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Abstract. We present a theory of granular parthood based on qualitative cardinality
and size measures. Using standard mereological relations and qualitative, context-
dependent relations such asroughly the same size, we define a granular parthood
relation and distinguish different ways in which a collection of smaller objects may
sum to a larger object. At one extreme, an objectx may be a mereological sum of
a large collectionp where the members ofp are all negligible in size with respect
to x (e.g.,x is a human body andp is the collection of its molecules). At the other
extreme,x may be a mereological sum of a collectionq none of whose members
are negligible in size with respect tox (e.g.,x is again a human body andp is the
collection consisting of its head, neck, torso, and limbs).

We cannot give precise quantitative definitions for relations such asroughly the
same sizeor negligible in size with respect tosince these are, even within a fixed
context, vague relations. The primary focus in the formal theory presented in this
paper is on the context-independent logical properties of these qualitative cardinal-
ity and size relations and their interaction with mereological relations. In develop-
ing our formal theory, we draw upon work on order of magnitude reasoning.
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1. Introduction

There have been some interesting recent proposals for developing theories of parthood
which take into account aspects of granularity, scale, and context [1,15,14]. The impor-
tance of taking into account granularity and scale in bio-medical ontologies has been
emphasized, for example, in [9,13,16,12]. It is the aim of this paper to contribute to this
work by presenting an axiomatic theory of granular parthood and scale based on quali-
tative cardinality and size relations, such asroughly the same size. For the development
of the axiomatic theory we draw on work on order of magnitude reasoning by Raiman,
Mavrovouniotiset al, and Dague [11,10,5,4].

That the interpretation of expressions like ’roughly the same size’ is context de-
pendent is widely acknowledged [6,8,17,3]. However, there are different strategies for
dealing with this context-dependence. Van Deemter [17], for example, explicitly repre-
sents context in the object-language of his theory. In this paper, we deal with context-



dependence in a more indirect way: context is represented abstractly in numerical pa-
rameters which determine the canonical interpretations of the qualitative size and car-
dinality relations of the formal theory. This allows us to focus in the theory only on
context-independent logical properties of the qualitative relations.

Obviously we cannot, even in a given context, specify precisely what is meant by,
e.g,roughly the same sizesince this is, even once the context is fixed, a vague relation.
Although the canonical models use precise numerical parameters for fixing the interpre-
tation of the qualitative size and relations, it is not expected that precise numerical pa-
rameters fixed in an actual practical contexts. At best, we associate contexts demanding
high precision with a different range of numerical parameters than contexts requiring
only loose precision. Since the logical properties of the relations of our theory are valid
over a range of numerical parameters, the formal theory can be used for reasoning even
where relations such asroughly the same sizelack precise numerical definitions.

The remainder of this paper is structured as follows: we start by presenting an ax-
iomatic theory of finite collections and relative cardinality. We then extend the theory by
introducing parthood and relative size relations among the objects in the collections.

We present the formal theory in a sorted first-order predicate logic with identity. We
use the lettersw, x, y, z as variables ranging over objects andp, q, r as variables rang-
ing over collections of objects. All quantification is restricted to a single sort. Leading
universal quantifiers are generally omitted and restrictions on quantification are to be
understood by the conventions on variable usage.

2. Collections

We use∈ for the member-of relation between objects and collections. Collections are
finite sets of two or more objects.

We require: every collection has two or more members (AC1); two collections are
identical if and only if they have the same members (AC2); ifx andy are distinct objects,
there is a collection consisting of justx andy (AC3).

AC1 (∃x)(∃y)(x ∈ p ∧ y ∈ p ∧ x 6= y)
AC2 p = q ↔ (x)(x ∈ p ↔ x ∈ q)
AC3 x 6= y → (∃p)(x ∈ p ∧ y ∈ p ∧ (z)(z ∈ p → z = x ∨ z = y))

We define union, intersection, and difference relations between collections. It follows
from AC2 that unions, intersections, and differences of collections are unique whenever
they exist.r is the union ofp andq if and only if x is a member andp or x is a member
of q (D∪). r is the intersection ofp andq if and only if x is a member ofr if and only if
x is a member ofp andx is a member ofq (D∪). r is the difference ofq in p if and only
if x is a member ofr if and only if x is a member ofp andx is not a member ofq (D\).

D∪ ∪pqr ≡ (x)(x ∈ r ↔ (x ∈ p ∨ x ∈ q))
D∩ ∩pqr ≡ (x)(x ∈ r ↔ (x ∈ p ∧ x ∈ q))
D\ \pqr ≡ (x)(x ∈ r ↔ (x ∈ p ∧ x 6∈ q))

We require: the union of two collections always exists (AC4); ifp andq share at least
two members, then the intersection ofp andq exists (AC5); ifp has at least two members
that are not members ofq, then the difference ofq in p exists (AC6).



AC4 (∃r) ∪ pqr
AC5 (∃x)(∃y)(x 6= y ∧ x ∈ p ∧ y ∈ p ∧ x ∈ q ∧ y ∈ q) → (∃r) ∩ pqr
AC6 (∃x)(∃y)(x 6= y ∧ x ∈ p ∧ y ∈ p ∧ x 6∈ q ∧ y 6∈ q)) → (∃r) \ pqr

Axioms AC1-AC6 ensure that collections behave roughly like sets with at least two
members. We introduce the termp ∪ q for the union ofp andq.

p is asub-collectionof q (p ⊆ q) if and only if every member ofp is also a member
of q (D⊆). p is aproper sub-collectionof q (p ⊂ q) if and only if p is a sub-collection of
q andp andq are not identical (D⊂).

D⊆ p ⊆ q ≡ (x)(x ∈ p → x ∈ q) D⊂ p ⊂ q ≡ p ⊆ q ∧ p 6= q

We can prove that⊆ is reflexive, antisymmetric, and transitive.
Collection r is symmetric with respect tocollectionsp and q if and only if any

member ofr is member ofp if and only if it is a member ofq (DSymC
).

DSymC
SymC rpq ≡ (x)(x ∈ r → (x ∈ p ↔ x ∈ q))

On the intended interpretation, collectionr is symmetric with respect top andq whenever
the standard set-theoretic intersection ofr andp is identical to the standard set-theoretic
intersection ofr andq. For example, the collectionC1 = {1, 2, 3, 4, 5} is symmetric with
respect toC2 = {4, 5, 10, 20, 30} andC3 = {−5,−4, 4, 5, 10}. ButC2 is not symmetric
with respect toC1 andC2.

We use[p] in the meta-language to refer to the number of members ofp. Notice that
if, as intended,p ranges over finite sets with at least two members,[p] must be a natural
number greater than one. In the formal theory, we introduce an equivalence relation�
between collections where the intended interpretation ofp � q is: p andq have the same
cardinality ([p] = [q]). We require that:� is reflexive, symmetric, and transitive (AC7-
9); if p is a sub-collection ofq andp andq have the same cardinality thenp andq are
identical (AC10); ifr is symmetric with respect top andq thenp andq have the same
cardinality if and only if the union ofp andr has the same cardinality as the union ofq
andr (AC11) ; for all collectionsp andq there is a collectionr such that either (i)r and
p have the same cardinality andr is a sub-collection ofq or (ii) r andq have the same
cardinality andr is a sub-collection ofp (AC12); if there is a sub-collection ofq that has
the same cardinality asp and there is a sub-collection ofp that has the same cardinality
asq thenp andq have the same cardinality (AC13).

AC7 p � p
AC8 p � q → q � p
AC9 p � q ∧ q � r → p � r
AC10 p ⊆ q ∧ p � q → p = q
AC11 SymC rpq → (p � q ↔ (p ∪ r) � (q ∪ r))
AC12 (∃r)[(r � p ∧ r ⊆ q) ∨ (r � q ∧ r ⊆ p)]
AC13 (∃r1)(r1 � p ∧ r1 ⊆ q) ∧ (∃r2)(r2 � q ∧ r2 ⊆ p) → p � q

We can prove: ifp is a proper sub-collection ofq andq has the same cardinality asr then
p andr have different cardinalities (TC1); ifs1 is the difference ofr in p ands2 is the



difference ofr in q andr is symmetric with respect top andq thenp andq have the same
cardinality if and only ifs1 ands2 have the same cardinality (TC2).

TC1 (p ⊂ q ∧ q � r) → ¬p � r
TC2 \prs1 ∧ \ qrs2 ∧ SymC rpq → (p � q ↔ s1 � s2)

The cardinality ofp is less than or equalto the cardinality ofq if and only if there is
a sub-collectionr of q that has the same cardinality asp (D≤). On the intended interpre-
tation,p ≤ q holds if and only if[p] is less than or equal to to[q]. The cardinality ofp is
less thanthe cardinality ofq if and only if the cardinality ofp is less than or equal to the
cardinality ofq andp andq do not have the same cardinality(D<).

D≤ p ≤ q ≡ (∃r)(r � p ∧ r ⊆ q) D< p < q ≡ p ≤ q ∧ ¬p � q

We can prove: ifp is a sub-collection ofq, then the cardinality ofp is less than or equal
to the cardinality ofq (TC3); if p is a proper sub-collection of q, then the cardinality of p
is less than the cardinality of q (TC4); for any collectionsp andq, the cardinality ofp is
less than or equal to the cardinality ofq or the cardinality ofq is less than or equal to the
cardinality ofp (TC5);≤ is reflexive (TC6); if the cardinality ofp is less than or equal to
the cardinality ofq and cardinality ofq is less than or equal to the cardinality ofp, then
p andq have the same cardinality (TC7);≤ is transitive (TC8);< is transitive (TC9);<
is asymmetric (TC10); if the cardinality ofp is less than or equal to the cardinality ofq
andq andr have the same cardinality, then the cardinality ofp is less than or equal to
the cardinality ofr (TC11); if r andp have the same cardinality and the cardinality ofp
is less than or equal to the cardinality ofq then the cardinality ofr is less than or equal
to the cardinality ofp (TC12).

TC3 p ⊆ q → p ≤ q
TC4 p ⊂ q → p < q
TC5 p ≤ q ∨ q ≤ p
TC6 p ≤ p
TC7 p ≤ q ∧ q ≤ p → p � q

TC8 p ≤ q ∧ q ≤ r → p ≤ r
TC9 p < q ∧ q < r → p < r
TC10 p < q → ¬q < p
TC11 p ≤ q ∧ q � r → p ≤ r
TC12 r � p ∧ p ≤ q → r ≤ q

3. Close and negligible cardinalites of collections

In this section we formalize the binary relations between collections:close-to(in cardi-
nality) andnegligible with respect to. Let ε be a parameter such that0 < ε < 0.5. On the
intended interpretation,p is close toq if and only if 1/(1 + ε) ≤ [p]/[q] ≤ 1 + ε. p is
negligible with respect toq if and only if [p]/[q] is smaller thanε/(1 + ε).

Consider Figure 1. Values for the cardinality ofp range along the positive horizontal
axis and values for the cardinality ofq range along the positive vertical axis. Ifp andq
have the same cardinality then([p], [q]) represents a point on the dotted line. If1/(1 +
ε) ≤ [p]/[q] ≤ 1+ε (i.e.,p is close toq), then([p], [q]) represents a point lying within the
area delimited by the dashed lines. If[p]/[q] is smaller thanε/(1+ ε) (i.e.,p is negligible
with respect toq), then([p], [q]) represents a point lying between the positive vertical
axis and the solid diagonal line.
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Figure 1. Graph forε = 0.2

Now consider a fixed collectionq and imagine that different values ofε are appro-
priate for different contexts. The smaller the value ofε, the smaller the value of|[p]− [q]|
must be forp to count as close toq and the smaller[p] must be forp to count as negligible
with respect toq. To picture this situation graphically: the smaller the value ofε, the nar-
rower the corridor between the dashed diagonal lines in Figure 1 and also the narrower
the corridor between the solid diagonal line and the positive vertical axis. Consider Table
1. If ε = 0.2 andq has cardinality100, then collections with cardinalities between84 and
120 count as close toq and collections with less than 17 members count as negligible
with respect toq. By contrast, ifε = 0.01 andq has cardinality100, then[p] must equal
100 or 101 forp to count as close toq and no collection has a cardinality small enough
to count as negligible with respect toq.

ε [q] p ' q p � q

0.7 100 58.8 ≤ [p] ≤ 170 [p] < 41.146

0.2 100 83.3 ≤ [p] ≤ 120 [p] < 16.666

0.1 100 9.9 ≤ [p] ≤ 110 [p] < 9.0909

0.01 100 99.009 ≤ [p] ≤ 101 [p] < 0.99

Table 1. The parameterε determines which collections are close and which collections are negligible with
respect to other collections.

The choice of a value ofε between0 and0.5 is determined by the level of precision
assumed in a particular context. For example, one would chose a larger value ofε in a
context where the goal is to represent the general functions of the human organ systems
than in contexts where the goal is to represent precise analyses of particular blood sam-
ples. An important advantage of the presented theory is that the axioms are valid for all
choices ofε between0 and0.5.

Axioms for ’close to’. In the axiomatic theory, we representclose toas a relation'
between collections, wherep ' q is interpreted as:1/(1 + ε) ≤ [p]/[q] ≤ 1 + ε. We
require:' is reflexive (AC14) and symmetric (AC15); ifr is symmetric with respect to
p andq andp is close toq, thenp ∪ r is close toq ∪ r (AC16); if p is close toq and the



cardinality ofr is greater than or equal to that ofp and less than or equal to that ofq,
thenp is close tor andq is close tor (AC17).

AC14 p ' p
AC15 p ' q → q ' p
AC16 SymC rpq ∧ p ' q → (p ∪ r) ' (q ∪ r)
AC17 p ' q ∧ p ≤ r ∧ r ≤ q → (p ' r ∧ q ' r)

Notice that unlike [11] and [5] we do not require' to be transitive. In many of the
intended models of our theory, it is possible to find collectionsr1, . . . , rn such thatp '
r1, r1 ' r2, ... andrn ' q and but NOTp ' q. Hence, adding a transitivity axiom for'
would give rise to a version of the Sorites paradox [7,17].

If the cardinalities ofp andq are the same andq is close tor, thenp is close tor
(TC13); if p is close toq and the cardinalities ofq andr are the same, thenp is close to
r (TC14); if the cardinalities ofp andq are the same, thenp is close toq (TC15).

TC13 p � q ∧ q ' r → p ' r
TC14 p ' q ∧ q � r → p ' r TC15 p � q → p ' q

Notice that the axioms for' are significantly weaker than the axioms for�.' is not an
equivalence relation; a collection may be close to one of its proper sub-collections; for
disjoint collectionsp andq, there may be some collectionr such that the union ofp and
r is close to the union ofq andr even thoughp is not close toq.

Definition of ‘negligible’. Let p andq be collections.p is negligible with respect toq if
and only if there existr ands such that (i)p andr have the same cardinality, (ii)r is a
sub-collection ofq, (iii) s is the difference ofr in q and (iii) s is close toq (D�).

D� p � q ≡ (∃r)(∃s)(r � p ∧ r ⊆ q ∧ \ qrs ∧ s ' q)

When' is interpreted so thats ' q holds if and only if1/(1 + ε) ≤ [s]/[q] ≤ 1 + ε,
thenp � q holds if and only if[p]/[q] is smaller thanε/(1 + ε). We require that ifp is
negligible with respect toq and the cardinality ofq is less than or equal to the cardinality
of r, thenp is negligible with respect tor (AC18).

AC18 p � q ∧ q ≤ r → p � r

We can prove: ifp is negligible with respect toq, then the cardinality ofp is smaller than
the cardinality ofq (TC16); if the cardinality ofp is less than or equal to the cardinality
of q andq is negligible with respect tor, thenp is negligible with respect tor (TC17); if
p is a sub-collection ofq andq is negligible with respect tor, thenp is negligible with
respect tor (TC18); if p is negligible with respect toq andq a sub-collection ofr, then
p is negligible with respect tor (TC19);� is transitive (TC20).

TC16 p � q → p < q
TC17 p ≤ q ∧ q � r → p � r

TC18 p ⊆ q ∧ q � r → p � r
TC19 p � q ∧ q ⊆ r → p � r
TC20 p � q ∧ q � r → p � r



Definition of ‘large’. p is large if and only if some other collection is negligible with
respect top (DLg). When' is interpreted so thatp ' q holds if and only if1/(1 + ε) ≤
[p]/[q] ≤ 1 + ε, p is large if and only if[p] > (2 + 2ε)/ε. For example, ifε = 0.01, then
collections of cardinality greater than202 are large.

DLg Lg p ≡ (∃q)(q � p)

We can prove: super-collections of large collections are large (TC21); sub-collections of
non-large collections are non-large (TC22).

TC21 Lg p ∧ p ⊆ q → Lg q TC22 p ⊆ q ∧ ¬Lg q → ¬Lg p

4. The mereology of objects

We introduce the primitive binary relationP , wherePxy is interpreted as: objectx is
part of objecty.

We define:x overlapsy if and only if there is an objectz such thatz is part of both
x andy (DO); x is a proper partof y if and only if x is part ofy andy is not part of
x (DPP); z is adifferenceof y in x if and only if any objectw overlapsz if and only if
w overlaps some part ofx and that does not overlapy (D−); z is a sumof x andy if
and only if any objectw overlapsz if and only if w overlapsx or y (D+); z is asumof
collectionp, zσp, if and only if any object overlapsz just in case it overlaps a member
of p (Dσ). We also say in this case thatz is ap-sum.

DO O xy ≡ (∃z)(P zx ∧ P zy)
DPP PPxy ≡ P xy ∧ ¬P yx
D− − xyz ≡ (w)(O wz ↔ (∃w1)(P w1x ∧ ¬O w1y ∧ O w1w))
D+ + xyz ≡ (w)(O wz ↔ (O wx ∨ O wy))
Dσ zσp ≡ (w)(O wz ↔ (∃x)(x ∈ p ∧ O xw))

We have the usual axioms of reflexivity (AP1) and transitivity (AP2). We also require
that if x is not a part ofy then there is a difference ofy in x (AP3) and that there is a
binary sum of any two objects (AP4).

AP1 P xx
AP2 P xy ∧ P yz → P xz

AP3 ¬P xy → (∃z)(− xyz)
AP4 (∃z)(+ xyz)

We can prove: if everything that overlapsx overlapsy thenx is part ofy (TP1); if x is a
p-sum, then every member ofp is part ofx (TP2); if x is ap-sum,y is aq-sum, andp is
a sub-collection ofq thenx is part ofy (TP3).

TP1 (z)(O zx → O zy) → P xy
TP2 x ∈ p ∧ yσp → P xy TP3 xσp ∧ yσq ∧ p ⊆ q → P xy



A collectionp is discreteif and only if distinct members ofp do not overlap (DD).

DD D p ≡ (x)(y)(x ∈ p ∧ y ∈ p ∧ O xy → x = y)

We say that objectz is adiscrete sumof the collectionp , z∆p, if and only ifp is discrete
andz is ap sum (D∆). We can prove that ifx is a discretep-sum then the members ofp
are proper parts ofx (TP4).

D∆ z∆p ≡ D p ∧ zσp TP4 x∆p ∧ y ∈ p → PPyx

We define thatz is mereologically symmetricwith respect tox andy if and only if
for every objectw that is part ofz: w is part ofx if and only if w is part ofy (DSymP

).

DSymP
SymP zxy ≡ (w)(P wz → (P wx ↔ P wy))

5. Relative size of objects and granular parthood

Exactly the same size.We use‖x‖ in the meta-language to refer to the exact volume
size of objectx. x andy haveexactly the same sizeif and only if‖x‖ = ‖y‖. In the formal
theory we introduce thesame sizerelation∼where, on the intended interpretation,x ∼ y
holds if and only if‖x‖ = ‖y‖. We require: ifx is part ofy andy is part ofx, thenx and
y are the same size (AP5);∼ is symmetric (AP6);∼ is transitive (AP7); ifx is part ofy
andx andy have the same size theny is part ofx (AP8); if w1 is a sum ofx andz and
w2 is a sum ofy andz andz is symmetric with respect tox andy then:x andy have the
same size if and only ifw1 has the same size asw2 (AP9).

AP5 P xy ∧ P yx → x ∼ y
AP6 x ∼ y → y ∼ x
AP7 x ∼ y ∧ y ∼ z → x ∼ z
AP8 P xy ∧ x ∼ y → P yx
AP9 +xzw1 ∧ + yzw2 ∧ SymP zxy → (x ∼ y ↔ w1 ∼ w2)

We can prove:∼ is reflexive (TP5); ifx is a proper part ofy andy has the same size asz
or if x has the same size asy andy is a proper part ofz, thenx andz are different sizes
(TP6); if w1 is a difference ofz in x andw2 is a difference ofz in y andz is symmetric
with respect tox andy, thenx andy have the same size if and only ifw1 andw2 have
the same size (TP7).1

TP5 x ∼ x
TP6 [(PPxy ∧ y ∼ z) ∨ (x ∼ y ∧ PPyz)] → ¬x ∼ z
TP7 −xzw1 ∧ − yzw2 ∧ SymP zxy → (x ∼ y ↔ w1 ∼ w2))

1Notice that we do not introduce a total size ordering on objects analogous to the≤ ordering on collections.
This is because we do not want to commit to the assumption that for any two objectsx andy, eitherx has a
part of exactly the same size asy or y has a part of exactly the same size asx.



Roughly the same size and granular parthood.We introduce the relationsroughly the
same size(≈) andgranular parthood(≪) between objects, which are roughly analo-
gous to the relationsclose toandnegligible with respect toon collections. Letω be a
parameter such that0 < ω < 0.5. On the intended interpretation,x is roughly same size
asy if and only if 1/(1 + ω) ≤ ‖x‖/‖y‖ ≤ 1 + ω. x is agranular partof y (i.e., a part
of y of negligible size) if and only ifx is part ofy and‖x‖/‖y‖ is less thanω/(1 + ω).

The parameterω determines which objects are roughly the same size and which of
an object’s parts are negligible in size with respect to it. This corresponds to the way in
which the parameterε determines which cardinalities are close and which cardinalities
negligible with respect to others. As withε, the value ofω can vary according to context.
The axioms of our theory are valid for all choices ofω between0 and0.5.

Consider Table 2. If HB is a human body of average volume70 liter and HH is HB’s
heart of average volume0.3 liter, then HH is a granular part of HB for choices ofω
larger than0.0043. HB’s cells (average size400 ∗ 10−15) are granular parts of HB for all
choices ofω listed in the table.

ω HB ' y y � HB y ≪ HB

0.2 58.333 ≤ ‖y‖ ≤ 84 11.666 ≤ ‖y‖ ≤ 70 ‖y‖ < 11.666

0.1 63.636 ≤ ‖y‖ ≤ 77 6.363 ≤ ‖y‖ ≤ 70 ‖y‖ < 6.363

0.01 69.307 ≤ ‖y‖ ≤ 70.7 0.693 ≤ ‖y‖ ≤ 70 ‖y‖ < 0.693

0.001 69.93 ≤ ‖y‖ ≤ 70.07 0.0699 ≤ ‖y‖ ≤ 70 ‖y‖ < 0.0699

Table 2. The parameterω determines which objects are roughly the same size and which of an object’s parts
are granular parts. Average volume in liters: human body (HB) = 70 liter, human heart (HH) = 0.3 liter, average
cell (HC) =400 ∗ 10−15 liter.

Axioms for≈. We require:≈ is reflexive (AP10);≈ is symmetric (AP11); ifw1 is a
sum ofx andz andw2 is a sum ofy andz andz is symmetric with respect tox and
y andx andy are roughly the same size, thenw1 andw2 are the roughly the same size
(AP12); if x andy are roughly the same size andy andz are the same size, thenx andz
are roughly the same size (AP13); ifx andy are roughly the same size andx is a part of
z andz is a part ofy, thenz andx, as well asz andy, are roughly the same size (AP14).

AP10 x ≈ x
AP11 x ≈ y → y ≈ x
AP12 +xzw1 ∧ + yzw2 ∧ SymP zxy ∧ x ≈ y → w1 ≈ w2

AP13 x ≈ y ∧ y ∼ z → x ≈ z
AP14 x ≈ y ∧ P xz ∧ P zy → (z ≈ x ∧ z ≈ y)

We can prove:x andy are the same size andy andz are roughly the same size, thenx
andz are roughly the same size (TP8); ifx andy are the same size, thenx andy are
roughly the same size (TP9).

TP8 x ∼ y ∧ y ≈ z → x ≈ z TP9 x ∼ y → x ≈ y

For reasons analogous to those discussed in the context of' we do not require≈ to
be transitive.



Granular and non-granular parthood.x is a granular part of y (i.e., x is a part ofy
whose size is negligible with respect toy) if and only if x is a proper part ofy and any
difference ofx in y has roughly the same size asy (D≪).2

D≪ x ≪ y ≡ PPxy ∧ (z)(− yxz → z ≈ y)

As discussed above, on the intended interpretationx ≪ y holds if and only if
‖x‖/‖y‖ < ω/(1 + ω). Consider Table 2. Forω = 0.01, if x is a human body of size 70
liter, then any party of x with ‖y‖ < 0.693 liter is a granular part ofx.

We can prove:≪ is asymmetric (TP10) and transitive (TP11); ifx is part ofy and
y is a granular part ofz thenx is granular part ofz (TP12); if x is a granular part ofy
andy is part ofz thenx is granular part ofz (TP13).

TP10 x ≪ y → ¬y ≪ x
TP11 x ≪ y ∧ y ≪ z → x ≪ z

TP12 P xy ∧ y ≪ z → x ≪ z
TP13 x ≪ y ∧ P yz → x ≪ z

x is anon-granular partof y if and only if x is part ofy andx is not a granular part
of y (D�). It follows immediately that non-granular parthood is reflexive.

D� x � y ≡ P xy ∧ ¬x ≪ y

On the intended interpretation,x � y holds if and only ifx is part ofy and‖x‖/‖y‖ ≥
ω/(1 + ω).

x and y are of the samescale with respect toz if and only if x and y are both
non-granular parts ofz (D∼=)

D∼= x ∼=z y ≡ x � z ∧ y � z

On the intended interpretation,x ∼=z y holds if and only ifx and y are parts ofz,
‖x‖/‖z‖ ≥ ω/(1 + ω), and‖y‖/‖z‖ ≥ ω/(1 + ω). Consider Table 2. Forω = 0.001,
an average-sized human heart and an average sized human leg are of the same scale with
respect to the 70 liter human body of which both are parts.

6. Aggregates and scale

We require: ifx is ap-sum and all members ofp are granular parts ofx, thenp is large
(AA1); if x is a discretep-sum and all members ofp are of non-granular parts ofx, then
p is not large (AA2).

AA1 xσp ∧ (y)(y ∈ p → y ≪ x) → Lg p
AA2 x∆p ∧ (y)(y ∈ p → y � x) → ¬Lg p

It follows from (AA1) that if x is part ofy andx is roughly the same size asy, thenx is
a non-granular part ofy (TA1).

2Notice that we do not define a relation ’of negligible size with respect to’ for arbitrary, possibly disjoint
objects analogous to� on collections. This because we do not want to commit to the general thesis that any
objectx has a part of that is roughly the same size as any smaller object.



TA1 P xy ∧ x ≈ y → x � y

Objectx is ap-assemblyif and only if x is a discretep-sum and all members ofp
are non-granular parts ofx (DAss). Objectx is ap-aggregateif and only if x is a discrete
p-sum and all members ofp are granular parts ofx(DAg).

DAssAssxp ≡ x∆p ∧ (y)(y ∈ p → y � x)
DAg Agxp ≡ x∆p ∧ (y)(y ∈ p → y ≪ x)

For example, my liver is an aggregate of liver cells in contexts withω larger than5.7143∗
10−13 and ε larger than1.143 ∗ 10−12 (‖my liver‖ = 0.7 liter, ‖an average cell‖ =
400 ∗ 10−15 liter). My body is an assembly of the collection of my major body parts (my
torso, my head, my neck, my left arm, my left leg, . . . ) in contexts withω < 0.01 and
ε < 0.02 (‖my neck‖ = 0.7 liter and‖my body‖ = 70 liter).

We can prove: ifx is ap-assembly thenp is not large (TA2); ifx is ap-aggregate,
thenp is large (TA3); ifx is ap-assembly andy andz are members ofp, theny andz
are of the samex-scale (TA4).

TA2 Assxp → ¬Lg p
TA3 Agxp → Lg p TA4 Assxp ∧ y ∈ p ∧ z ∈ p → y ∼=x z

7. Conclusions

We have presented an axiomatic theory of size and granular parthood. The theory is based
on the formal characterization of the primitive relations: member of (∈) (between ob-
jects and collections); same-cardinality-as (�) and close-to-in-cardinality (') (between
collections); part-of (P ), exactly-the-same-size (∼) and roughly-the-same-size (≈) (be-
tween objects). In our theory, we are able to formally distinguish between: i) large and
non-large collections, ii) the granular and non-granular parts of a given object, and iii)
assemblies and aggregates. We thereby extend existing work on mereology, context, and
order of magnitude reasoning.

Our theory has a number of limitations: (1) It does not take into account time. Hence
we cannot do justice to the fact that most objects most objects gain and lose parts over
times. Moreover, there is a critical distinction between gaining or losing granular parts
and gaining or losing non-granular parts. Only in rare contexts does it matter whether a
human body loses cells, but the loss of a limb or an organ is always a significant event. In
[2], we develop a time-dependent mereology. We are currently working on a combined
theory of parthood, change, and scale.

(2) We focus in this paper exclusively on similarity in cardinality and size, leaving
aside similarity in type. However, there are critical distinctions between homogeneous
aggregates (p-aggregates where all members ofp are of the same type) and heteroge-
neous aggregates (p-aggregates where members ofp are of different types) [2]. By com-
bining the work in this paper with a theory of types or universals, we can distinguish
between different sorts of homogeneous and heterogenous aggregates.



References

[1] B. Bennett. Physical objects, identity and vagueness. In D. Fensel, Deborah McGuinness, and Mary-
Anne Williams, editors,Principles of Knowledge Representation and Reasoning: Proceedings of the
Eighth International Conference (KR2002), San Francisco, CA, 2002. Morgan Kaufmann.

[2] T. Bittner and M. Donnelly. A temporal mereology for distinguishing between integral objects and
portions of stuff. Technical report, SUNY Buffalo, Department of Philosophy, 2006.

[3] T. Bittner and B. Smith. Vague reference and approximating judgments.Spatial Cognition and Compu-
tation, 3(2):137–156, 2003.

[4] P. Dague. Numeric reasoning with relative orders of magnitude. InProceedings of the National Confer-
ence on Artificial Intelligence, pages 541–547, 1993.

[5] P. Dague. Symbolic reasoning with relative orders of magnitude. InProc. 13th Intl. Joint Conference
on Artificial Intelligence, pages 1509–1515. Morgan Kaufmann, 1993.

[6] Michael Dummett. Wang’s paradox.Synthese, 30:301–324, 1975.
[7] D. Hyde. Sorites paradox. InStanford Encyclopedia of Philosoph. 1996.
[8] R. Keefe. Context, vagueness and the sorites. In J.C. Beall, editor,Liars and Heaps. Oxford University

Press, 2003.
[9] A. Kumar, B. Smith, and D. Novotny. Biomedical informatics and granularity.Functional and Compar-

ative Genomics, 5:501–508, 2004.
[10] M. Mavrovouniotis and G. Stephanopoulos. Formal order-of-magnitude reasoning in process engineer-

ing. Computers and Chemical Engineering, 12:867–881, 1988.
[11] O. Raiman. Order of magnitude reasoning.Artificial Intelligence, 51:11–38, 1991.
[12] A. Rector, J. Rogers, and T. Bittner. Granularity scale & collectivity: When size does and doesn’t matter.

Journal of Bioinformatics, 2005.
[13] A. Rector, J. Rogers, A. Roberts, and C. Wroe. Scale and context: Issues in ontologies to link health-

and bio-informatics. InProceedings of the AMIA 2002 Anual Symposium, pages 642–646, 2002.
[14] H.R. Schmidtke. Aggregations and constituents: geometric specification of multi-granular objects.Jour-

nal of Visual Languages & Computing, 16(4):289–309, 2005.
[15] H.R. Schmidtke. Granularity as a parameter of context. In A.K. Dey, D.B. Leake B.N. Kokinov, and

R.M. Turner, editors,Modelling and Using Context, pages 450–463. Springer, 2005.
[16] B. Smith, W. Ceusters, B. Klagges, J. Köhler, A. Kumar, J. Lomax, C. Mungall, F. Neuhaus, A. Rector,

and C. Rosse. Relations in biomedical ontologies.Gnome Biology, 6(5):r46, 2005.
[17] K. van Deemter. The sorites fallacy and the context-dependence of vague predicates. In M. Kanazawa,

C. Pinon, and H. de Swart, editors,Quantifiers, Deduction, and Context, pages 59–86. CSLI Publica-
tions, Stanford, CA, 1995.


