfis partitioned byp

ggtfb IiBSyncec\)/r;trrﬁfstértgtee (\:/\?kl:i(la eC tg 8|_0[f) seL)j(?s-Fsor:\II%rtlii eo fthga(;)lﬂ 'natt, thenz is notamember gf (T11). If z is partitioned by
y att, y is partitioned by at¢, andp is a proper sub-collection

is discrete at andgq is a sub-collection of theng is discrete ; ; -
att (e.g. all sub-collections of GOLDsAtoms are discrete atgf 4 gﬁ;ﬁ ('js aispgogeerngg(ratr%flpatﬁglzié : xré,s E?rt'at'ﬁgefd
all times). (_Il/li?g) Yy , y Is a proper p

4.2 Time-dependent sums T11 DSMapt — z & p

We say that object is a sumof (the members of) the col- %g DSM"EftD/\SaSleqt |;\Pp th — PPyt
lection p at timet, SM zpt, if and only if p is fully present TEP pr— ez

att and any object overlapsatt if and only if it overlaps a B >
member ofp att (Dsy). In this case, we will also say that 5 Time-independent sums and partitions

sums toz att or thatz is ap-sum att. In section 3.2, we used the time-dependent mereological re-
B lations to define several time-independent parthood relations.

Dsw SMzpt = FPpt A (w)(O wet < (3z)(z € p A O zwt))  |n this section, we use the time-dependent sum and partition
Thus, at any time at which it exists, Julius is a sum of the col- relations to define several different time-independent sum and

lection of the objects which are part of it@atAlso, GOLD is partitio_n rel_ations. Among o_ther things, we will Sh_OW ho_w
at TJ asum of GOLD, Juliug and is at TB asum,o{fGOLD these time-independent relations are useful for clarifying im-
Brutus}. A collection’p may sum to more than one obje(‘:t at Portant differences between GOLD and more complicated
t. For example, both GOLD and Brutus are sum$@0LD,  Portions of stuff such as LEMONADE.
Brutus} at TB. Also, an object may be at a given time a sSUMg 1 constant sums
of more than one collection. For example, GOLD isatTBa__. . .
sum of{GOLD, Brutus, a sum of GOLDsAtoms, and a sum Objectx is aconstantsum of collectiorp (a constanp-sum)
of GOLDSSubPortions. if and only if whenever exists,x is a sum ofp (Dsw,. ).

We can prove: ifz is a sum of a collection at, thenz Dsv.  SMe xp = (t)(E 2t — SMaxpt)
exists att (T7); if z is a sum ofp att then every member of
is part of z at¢ (T8); if z is a sum ofp att theny is a sum of ~ For example, GOLD an_o_l Brutus are _both constant sums of
p att if and only if z andy are mereologically equivalent at GOLDsAtoms. In addition, Brutus is a constant sum of
¢ (T9); if z is a sum ofp att, y is a sum ofg att, andp is a {Brutus, GOLD and of the union of GOLDsAtoms and

sub-collection of, thenz is part ofy at¢ (T10). {Brutus, GOLD.. Also, LEMONADE is a constant sum of
LEMsMolecules. By contrast, Julius is not a constant sum of

T7  (3p)SMapt — Eaxt GOLDsAtoms— after JHand is removed Julius continues to
T8 x€pASMzpt — Pzt exist but no longer has some members of GOLDsAtoms as
T9  SMapt — (G’Mypt ‘_EE ~t Y) parts. Also, although GOLD is (necessarily) a constant sum
710 SMept A SMygt ApE g — Pyt of GOLDsSubportions, LEMONADE is not a constant sum

T10 tells that if GOLDsAtoms* is a sub-collection of GOLD- ©0f LEMsSubPortionsTL1.

sAtoms and GOLD is a sum of GOLDsAtomstathen any e can prove: ift is a constant sum of then whenevez

sum of GOLDsAtoms* is a part of GOLD at For example, €Xistsp s fully present (T14); itz is a constant sum gfand
all portions of gold made out of sub-collections of GOLD- ¥ is @ member op theny is a constant part of (T15).
sAtoms (i.e. the members of GOLDsSubPortions) are parts T14 SMe zp — (t)(Eat — FP pt)

of GOLD att. Also, any other objects which happen to be T15 SMcap Ay € p— CPyx



Notice thatSMe zp and SMs yp may hold even though (T18) tells us that WATER is a constant part of LEMONADE.
andy never overlap. Notice also thatifis a constanp-sum,  For analogous reasons, SUGAR and ACID are also constant
then the members gf must be constant parts efbut they  parts of LEMONADE.

will not in general be bound parts af For example, none

of the water, acid, or sugar particles in LEMsMolecules ared-3 Permanent sums

bound parts of LEMONADE — each of these particles existsObjectx is apermanensum of collectiorp (a permaneng-

at times when they are not part of LEMONADE. sum) if and only ifx is both a constant-sum and a bound

-sum .
5.2 Bound sums p DOswm)
Objectz is aboundsum of collectionp (a boundp-sum) if Dsmp SMp xp = SMc 2p A SMp zp

and only ifp is fully present at some time and at all times at For example, GOLD is a permanent sum of both GOLD-
whichp is fully presentz is a sum ofp (Dsw, )- sAtoms and GOLDsSubportions. But LEMONADE is not

_ a permanent sum of LEMsMolecules, since it is not a bound
SM zp = (B0 (FPp0) A ()(FPpt — SMapt) suF:n of LEMsMolecules.
For example, GOLD is a bound sum of GOLDsAtoms. We can prove: ifr is a constanp-sum andz is itself a
Whenever all of the atoms in GOLDsAtoms exist, GOLD alsomember ofp, thenx is a permanenp-sum (T19); ifz is a
exists and is a sum of GOLDsAtoms. By contrast, LEMON-permanenp-sum then the following are equivalent for &l
ADE is not a bound sum of LEM’sMolecules. Attimes before p is fully present at, = is a sum ofp at¢, x exists att (T20);
the sugar, water and acid are mixed together LEM'sMoleculed = is a permanenp-sum andy is a permanenp-sum then
is fully present, but LEMONADE does not yet exist. On the the following are equivalent for all values aof z exist att, y
other hand, LEMONADE is a bound sum of LEMsSubpor- exists att,  andy are mereologically equivalent a{T21).
tionsTL1, the collection of all sub-portions of lemonade in 9 S SM
LEMONADE at time TL1. Whenever all of these portions ;.0 Smb P AT € P > SMpap

. . . b zp — (t)(FP pt < SMapt A SMapt < E xt)

of lemonade exist, LEMONADE also exists and is a sum of 791 g\, ) A SMp yp — ()(Ext o Eyt AEat 2~ 1)
LEMsSubportionsTL1. LEMONADE is also a bound sum of
LEMsSubportionsTL2 and GOLD is a bound sum of, as well5.4  Time-independent partitions

as a constant sum of, GOLDsSubPortions. For our purposes, it is useful to have stronger partition coun-

These examples show thatmay be a constant-sum, tgmarts of the time-independent sum relations introduced in
but not a boung-sum— LEMONADE is a constant sum of 4 previous section.

LEMsMolecules, but not a bound sum of LEMsMolecules.  cqjiectiony is aconstant partitiorof objectz if and only

Also, x may be a boung-sum but not a constaptsum- ;¢ - ; ; ;
. ! p partitionsz wheneverr exists Opsw. ). Collectionyp is
LEMONADE is a bound sum of LEMsSubportionsTL1, but 5 hqyng partitionof objectz if and only if p is fully present

hota cr(])nstant surr;] of LEMESuonrtionsTLl. . at some time ang partitionsz wheneverp is fully present
We have seen that may be a boung-sum even if some () " Collectionp is a permanent partitiorof objectz

members op are not constant parts of (Not all members of ¢ 5nq"only if p is both a constant and a bound partition:of
LEMsSubportionsTL1 are constant parts of LEMONADE.) (Dosw,) yirp P
).

may also be a boungtsum even if some members pfare

not bound parts of. For example, we may assume that at Dpsw. DSMc zp = (t)(E xt — DSMxpt)

least one of the members of GOLDsAtoms exists at times Doswy  DSMp zp = (3t)(FP pt) A (¢)(FP pt — DSMapt)

when GOLDsAtoms is not yet fully present. Call this atom Dosw  DSMp zp = DSMc zp A DSMg zp

GAFirst. GAFirstis a constant partlofGOLD, but nota bound g, example, GOLDsAtoms is a constant partition of both

part of GOLD even though GOLD is a bound sum of GOLD- GoLDp and Brutus. GOLDsAtoms is also a bound partition

SAtoms. o _ (and thus also a permanent partition) of GOLD, but GOLD-
We can prove: ifr is a boundp-sum, then wheneveris  saioms is not a bound partition of Brutus. LEMsMolecules is

fully presentz exists (T16); ifz is a boundp-sum andyis a5 constant partition of, but not a bound partition of, LEMON-
boundp-sum, then whenever is fully present,z andy are  ApEg.

Dswmg

mereologically equivalent (T17); if is a boundy-sum andy Clearly, each of the time-independent partition relations

is a constang-sum andp is a sub-collection of thenz is & gnails its sum relation counterpart. In addition, we can derive

constant part of (T18). the following theorems concerning time-independent parti-
T16 SMs zp — (t)(FP pt — E zt) tions: if p is a constant partition af andy is a member of
T17 SMazp ASMpyp AFPpt — z =~y p, theny is a constant proper part of(T22); if p is a bound
T18 SMpxzp ASMcyqgApC q— CPxy partition of z andy is a member op, then whenevep is

fully present,y is a proper part ofc (T23); if p is a bound
partition of z, ¢ is a constant partition af, andp is a proper
sub-collection of;, thenz is a constant proper part gfT24).

As an example of (T18), let WMolecules be the sub-
collection of LEMsMolecules consisting of the water
molecules in LEMONADE. Then, WATER, the portion of
water in LEMONADE, is a constant sum of WMolecules, 722 DSMc zp Ay € p— CPPyx
since, unlike LEMONADE, WATER's existence does not de- T23 DSMg xp Ay € p AFPpt — PPyxt
pend on its molecules being appropriately mixed together. T24 DSMg zp ADSMc yg Ap € g — CPPxy



6 Conclusions Formal theories of the commonsense wopldges 71-108.

In the presented theory, we used parthood and summation re- Ablex Publishing Corporation, New Jersey, 1985.

lations to distinguish key mereological properties of (i) inte-[Lowe, 2003 E. J. Lowe. Substantial change and spatiotem-
gral objects such as Julius (i) portions of homogenous un- poral coincidenceRatio, pages 140-160, 2003.

structured stuff such as GOLD, and iii) structured stuffs sucHopenGALEN, 2008 OpenGALEN.

as LEMONADE. Every portion of gold is a permanently par-  http:/Awww.opengalen.org, 2003.

tition by the collection of its gold atoms and is a permanen . .
sum of the collection of its gold sub-portions. By contrast, thet[Rea’. 1995 M.C. Rea. The p_)roblem of material constitution.
collection of its molecules is typically only a constant parti- P hilosophical Revienl04:525-552, 1995.

tion, not a bound partition, of a portion of lemonade. Also,[Rogers and Rector, 20p@. Rogers and A. Rector.
the portion of lemonade is typically only a bound sum of, not GALEN’s model of parts and wholes: experience and
a constant sum of, the collection consisting of its sub-portions comparisons. IrProceedings of the AMIA Symp 2Q00
at a given time. pages 714-8, 2000.

In general, integral objects will have even loser ties to gRopsse and Mejino, 2003C. Rosse and J. L. V. Mejino. A
constituting collection of atoms or molecules than do portions  reference ontology for bioinformatics: The Foundational

nor a bound sum of any collection of atoms or molecules. 36:478-500, 2003.

Also, Julius is neither a constant sum nor a bound sum of anE/ ) ) .
collection consisting of portions of stuff. Simons, 198F P. Simons. Parts, A Study in Ontology
gorp Clarendon Press, Oxford, 1987.

The theory presented in this paper is useful for reason-
ing about parthood and composition relations among integrdlThomson, 199B J. J. Thomson. The statue and the clay.
objects and portions of stuff, particularly in application in,  Nols 32(2):149-173, 1998.

e.g., medicine where changes in objects are tracked OvertimRNiggins, 1980 D. Wiggins. Sameness and Substance
Related work in Artificial Intelligence also includ¢slayes, Cambridge, MA: Harvard University Press, 1980.
1983 and[Collins and Forbus, 1987 ' ’

One important area for further work is in expanding the
theory included in this paper to include modality. With
modality, we could distinguish more sharply between inte-
gral objects, homogenous stuffs, and mixtures. For example,

Brutus, like GOLD and unlike Julius, is a constant sum of
GOLDsAtoms. However, unlike GOLD and like Julius, Bru-
tus might not have been a constant sum of GOLDsAtoms. In
general, it is possible for all medium-sized integral objects to
lose atomic parts. Similarly, it is possible for all mixtures to
lose parts which are smaller portions of the same type of stuff.

References

[Barnett, 2004 D. Barnett. Some stuffs are not sums of stuff.
Philosophical Reviewl13:89-100, 2004.

[Burge, 197F T. Burge. A theory of aggregatesNous
11(2):97-117, 1977.

[Collins and Forbus, 1987John W. Collins and Kenneth D.
Forbus. Reasoning about fluids via molecular collections.
In Proceedings of the Sixth National Conference on Ar-
tificial Intelligence (AAAI-87 pages 590-595, Los Altos,
CA, 1987. Morgan Kaufmann.

[Doepke, 198P F.C. Doepke. Spatially coinciding objects.
Ratio, 24:45-60, 1982.

[Fine, 2003 K. Fine. The non-identity of a material thing
and its matterMind, 112, 2003.

[FME, 2003 FME. Foundational Model Explorer,
http://fme.biostr.washington.edu:8089/fme/index.html,
2003.

[Hayes, 198b Patrick J. Hayes. Native physics i: ontology
for liquids. In Jerry R. Hobbs and R. C. Moore, editors,



