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Abstract. We present a theory of granular parthood based on qualitative cardinality
and size measures. Using standard mereological relations and qualitative, context-
dependent relations such mmighly the same sizeve define a granular parthood
relation and distinguish different ways in which a collection of smaller objects may
sum to a larger object. At one extreme, an objeahay be a mereological sum of

a large collectiorp where the members gf are all negligible in size with respect

to z (e.g.,z is a human body ang is the collection of its molecules). At the other
extreme,z may be a mereological sum of a collectigmone of whose members

are negligible in size with respect io(e.g.,z is again a human body andis the
collection consisting of its head, neck, torso, and limbs).

We cannot give precise quantitative definitions for relations suchuaghly the
same siz@r negligible in size with respect &ince these are, even within a fixed
context, vague relations. The primary focus in the formal theory presented in this
paper is on the context-independent logical properties of these qualitative cardinal-
ity and size relations and their interaction with mereological relations. In develop-
ing our formal theory, we draw upon work on order of magnitude reasoning.
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1. Introduction

There have been some interesting recent proposals for developing theories of parthood
which take into account aspects of granularity, scale, and context [1,15,14]. The impor-
tance of taking into account granularity and scale in bio-medical ontologies has been
emphasized, for example, in [9,13,16,12]. It is the aim of this paper to contribute to this
work by presenting an axiomatic theory of granular parthood and scale based on quali-
tative cardinality and size relations, suchragghly the same siz&or the development

of the axiomatic theory we draw on work on order of magnitude reasoning by Raiman,
Mavrovouniotiset al, and Dague [11,10,5,4].

That the interpretation of expressions like roughly the same size’ is context de-
pendent is widely acknowledged [6,8,17,3]. However, there are different strategies for
dealing with this context-dependence. Van Deemter [17], for example, explicitly repre-
sents context in the object-language of his theory. In this paper, we deal with context-



dependence in a more indirect way: context is represented abstractly in numerical pa-
rameters which determine the canonical interpretations of the qualitative size and car-
dinality relations of the formal theory. This allows us to focus in the theory only on
context-independent logical properties of the qualitative relations.

Obviously we cannot, even in a given context, specify precisely what is meant by,
e.g,roughly the same sizgince this is, even once the context is fixed, a vague relation.
Although the canonical models use precise numerical parameters for fixing the interpre-
tation of the qualitative size and relations, it is not expected that precise numerical pa-
rameters fixed in an actual practical contexts. At best, we associate contexts demanding
high precision with a different range of numerical parameters than contexts requiring
only loose precision. Since the logical properties of the relations of our theory are valid
over a range of numerical parameters, the formal theory can be used for reasoning even
where relations such asughly the same sidack precise numerical definitions.

The remainder of this paper is structured as follows: we start by presenting an ax-
iomatic theory of finite collections and relative cardinality. We then extend the theory by
introducing parthood and relative size relations among the objects in the collections.

We present the formal theory in a sorted first-order predicate logic with identity. We
use the lettersv, x, y, z as variables ranging over objects and, r as variables rang-
ing over collections of objects. All quantification is restricted to a single sort. Leading
universal quantifiers are generally omitted and restrictions on quantification are to be
understood by the conventions on variable usage.

2. Collections

We usec for the member-of relation between objects and collections. Collections are
finite sets of two or more objects.

We require: every collection has two or more members (AC1); two collections are
identical if and only if they have the same members (AC2);ahdy are distinct objects,
there is a collection consisting of justandy (AC3).

AC1 (z)(Fy)(zxepAhyEp AT #y)
AC2p=q < (z)(z€p T Eq)
AC3z#y— (Ip)zxephyepA(z)(z€p—2z=aV2z=y))

We define union, intersection, and difference relations between collections. It follows
from AC2 that unions, intersections, and differences of collections are unique whenever
they existr is the union ofp andgq if and only if x is a member ang or = is a member

of ¢ (Dy). r is the intersection gb andgq if and only if z is a member of if and only if

x is a member op andx is a member of (D). r is the difference of; in p if and only

if > is a member of if and only if z is a member op andz is not a member of (D).

D, Upgr=(z)(zer— (xepVazeq)
Dn npgr=(z)(zer— (repAxecq)
Dy \pgr=(z)(zer—(zephzdq)
We require: the union of two collections always exists (AC4); #nd g share at least

two members, then the intersectionpadndq exists (AC5); ifp has at least two members
that are not members of then the difference af in p exists (AC6).



AC4 (3r) Upgr
ACS (Fz)(Fy)(c Ay ANz EpAyEpAT EqAy€Eq)— (Ir) Npgr
AC6 (Fz)(Fy)(z #FyNzepryephzgqnhy&q)— (3r)\pgr

Axioms AC1-AC6 ensure that collections behave roughly like sets with at least two
members. We introduce the tepmu ¢ for the union ofp andg.
p is asub-collectiorof ¢ (p C q) if and only if every member of is also a member
of ¢ (Dc¢). p is aproper sub-collectiomf ¢ (p C ¢) if and only if p is a sub-collection of
g andp andq are not identical D).

DcpCq=(x)(zx€p—xE€Qq) DcpCq=pCqhp#q

We can prove that is reflexive, antisymmetric, and transitive.
Collectionr is symmetric with respect toollectionsp and ¢ if and only if any
member ofr is member op if and only if it is a member ofy (Dsyn,. ).

Dsym, Sy rpg = (z)(z €7 — (z €p < x € q))

Onthe intended interpretation, collectinis symmetric with respect teandg whenever
the standard set-theoretic intersection @indp is identical to the standard set-theoretic
intersection of- andq. For example, the collectiof; = {1, 2, 3,4, 5} is symmetric with
respectta’y = {4, 5,10,20,30} andC3 = {—5, —4,4,5,10}. ButC5 is not symmetric
with respect ta”; andCs.

We use€lp] in the meta-language to refer to the number of membeps Wbtice that
if, as intendedp ranges over finite sets with at least two membgrismust be a natural
number greater than one. In the formal theory, we introduce an equivalence retation
between collections where the intended interpretatignsefq is: p andg have the same
cardinality (p] = [¢]). We require that< is reflexive, symmetric, and transitive (AC7-
9); if p is a sub-collection off andp andg have the same cardinality therandg are
identical (AC10); ifr is symmetric with respect tp andq thenp andq have the same
cardinality if and only if the union op andr has the same cardinality as the unioryof
andr (AC11) ; for all collectiong andq there is a collectiom such that either (i} and
p have the same cardinality amds a sub-collection of or (ii) » andg have the same
cardinality and- is a sub-collection op (AC12); if there is a sub-collection gfthat has
the same cardinality gsand there is a sub-collection pfthat has the same cardinality
asq thenp andq have the same cardinality (AC13).

ACT pxp

AC8 p=xq—qxp

ACY9 pxgNhg=xr—pxr

AC1I0pCgAp=xq—p=q

AC1L Symy rpg — (p < g < (pUr) < (qUT))

AC12 (AN)[(r=pArCq)V (r=<qgArCp)]

ACI3 (Fr) (i =<xpAri Cg A Gra)(raxqAra Cp) = pxgq

We can prove: ip is a proper sub-collection gfandq has the same cardinality ashen
p andr have different cardinalities (TC1); #; is the difference of in p andss is the



difference ofr in ¢ andr is symmetric with respect toandq thenp andq have the same
cardinality if and only ifs; ands, have the same cardinality (TC2).

TCl(pCqAhg=xr)—pxr
TC2\prs1 A \ qrsa A Symy rpg — (p < q <> $1 < S2)

The cardinality ofp is less than or equab the cardinality of; if and only if there is
a sub-collection of ¢ that has the same cardinalityaéD<). On the intended interpre-
tation,p < ¢ holds if and only if[p] is less than or equal to {g]. The cardinality of is
less tharthe cardinality ofy if and only if the cardinality of is less than or equal to the
cardinality of¢ andp andq do not have the same cardinalify().

Dcp<q=(3r)(r=xpArCq) Dep<q=p<qAN-pxq

We can prove: i is a sub-collection of, then the cardinality of is less than or equal
to the cardinality of; (TC3); if p is a proper sub-collection of g, then the cardinality of p
is less than the cardinality of g (TC4); for any collectignandg, the cardinality of is
less than or equal to the cardinalitypbr the cardinality of; is less than or equal to the
cardinality ofp (TC5); < is reflexive (TC6); if the cardinality gf is less than or equal to
the cardinality ofy and cardinality of; is less than or equal to the cardinalitygfthen
p andq have the same cardinality (TC&; is transitive (TC8)< is transitive (TC9)<

is asymmetric (TC10); if the cardinality @fis less than or equal to the cardinality of
andq andr have the same cardinality, then the cardinalitya$ less than or equal to
the cardinality ofr (TC11); if  andp have the same cardinality and the cardinality of
is less than or equal to the cardinality pthen the cardinality of is less than or equal
to the cardinality of (TC12).

TC3pCq—p<q TC8 p<qANq<r—p<r
TCipCqg—p<gq TCY9 p<qgNhqg<r—p<r
TC5p<qVqg<p TC1I0p<q——q<p

TC6p<p TCllp<gAhg=xr—p<r
TCTp<qgNhq<p—opxgq TC12r=pAp<q—r<gq

3. Close and negligible cardinalites of collections

In this section we formalize the binary relations between collecticiese-to(in cardi-
nality) andnegligible with respect td_et e be a parameter such thak ¢ < 0.5. On the
intended interpretatiory is close tog if and only if 1/(1 +¢€) < [p]/[¢] < 1+ e pis
negligible with respect tq if and only if [p]/[q] is smaller thare/(1 + €).

Consider Figure 1. Values for the cardinalitypofange along the positive horizontal
axis and values for the cardinality gfrange along the positive vertical axis.pfandgq
have the same cardinality théfp], [¢]) represents a point on the dotted linel {1 +
€) <[pl/[q] < 1+e(i.e.,pis close tag), then([p], [¢]) represents a point lying within the
area delimited by the dashed lines[df/[¢] is smaller thar /(1 +¢) (i.e.,p is negligible
with respect tag), then([p], [¢g]) represents a point lying between the positive vertical
axis and the solid diagonal line.
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Now consider a fixed collectiop and imagine that different values efire appro-
priate for different contexts. The smaller the value,dhe smaller the value ofp] — [g]|
must be fop to count as close tgand the smallep] must be fop to count as negligible
with respect tg;. To picture this situation graphically: the smaller the value, ¢iie nar-
rower the corridor between the dashed diagonal lines in Figure 1 and also the narrower
the corridor between the solid diagonal line and the positive vertical axis. Consider Table
1. If e = 0.2 andq has cardinalityt 00, then collections with cardinalities betweghand
120 count as close tg and collections with less than 17 members count as negligible
with respect ta;. By contrast, ife = 0.01 andgq has cardinalityl 00, then[p] must equal
100 or 101 forp to count as close tg and no collection has a cardinality small enough
to count as negligible with respect 4o

e | I pgq p<yq
0.7 | 100 588<[p] <170  [p] < 41.146
0.2 | 100 833<[p]<120 [p] < 16.666
0.1 | 100 9.9<[p] <110  [p] < 9.0909
0.01 | 100 99.009 < [p] <101  [p] < 0.99

Table 1. The parametee determines which collections are close and which collections are negligible with
respect to other collections.

The choice of a value afbetweer) and0.5 is determined by the level of precision
assumed in a particular context. For example, one would chose a larger valire af
context where the goal is to represent the general functions of the human organ systems
than in contexts where the goal is to represent precise analyses of particular blood sam-
ples. An important advantage of the presented theory is that the axioms are valid for all
choices of betweer) and0.5.

Axioms for 'close to’. In the axiomatic theory, we represesibse toas a relation~
between collections, whege ~ ¢ is interpreted asl/(1 + €) < [p]/[q] < 1+ €. We
require:~ is reflexive (AC14) and symmetric (AC15);ifis symmetric with respect to
p andq andp is close tog, thenp U r is close tog U r (AC16); if p is close tog and the



cardinality ofr is greater than or equal to that pfand less than or equal to that g@f
thenp is close tor andgq is close tor (AC17).

ACldp~p

AC15p~qg—q=~p

AC16 Symy rpg Ap~q— (pUr) ~ (qUr)
AC1Tp~gAp<rAr<qg—(p=rAqx=r)

Notice that unlike [11] and [5] we do not require to be transitive. In many of the
intended models of our theory, it is possible to find collections. ., r, such thap ~
r1,T1 ™~ o, ... aNdr, ~ g and but NOTp ~ ¢. Hence, adding a transitivity axiom for
would give rise to a version of the Sorites paradox [7,17].

If the cardinalities ofp andq are the same anglis close tor, thenp is close tor
(TC13); if p is close tog and the cardinalities af andr are the same, themis close to
r (TC14); if the cardinalities op andq are the same, thenis close tog (TC15).

TC3p=qgNq~=r—px~r

TCldp~gAhg=r—op~r TClp=q—p=g

Notice that the axioms far are significantly weaker than the axioms for~ is not an
equivalence relation; a collection may be close to one of its proper sub-collections; for
disjoint collectiong andgq, there may be some collectiersuch that the union qof and

r is close to the union af andr even thouglp is not close ta;.

Definition of ‘negligible’. Let p andq be collectionsp is negligible with respect tq if
and only if there exist ands such that (i)p andr have the same cardinality, (ii)is a
sub-collection ofj, (iii) s is the difference of in ¢ and (iii) s is close tog (D).

Dep<qg=3r)3s)(r=pArCqA \qrs ANs~q)

When~ is interpreted so that ~ ¢ holds if and only if1/(1 +€) < [s]/[q] < 1+,
thenp < ¢ holds if and only if[p]/[q] is smaller thare/(1 + €). We require that i is
negligible with respect tg and the cardinality of is less than or equal to the cardinality
of r, thenp is negligible with respect te (AC18).

ACBp << ghqg<r—p<r

We can prove: ip is negligible with respect tg, then the cardinality of is smaller than
the cardinality ofy (TC16); if the cardinality op is less than or equal to the cardinality
of ¢ andgq is negligible with respect to, thenp is negligible with respect to (TC17); if

p is a sub-collection off andq is negligible with respect to, thenp is negligible with
respect ta- (TC18); if p is negligible with respect tg andq a sub-collection of-, then

p is negligible with respect to (TC19); « is transitive (TC20).

TCI8p CgNhqkLr—-p<Lr
TC9p<gNgCr—p<r
TC20p<Kghqg<Lr = pKLr

TClep<Kqg—p<gq
TClTp<gNqg<Lr—p<r



Definition of ‘large’. p is large if and only if some other collection is negligible with
respect te (Dyg). When~ is interpreted so that ~ ¢ holds if and only ifl /(1 + €) <
[pl/l9] < 1+ ¢, pislarge if and only iffp] > (2 + 2¢)/e. For example, it = 0.01, then
collections of cardinality greater th&02 are large.

Diglgp = (3¢)(g < p)

We can prove: super-collections of large collections are large (TC21); sub-collections of
non-large collections are non-large (TC22).

TC21lgpApCq—Lgg TC22p CgAN-Lgqg— —-Lgp

4. The mereology of objects

We introduce the primitive binary relatioR, where Pzy is interpreted as: objeat is
part of objecty.

We definex overlapsy if and only if there is an object such that: is part of both
x andy (Do); z is aproper partof y if and only if x is part ofy andy is not part of
x (Dpp); z is adifferenceof y in z if and only if any objectw overlapsz if and only if
w overlaps some part af and that does not overlap(D_); z is asumof = andy if
and only if any objectv overlapsz if and only if w overlapsz or y (D, ); z is asumof
collectionp, zop, if and only if any object overlaps just in case it overlaps a member
of p (D,). We also say in this case thats ap-sum

Do Ouzy=(32)(Pzx AP zy)

Dpp PPzy=Paxy A -Pyzx

D_  —zyz = (w)(Owz < (Fwy)(Pwiz A -0 wyAO ww))
Dy +zyz=(w)(Owz«— (OwzV O wy))

D, zop=(w)(Owz (Fz)(ze€pAOzw))

We have the usual axioms of reflexivity (AP1) and transitivity (AP2). We also require
that if 2 is not a part ofy then there is a difference gfin = (AP3) and that there is a
binary sum of any two objects (AP4).

AP1 P zzx AP3 =P zy — (3z)(— zyz)
AP2Paxy AN Pyz— Puzz AP4 (3z)(+ zyz)

We can prove: if everything that overlapoverlapsy thenz is part ofy (TP1); ifz is a
p-sum, then every member pfis part ofx (TP2); if z is ap-sum,y is ag-sum, and is
a sub-collection of thenx is part ofy (TP3).

TP1(2)(0 zz — O zy) —» Pxy

TP2x €pAyop— Py TP3xop Nyoq Ap S q— Py



A collectionp is discreteif and only if distinct members gf do not overlap Dp).
DpDp=(z)(y)(xEpAyeEpAOay —z=y)

We say that object is adiscrete sunof the collectiorp , zAp, if and only if p is discrete
andz is ap sum (D). We can prove that if is a discretes-sum then the members pf
are proper parts af (TP4).

DA 2zAp=D p A zop TP4izAp ANy € p— PPyzx

We define that is mereologically symmetriwith respect tor andy if and only if
for every objectw that is part ofz: w is part ofz if and only if w is part ofy (Dsym, ).

Dsym, Symp zzy = (w)(P wz — (P wr < P wy))

5. Relative size of objects and granular parthood

Exactly the same size.We use||z|| in the meta-language to refer to the exact volume
size of objectz. = andy haveexactly the same siifeand only if ||z|| = ||y||. In the formal
theory we introduce theame sizeelation~ where, on the intended interpretation;- y
holds if and only if|z|| = ||y||. We require: ifz is part ofy andy is part ofz, thenz and

y are the same size (AP5Y; is symmetric (AP6)x~ is transitive (AP7); ifx is part ofy
andz andy have the same size theris part ofx (AP8); if w; is a sum ofr andz and

ws IS @ sum ofy andz andz is symmetric with respect to andy then:z andy have the
same size if and only ify; has the same size as (AP9).

APSPxy NPyxr —x -~y

AP6r~y—y~zc

APTx ~yANym~z—x~2Z

AP8Paxy Nz ~y— Pyzx

AP9 +xzwy A + yzwe A SYyMp zay — (T ~ y > wy ~ wa)

We can provex is reflexive (TP5); ifz is a proper part of andy has the same size as
or if x has the same size gsandy is a proper part of, thenx andz are different sizes
(TP6); if w, is a difference ot in x andws is a difference ot in y andz is symmetric

with respect tar andy, thenz andy have the same size if and onlyuf; andw, have

the same size (TP#).

TPz ~x
TP6[(PPzy ANy~ 2z)V (z~yAPPyz)] — -z~ z
TPT7 —xzwy A —yzws A SYyNp zay — (T ~ y < wy ~ w3))

INotice that we do not introduce a total size ordering on objects analogous<odtdering on collections.
This is because we do not want to commit to the assumption that for any two objantsy, eitherx has a
part of exactly the same size a®r y has a part of exactly the same sizeras



Roughly the same size and granular parthoo#lVe introduce the relationsughly the
same siz€~) andgranular parthood(«<) between objects, which are roughly analo-
gous to the relationslose toandnegligible with respect ton collections. Letw be a
parameter such that< w < 0.5. On the intended interpretation,is roughly same size
asyifandonly if1/(1 +w) < ||z||/|ly|| < 1+ w. x is agranular partof y (i.e., a part
of y of negligible size) if and only if: is part ofy and||z||/||y|| is less thanw/(1 + w).

The parametew determines which objects are roughly the same size and which of
an object’s parts are negligible in size with respect to it. This corresponds to the way in
which the parameter determines which cardinalities are close and which cardinalities
negligible with respect to others. As withthe value ofu can vary according to context.
The axioms of our theory are valid for all choices.obetweer() and0.5.

Consider Table 2. If HB is a human body of average voltithéter and HH is HB'’s
heart of average volume.3 liter, then HH is a granular part of HB for choices ©f
larger tharD.0043. HB'’s cells (average siz400 « 10~ ') are granular parts of HB for alll
choices ofv listed in the table.

w || HB~y \ y < HB | y << HB
02 || 58333<|yll<84 | 11.666< |y <70 | [ly] < 11.666
01 || 63.636 < |yl <77 6.363 < |ly| <70 | ||ly|| < 6.363
0.01 || 69.307 < ||yl <70.7 | 0.693< |jy]| <70 | [ly]l < 0.693
0.001 || 69.93 < [ly|| < 70.07 | 0.0699 < |jy]| < 70 | [jy]| < 0.0699

Table 2. The parametex determines which objects are roughly the same size and which of an object’s parts
are granular parts. Average volume in liters: human body (HB) = 70 liter, human heart (HH) = 0.3 liter, average
cell (HC) =400 * 10~ 17 liter.

Axioms for. We require:= is reflexive (AP10)x is symmetric (AP11); ifw, is a
sum ofz andz andw, is a sum ofy andz and z is symmetric with respect to and

y andz andy are roughly the same size, then andw- are the roughly the same size
(AP12); if z andy are roughly the same size apéndz are the same size, therandz
are roughly the same size (AP13);ifandy are roughly the same size amds a part of

z andz is a part ofy, thenz andz, as well as: andy, are roughly the same size (AP14).

AP0z =~z

APllz=y—y=~uzx

AP12 +xzwi A + yzws A SYNMp 2oy A Ry — Wy = Wa
APIBz~yANy~z o~z
APl4xmyANPxzzANPzy— (zrzAzry)

We can provex andy are the same size apdandz are roughly the same size, then
and z are roughly the same size (TP8);iifandy are the same size, thenandy are
roughly the same size (TP9).

TP8x~yANymz—oxr=z2 TPYz~y—zxzry

For reasons analogous to those discussed in the contextvefdo not requirex to
be transitive.



Granular and non-granular parthood. z is agranular partof y (i.e., z is a part ofy
whose size is negligible with respectgdif and only if z is a proper part of; and any
difference ofz in y has roughly the same size @$D . ).

Dz <y=PPay A (2)(—yzz — 2= y)

As discussed above, on the intended interpretation y holds if and only if
Izl /llyll < w/(1+ w). Consider Table 2. Fay = 0.01, if « is a human body of size 70
liter, then any pary of « with ||y|| < 0.693 liter is a granular part of.

We can provexk is asymmetric (TP10) and transitive (TP11)xifs part ofy and
y is a granular part of thenx is granular part ot (TP12); if z is a granular part of
andy is part ofz thenz is granular part o (TP13).

TPz Ky —» 1y <K TPIR2Pay Ny K z - K 2
TPl K yNy Kz - K 2 TP13z <K yANPyz -z Kz

x is anon-granular partof y if and only if x is part ofy andz is not a granular part
of y (D<). It follows immediately that non-granular parthood is reflexive.

Diz=y=Payh 2Ky

On the intended interpretation,< y holds if and only ifz is part ofy and||z||/||y| >
w/(1+4+ w).

x andy are of the samecale with respect ta if and only if z andy are both
non-granular parts of (D~)

Dezx=2, y=rx<2ANy=<z

On the intended interpretation, =, y holds if and only ifz andy are parts ofz,
lzll/11z]] = w/(1 + w), and|ly||/||z]]| > w/(1 + w). Consider Table 2. Fav = 0.001,
an average-sized human heart and an average sized human leg are of the same scale with
respect to the 70 liter human body of which both are parts.

6. Aggregates and scale

We require: ifz is ap-sum and all members gfare granular parts of, thenp is large
(AAL); if x is a discrete-sum and all members gfare of non-granular parts ef then
pis not large (AA2).

AAlzop A (y)(y €p —y <K x) — Lgp
AA2zAp N (y)(y€p—y =2 x) — -Lgp

It follows from (AA1) that if z is part ofy andx is roughly the same size gsthenx is
a non-granular part of (TAL).

2Notice that we do not define a relation 'of negligible size with respect to’ for arbitrary, possibly disjoint
objects analogous t& on collections. This because we do not want to commit to the general thesis that any
objectz has a part of that is roughly the same size as any smaller object.



TAlIPxyANz=y—z =Yy

Objectz is ap-assemblyf and only if = is a discreteo-sum and all members of
are non-granular parts af(Dasd. Objectz is ap-aggregatef and only if x is a discrete
p-sum and all members gfare granular parts of(Dag).

DassAsszp = 2Ap A (y)(y €p — y 2 x)
Dag Agzp=zAp A (y)(y €p — y K )

For example, my liver is an aggregate of liver cells in contexts wildrger tharb.7143x
10713 ande larger than1.143 x 1072 (||my liver|| = 0.7 liter, ||an average céll =
400 * 10~15 liter). My body is an assembly of the collection of my major body parts (my
torso, my head, my neck, my left arm, my left leg, ...) in contexts witk: 0.01 and
€ < 0.02 (|lmy neck| = 0.7 liter and||my body| = 70 liter).

We can prove: ifr is ap-assembly themp is not large (TA2); ifz is ap-aggregate,
thenp is large (TA3); if z is ap-assembly ang andz are members gf, theny andz
are of the same-scale (TA4).

TA2 Assxp — —Lgp N
TA3Agzp — Lgp TAAASSIp Ny EpAzEP —y =,y 2

7. Conclusions

We have presented an axiomatic theory of size and granular parthood. The theory is based
on the formal characterization of the primitive relations: member=)f(between ob-

jects and collections); same-cardinality-a9 @nd close-to-in-cardinality~) (between
collections); part-of P), exactly-the-same-size-§ and roughly-the-same-size:) (be-

tween objects). In our theory, we are able to formally distinguish between: i) large and
non-large collections, ii) the granular and non-granular parts of a given object, and iii)
assemblies and aggregates. We thereby extend existing work on mereology, context, and
order of magnitude reasoning.

Our theory has a number of limitations: (1) It does not take into account time. Hence
we cannot do justice to the fact that most objects most objects gain and lose parts over
times. Moreover, there is a critical distinction between gaining or losing granular parts
and gaining or losing non-granular parts. Only in rare contexts does it matter whether a
human body loses cells, but the loss of a limb or an organ is always a significant event. In
[2], we develop a time-dependent mereology. We are currently working on a combined
theory of parthood, change, and scale.

(2) We focus in this paper exclusively on similarity in cardinality and size, leaving
aside similarity in type. However, there are critical distinctions between homogeneous
aggregatespfaggregates where all memberspoéire of the same type) and heteroge-
neous aggregates-aggregates where memberspadre of different types) [2]. By com-
bining the work in this paper with a theory of types or universals, we can distinguish
between different sorts of homogeneous and heterogenous aggregates.
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