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Abstract

We develop a formal theory of mereology that includes re-
lations that change over time. We show how this theory for-
malizes reasoning over domains of material objects, which in-
clude not only integral objects (my computer, your liver) but
also portions of stuff (the water in your glass, the blood in a
vial). In particular, we use different mereological summation
relations to distinguish between the ways in which i) integral
objects, ii) portions of unstructured, homogenous stuffs (e.g.
the water in your glass), and iii) mixtures (the blood in a vial)
are linked to their parts over time.

Introduction
We present a formal theory for distinguishing between the
mereological properties of different kinds of material ob-
jects. We takematerial objectsto include, not only inte-
gral objects (your car, my computer), but also portions of
stuff, such as the water in a glass, the gold in a ring, or the
blood in a vial. Our theory is intended to serve as a ba-
sis for ontologies in fields like medical informatics where
parthood relations play a central role in data-structuring
and where domains include integral objects (livers, hearts,
blood cells), homogenous unstructured stuffs (oxygen, wa-
ter), and structured stuffs (in particular, mixtures such as
blood or urine). Examples of bio-medical ontologies are the
Foundational Model of Anatomy (Rosse & Mejino 2003;
FME 2003) and GALEN (Rogers & Rector 2000; Open-
GALEN 2003).

Unlike portions of stuff, integral objects may retain their
identities through a full-scale change of parts. A human
body, for example, is continuously rebuilt on a cellular level
and will retain very few of its cellular parts over a period
of ten years. By contrast, each portion of stuff necessarily
retains certain ”minimal” components for as long as it con-
tinues to exist. For example, a specific portion of water is
comprised of the same water molecules throughout its dura-
tion and a specific portion of blood is comprised of the same
red and white blood cells, platelets, and plasma throughout
its duration. But unstructured stuffs, like water, and struc-
tured stuffs, like blood, differ significantly in how they are
linked to their minimal components over time. For exam-
ple, a given portion of water continues to exist even if its
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molecules are randomly scattered. It may become part of a
chemical compound or it may change its physical state (e.g.,
from liquid to gas) but it is still, strictly, the same portion
of water.1 By contrast, a portion of blood ceases to exist if,
e.g., its cells are separated from its plasma.

Most bio-medical ontologies currently use only time-
independent parthood relations, which assume a ‘frozen’,
fixed time-slice view of organisms and their parts. There
is general agreement, however, that more complex time-
sensitive ontologies needed for data-tracking, and automated
reasoning in medical fields concerned with physiological
processes, organism development, and diseases. Develop-
ers of these ontologies need to make systematic distinctions
about the ways in which the different sorts of items making
up an organism (organs, blood, water, and so on) are linked
to their parts over time. Our theory provides a vocabulary
for making these distinctions as well as basis for reasoning
about change in mereological relations over time.

The formal theory developed in this paper builds on that
of (Simons 1987, ch. 4). Our theory differs in that it is
formulated in standard predicate logic (Simons uses a free
logic), uses a stronger set of axioms for the parthood rela-
tion, and, most importantly, introduces the different cross-
temporal parthood and summation relations which are used
to distinguish between the characteristic spatio-temporal
properties of integral objects, unstructured stuffs, and struc-
tured stuffs.

We follow Simons in adopting what is known in con-
temporary metaphysics as the ‘standard account’ of mate-
rial coincidence. According to this account, distinct mate-
rial objects, such as a liver and the liver tissue of which it
is made, may coincide (i.e.,occupy exactly the same place
at the same time). Other proponents of the ‘standard ac-
count’ include (Wiggins 1980; Doepke 1982; Fine 2003).
Although the standard account is not universally accepted
(see, e.g. (Rea 1995), for several alternative positions), it
is generally adopted by philosophers who treat objects as
three-dimensional entities that gain and lose parts over time.
Since medicine distinguishes between an organ and the tis-

1Notice, however, that the portion of water does not survive a
scattering of itsatoms. If its hydrogen atoms are separated from
its oxygen atoms, we are left with just oxygen and hydrogen, not
water. It is for this reason that the special constituting parts of the
portion of water are its molecules, not its atoms.



sue of which it is made and treats organs and other body
parts as spatial objects that change over time, we think that
the standard account fits in better than alternative accounts
with the assumptions grounding current work in medical in-
formatics.

Examples
Before developing the formal theory, we first lay out some
examples of the kinds of mereological relations among ma-
terial objects that we expect it to handle. The examples illus-
trate characteristic distinctions in the cross-temporal mere-
ological properties of integral objects, unstructured stuffs,
and structured stuffs. They will be used in the later sections
of this paper to illustrate the different kinds of parthood and
summation relations introduced in our formal theory.

Although our theory is intended to serve as a basis for
spatio-temporal reasoning in medical informatics, we use
simple common-sense examples, and not medical examples,
to illustrate the theory. We do this because the distinction
between different summation relations introduced in our the-
ory is somewhat complicated and difficult to grasp. We
find that the theory is more accessible when it is illustrated
by simpler sorts of items with which most readers are fa-
miliar. But the reader should keep in mind that the points
made below about statues (integral objects), portions of gold
(unstructured stuffs), and portions of lemonade (structured
stuffs), apply equally to organs, portions of water (or oxy-
gen, carbon, and so on), and portions of blood (or urine,
liver tissue, plasma, and so on).

A. Suppose that a portion of gold (call it GOLD) is formed
into a statue of Julius Ceaser (call the statue Julius). Let TJ
be a time immediately after Julius is formed. According to
the standard account, at TJ, Julius and GOLD coincide, but
Julius and GOLD are not identical since Julius is only a few
minutes old at TJ, but GOLD is much older.

In sections - , we develop a temporal mereology which
(like those of (Simons 1987; Thomson 1998)), assumes

(*) object x is part of objecty at timet if and only if
x is spatially included iny at t.

It follows from (*) that x andy occupy the same place at
t (i.e. coincide att) if and only if x andy have the same
parts att. Thus, every part of GOLD is part of Julius at TJ
and every part of Julius is part of GOLD at TJ. In particu-
lar, GOLD, all sub-portions of gold in GOLD, and all gold
atoms in GOLD are part of Julius at TJ. Also, Julius, Julius’
head (JHead), Julius’ right hand (JHand), and so on are part
of GOLD at TJ.2

Note, however, that Julius, JHead, and JRHand arediffer-
ent kindsof parts of GOLD than are its gold atoms or its gold
sub-portions. Let GOLDsAtoms be the collection of gold
atoms which are at TJ part of GOLD and let GOLDsSub-
Portions be the collection of sub-portions of gold which are
part of GOLD at TJ. All members of GOLDsAtoms and
GOLDsSubPortions, unlike Julius, JHead, and JHand,must

2Not all proponents of the standard account accept (*). See, for
example, (Doepke 1982).

be parts of GOLD whenever GOLD exists. Julius may cease
to be part of GOLD while GOLD continues to exist (if, e.g.
GOLD is melted down), but GOLD cannot survive the loss
of a single gold atom or sub-portion of gold.

Moreover, whenever all members of GOLDsAtoms (and
consequently also all members of GOLDsSubPortions) ex-
ist, GOLD must also exist. Thus, even at times when
the members of GOLDsAtoms are distributed randomly
throughout the world, GOLD must exist (albeit as a scat-
tered entity). By contrast, Julius, JHead, JHand, and so on
might all outlive GOLD’s demise if, e.g., a single member
of GOLDsAtoms were removed from Julius and destroyed.
Since GOLD is bound in this way to the members of GOLD-
sAtoms and GOLDsSubPortions, but not to Julius, JHead,
JHand, etc, it is natural that we think of the former, but not
the later, as the primary parts of GOLD.

By contrast, it is not clear that Julius has such strong ties
to any of its proper parts. By a step-wise replacement anal-
ogous to that performed on the ship of Theseus, Julius can
survive the loss of any portion of gold (including the loss of
GOLD itself, if GOLD is gradually replaced by another por-
tion of metal), JHead, JHand, and perhaps any other struc-
tural proper part. Also, JHead, JHand, and other of Julius’
structural parts may exist at times when Julius does not exist
(e.g., if JHand, JHand, and other structural parts of Julius
were constructed before Julius was assembled).

To create a more complex example for illustrating differ-
ent aspects of our theory, we assume that GOLD and Julius
undergo a few changes after time TJ. Suppose that by time
TH, JHand has been removed from Julius and subsequently
melted down. At TH, JHand is no longer a part of either
Julius or GOLD. Indeed, since JHand does not exist at TH,
JHand is not a part of anything at TH. Also, the portion
of gold (call it GHand) which has been melted down is no
longer a part of Julius at TH. But GHand is still a part of
GOLD at TH. Thus, at TH, GOLD and Julius no longer co-
incide. Instead, Julius coincides at TH with a proper part
of GOLD– that sub-portion of gold in GOLD which has not
been melted down (call it GHand-Minus).

Now suppose that at some time after TH, GHand-Minus is
also melted down and at time TB all of GOLD is formed into
a statue of Marcus Brutus. Call the second statue Brutus. At
TB, Julius, JHead, and so on are no longer parts of GOLD,
but GOLD now coincides with a new statue. Thus, GOLD
has acquired new parts– at TB, Brutus, Brutus’ head, Brutus’
right hand, and so on are all parts of GOLD. Notice, though,
that throughout these changes GOLD neither gains nor loses
parts which are gold atoms or portions of gold.

B. In addition to distinguishing between the mereologi-
cal properties of integral objects (Julius) and portions of
stuff (GOLD), we would also like to use the mereology
developed in this paper to clarify distinctions, made infor-
mally in (Barnett 2004), between different types of por-
tions of stuff. Barnett’s distinctions can be illustrated by
contrasting GOLD with a portion of stuff that is a mix-
ture. Suppose we have some sugar (SUGAR), some wa-
ter (WATER), and some citric acid (ACID) in separate con-



tainers on our kitchen counter. When we mix SUGAR,
WATER, and ACID together, each of these portions of
stuff continues to exist. But we have in addition new por-
tion of stuff: some lemonade (LEMONADE).3 Just as all
members of GOLDsAtoms must be parts of GOLD when-
ever GOLD exists, so also all members of LEMsMolecules
(the collection consisting of SUGAR’s sugar molecules,
WATER’s water molecules, and ACID’s acid molecules)
must be parts of LEMONADE whenever LEMONADE is
made. However, unlike GOLD and GOLDsAtoms, the
mere existence of all members of LEMsMolecules is not
sufficient to guarantee LEMONADE’s existence– all mem-
bers of LEMsMolecules are present before LEMONADE
is made. LEMONADE exists only when members of
LEMsMolecules are suitably mixed together: every sugar
molecule in LEMsMolecules must be mixed with water and
acid molecules in LEMsMolecules, and so on. Nonethe-
less, LEMONADE, like GOLD and unlike Julius or Brutus,
can survive quite a bit of scattering. We could, e.g., divide
LEMONADE into a thousand cups. As long as the division
is accomplished in such a way that each of the cups contains
a portion of lemonade and each member of LEMsMolecules
is part of one of these portions, LEMONADE survives the
scattering.

Let TL1 be a time immediately after LEMONADE’s cre-
ation. At TL1, LEMONADE has as parts not only members
of LEMsMolecules, but also sub-portions of lemonade. Let
LEMsSubPortionsTL1 be the collection of all portions of
lemonade which are part of LEMONADE at TL1. (Notice
that some portions of stuff which are part of LEMONADE
at TL1 are not portions of lemonade. For example, SUGAR,
WATER, are ACID are parts of LEMONADE at TL1, but
these are not portions of lemonade and thus are not mem-
bers of LEMsSubPortionsTL1.)

Like GOLD and GOLDsSubportions, LEMONADE must
exist whenever all members of LEMsSubPortionsTL1 exist.
However, unlike GOLD and GOLDsSubportions, the mem-
bers of LEMsSubportionsTL1 need not be parts of LEMON-
ADE whenever LEMONADE exists.4 Suppose that at some
time after TL1, LEMONADE is whipped in a blender. Let
TL2 be a time after the whipping. We presume that at
TL2 all members of LEMsMolecules are still appropriately
mixed with other members of LEMsMolecules and thus that
LEMONADE still exists at TL2. But some members of
LEMsSubportionsTL1 will no longer exist at TL2, since
sincetheir water, acid, and sugar molecules will have been
scattered (within LEMONADE) as a result of the mixing.

To illustrate this, let L-SMALL be some member of
LEMsSubPortionsTL1 that is significantly smaller than
LEMONADE. The members of only a small portion
of LEMsMolecules are molecular parts of L-SMALL.
Call this sub-collection L-SMALLsMolecules. Just as
LEMONADE persists only so long as members of
LEMsMolecules remain appropriately mixed with other
members of LEMsMolecules, so L-SMALL persists only so

3For an alternative account of this situation, see (Burge 1977).
4This point is taken from (Barnett 2004) where an analogous

example involving a portion of crude oil is developed in detail.

long as members of L-SMALLsMolecules remain appropri-
ately mixed with other members of L-SMALLsMolecules.
But given that L-SMALLsMolecules includes only a small
portion of LEMsMolecules, it is highly unlikely that all
members of L-SMALLsMolecules are still appropriately
mixed with one another after the whipping. Given, further,
that LEMsSubPortionsTL1 includes very many portions of
lemonade that are at least as small as L-SMALL, we can
safely assume that not all members of LEMsSubPortion-
sTL1 exist at TL2 even though LEMONADE exists at TL2.
On the other hand, we can also assume that new collections
of molecules have been mixed together as a result of the
whipping. and thus that LEMONADE has acquired new
sub-portions between TL1 and TL2. Thus, while GOLD
can neither lose nor gain parts which are portions of gold,
LEMONADE can both lose and gain parts which are por-
tions of lemonade.

It is our task in the remainder of this paper to develop
an axiomatic theory that allows for clear characterization of
examples such as those presented above.

Non-extensional temporal mereology
We present a non-extensional temporal mereology in a
sorted first-order predicate logic with identity. We distin-
guish three disjoint sorts. We usew, x, y, z as variables
ranging over material objects;p, q as variables ranging over
collections of material objects;t, t1, t2 as variables rang-
ing over instants of time. All quantification is restricted to
a single sort and leading universal quantifiers are generally
omitted. Restrictions on quantification will be understood
by conventions on variable usage.

Time-dependent parthood relations among
material objects
Material objects are material entities that exists at certain
times and have at each moment of their existence a unique
spatial location. They include both integral objects (Julius,
Brutus) and portions of stuff (LEMONADE, GOLD).

We introduce the primitive ternary relationP which holds
between two objects at a time instant wherePxyt is inter-
preted as: objectx is part of objecty at time instantt. We
then define:x overlapsy at t if and only if there is an object
z such thatz is part ofx at t andz is part ofy at t; x is a
proper partof y at t if and only if x is a part ofy at t and
y is not part ofx at t (DPP); x existsat t if and only if x is
part of itself att (DE); x andy aremereologically equiva-
lent at t if and only if x is part ofy at t andy is part ofx
at t (D≈). It follows from these definitions that at any fixed
time: O is symmetric;PP is asymmetric;≈ is symmetric,
and transitive.

DO O xyt ≡ (∃z)(P zxt ∧ P zyt)
DPP PPxyt ≡ P xyt ∧ ¬P yxt
DE E xt ≡ P xxt
D≈ x ≈t y ≡ P xyt ∧ P yxt

GOLD is mereologically equivalent to Julius at TJ. When
JHand is removed from Julius, GOLD is no longer mereo-
logically equivalent to Julius. Later, at TB, GOLD is mere-
ologically equivalent to the new statue, Brutus.



We add axioms requiring: every object exists at some time
(AP1); if x is a part ofy at t thenx andy exist att (AP2);
at any fixed time parthood is transitive (AP3); ifx exists att
and everything that overlapsx at t overlapsy at t thenx is a
part ofy at t (AP4).

AP1 (∃t)E xt
AP2 P xyt→ E xt ∧ E yt
AP3 P xyt ∧ P yzt → P xzt
AP4 E xt ∧ (z)(O zxt→ O zyt)→ P xyt

Using (AP1 - AP4), we can prove: ifx exists att thenx and
y are mereologically equivalent att if and only if x andy
have the same parts att (T1); if x exists att thenx andy are
mereologically equivalent att if and only and they overlap
the same objects att (T2); the following are equivalent: (i)x
exists att, (ii) x overlaps itself att, (iii) x is mereologically
equivalent with itself att (T3); if x is part ofy at t andx and
y are not mereologically equivalent att thenx is a proper
part ofy at t (T4).

T1 E xt→ (x ≈t y ↔ (z)(P zxt↔ P zyt))
T2 E xt→ (x ≈t y ↔ (z)(O zxt↔ O zyt))
T3 E xt↔ O xxt ∧ E xt↔ x ≈t x
T4 P xyt ∧ ¬x ≈t y → PPxyt

Notice that it does NOT follow from our axioms that (i) if
two objects have the same parts at a time then they are iden-
tical; and (ii) if two objects overlap exactly the same things
at a time, then they are identical. For example, GOLD and
Julius are not identical but they have exactly the same parts
and overlap the same things at time TJ.

Constant and bound parts
Though our basic mereological relations are time-
dependent, we can define useful time-independent parthood
relations in terms of the time-dependent relations.

Objectx is aconstantpart of objecty if and only if when-
ever y exists,x is a part ofy (DCP). We can prove that
constant parthood is reflexive and transitive.

DCP CPxy ≡ (t)(E yt→ P xyt)

For example, each atom in GOLDsAtoms is a constant
part of GOLD and each portion of gold in GOLDsSubPor-
tions is a constant part of GOLD. Also, all members of
LEMsMolecules are constant parts of LEMONADE. But not
all members of LEMsSubPortionsTL1 are constant parts of
LEMONADE, since some of these portions of lemonade are
destroyed in the whipping.

Statues may also have constant parts. In our example
JHead is a constant proper part of Julius. GHand-Minus is a
constant part of Julius. But, as pointed out in Section 2, un-
like the atoms in GOLD and the molecules in LEMONADE,
Juliuscouldsurvive the loss of these parts.

Objectx is abound partof objecty if and only whenever
x exists,x is a part ofy (DBP). We can prove that bound
parthood, like constant parthood, is reflexive and transitive.

DBP BPxy ≡ (t)(E xt→ P xyt)

For example, Julius (as well as JHead and JHand) is a
bound part of GOLD. But no member of GOLDsAtoms or

GOLDsSubPortions (including GOLD itself) is a bound part
of Julius. In general, the parts that are assembled to con-
struct an artifact are not be bound parts of the artifact be-
cause they must exist before the assembly. Similarly, mem-
bers of LEMsMolecules are not bound parts of LEMON-
ADE.

By contrast, organisms typically have many bound parts.
Any cell which is manufactured and destroyed within my
body is a bound, though not necessarily constant, part of my
body.

Collections and time-dependent sums
Collections
We use∈ to stand for the member-of relation between ob-
jects and collections of objects. We refer to a finite collec-
tion havingx1, . . . , xn as members, as:{x1, . . . , xn}. Since
collections and objects are disjoint sorts,∈ is irreflexive and
asymmetric.

All collections have at least two members (AC1). Con-
sequently there are no empty collections and no singleton
collections. We require that two collections are identical if
and only if they have the same members (AC2).

AC1 (∃x)(∃y)(x ∈ p ∧ y ∈ p ∧ x 6= y)
AC2 p = q ↔ (x)(x ∈ p↔ x ∈ q)

The collectionp is a sub-collectionof the collectionq
(p v q) if and only if every member ofp is also a mem-
ber ofq (Dv).

Dv p v q ≡ (x)(x ∈ p→ x ∈ q)

We can prove thatv is reflexive, antisymmetric, and transi-
tive (a partial ordering).

Note that collections are identified through their members
and thus cannot have different members at different times. In
particular, collections do not lose members that cease to ex-
ist. But we can distinguish collections according to whether
or not all of their members exist at a given time. We say
that a collectionp is fully presentat t if and only if all of its
members exist att (DFP).

DFP FP pt ≡ (x)(x ∈ p→ E xt)

Notice that if p is fully present att then all of its sub-
collections are fully present att. For example, whenever
GOLD (the portion of gold) exists, every sub-collection of
GOLDsAtoms (the gold atoms in GOLD) is fully present.

Time-dependent sums
We say that objectz is a sumof (the members of) the col-
lectionp at timet, SMzpt, if and only if p is fully present
at t and any object overlapsz at t if and only if it overlaps a
member ofp at t (DSM). In this case, we will also say thatp
sums toz at t or thatz is ap-sum att.

DSM SMzpt ≡ FP pt ∧ (w)(O wzt ↔ (∃x)(x ∈ p ∧ O xwt))

Thus, at any timet at which it exists, Julius is a sum of
the collection of the objects which are part of it att. Also,
GOLD is at TJ a sum of{GOLD, Julius} and is at TB a
sum of{GOLD, Brutus}. A collectionp may sum to more



than one object att. For example, both GOLD and Brutus
are sums of{GOLD, Brutus} at TB. Also, an object may
be at a given time a sum of more than one collection. For
example, GOLD is at TB a sum of{GOLD, Brutus}, a sum
of GOLDsAtoms, and a sum of GOLDSSubPortions.

We can prove: ifx is a sum of a collection att, thenx
exists att (T7); if z is a sum ofp at t then every member of
p is part ofz at t (T8); if x is a sum ofp at t theny is a sum
of p at t if and only if x andy are mereologically equivalent
at t (T9); if x is a sum ofp at t, y is a sum ofq at t, andp is
a sub-collection ofq, thenx is part ofy at t (T10).

T7 (∃p)SMxpt→ E xt
T8 x ∈ p ∧ SMzpt→ P xzt
T9 SMxpt→ (SMypt↔ x ≈t y)
T10 SMxpt ∧ SMyqt ∧ p v q → P xyt

T10 tells that if GOLDsAtoms* is a sub-collection of
GOLDsAtoms and GOLD is a sum of GOLDsAtoms att,
then any sum of GOLDsAtoms* is a part of GOLD att. For
example, all portions of gold made out of sub-collections
of GOLDsAtoms (i.e. the members of GOLDsSubPortions)
are parts of GOLD att. Also, any other objects which hap-
pen to be made out of (are mereologically equivalent to)
sums of sub-collections of GOLDsAtoms att (e.g. Julius’
head, Julius right hand, and so on) are parts of GOLD att.

Time-independent sums
Above we used the time-dependent mereological relations to
define several time-independent parthood relations. In this
section, we use the time-dependent sum relation to define
several different time-independent sum relations. Among
other things, we will show how these time-independent re-
lations are useful for clarifying important differences be-
tween GOLD and more complicated portions of stuff such
as LEMONADE.

Constant sums
Objectx is aconstantsum of collectionp (a constantp-sum)
if and only if wheneverx exists,x is a sum ofp (DSMC

).

DSMC SMC xp ≡ (t)(E xt→ SMxpt)

For example, GOLD and Brutus are both constant sums of
GOLDsAtoms. In addition, Brutus is a constant sum of
{Brutus, GOLD} and of the union of GOLDsAtoms and
{Brutus, GOLD}. Also, LEMONADE is a constant sum of
LEMsMolecules. By contrast, Julius is not a constant sum
of GOLDsAtoms– after JHand is removed Julius continues
to exist but no longer has some members of GOLDsAtoms
as parts. Also, although GOLD is (necessarily) a constant
sum of GOLDsSubportions, LEMONADE is not a constant
sum of LEMsSubPortionsTL1.

We can prove: ifx is a constant sum ofp then whenever
x exists,p is fully present (T14); ifx is a constant sum ofp
andy is a member ofp theny is a constant part ofx (T15).

T14 SMC xp→ (t)(E xt→ FP pt)
T15 SMC xp ∧ y ∈ p→ CPyx

Notice thatSMC xp andSMC yp may hold even thoughx
andy never overlap. Notice also that ifx is a constantp-sum,

then the members ofp must be constant parts ofx but they
will not in general be bound parts ofx. For example, none
of the water, acid, or sugar particles in LEMsMolecules are
bound parts of LEMONADE – each of these particles exists
at times when they are not part of LEMONADE.

Bound sums
Objectx is aboundsum of collectionp (a boundp-sum) if
and only ifp is fully present at some time and at all times at
whichp is fully presentx is a sum ofp (DSMB

).

DSMB SMB xp ≡ (∃t)(FP pt) ∧ (t)(FP pt→ SMxpt)

For example, GOLD is a bound sum of GOLDsAtoms.
Whenever all of the atoms in GOLDsAtoms exist, GOLD
also exists and is a sum of GOLDsAtoms. By contrast,
LEMONADE is not a bound sum of LEM’sMolecules. At
times before the sugar, water and acid are mixed together
LEM’sMolecules is fully present, but LEMONADE does not
yet exist. On the other hand, LEMONADE is a bound sum
of LEMsSubportionsTL1, the collection of all sub-portions
of lemonade in LEMONADE at time TL1. Whenever all
of these portions of lemonade exist, LEMONADE also ex-
ists and is a sum of LEMsSubportionsTL1. LEMONADE is
also a bound sum of LEMsSubportionsTL2 and GOLD is a
bound sum of, as well as a constant sum of, GOLDsSubPor-
tions.

These examples show thatx may be a constantp-sum,
but not a boundp-sum – LEMONADE is a constant sum of
LEMsMolecules, but not a bound sum of LEMsMolecules.
Also, x may be a boundp-sum but not a constantp-sum–
LEMONADE is a bound sum of LEMsSubportionsTL1, but
not a constant sum of LEMsSubportionsTL1.

We have seen thatx may be a boundp-sum even if some
members ofp are not constant parts ofx. (Not all members
of LEMsSubportionsTL1 are constant parts of LEMON-
ADE.) x may also be a boundp-sum even if some members
of p are not bound parts ofx. For example, we may assume
that at least one of the members of GOLDsAtoms exists at
times when GOLDsAtoms is not yet fully present. Call this
atom GAFirst. GAFirst is a constant part of GOLD, but not
a bound part of GOLD even though GOLD is a bound sum
of GOLDsAtoms.

We can prove: ifx is a boundp-sum, then wheneverp is
fully presentx exists (T16); ifx is a boundp-sum andy is a
boundp-sum, then wheneverp is fully present,x andy are
mereologically equivalent (T17); ifx is a boundp-sum and
y is a constantq-sum andp is a sub-collection ofq thenx is
a constant part ofy (T18).

T16 SMB xp→ (t)(FP pt→ E xt)
T17 SMB xp ∧ SMB yp ∧ FP pt→ x ≈t y
T18 SMB xp ∧ SMC yq ∧ p v q → CPxy

As an example of (T18), let WMolecules be the sub-
collection of LEMsMolecules consisting of the water
molecules in LEMONADE. Then, WATER, the portion of
water in LEMONADE, is a constant sum of WMolecules,
since, unlike LEMONADE, WATER’s existence does not
depend on its molecules being appropriately mixed together.



(T18) tells us that WATER is a constant part of LEMON-
ADE. For analogous reasons, SUGAR and ACID are also
constant parts of LEMONADE.

Permanent sums
Objectx is a permanentsum of collectionp (a permanent
p-sum) if and only ifx is both a constantp-sum and a bound
p-sum (DSMP

).

DSMP SMP xp ≡ SMC xp ∧ SMB xp

For example, GOLD is a permanent sum of both GOLD-
sAtoms and GOLDsSubportions. But LEMONADE is not a
permanent sum of LEMsMolecules, since it is not a bound
sum of LEMsMolecules.

We can prove: ifx is a constantp-sum andx is itself a
member ofp, thenx is a permanentp-sum (T19); ifx is a
permanentp-sum then the following are equivalent for allt:
p is fully present att, x is a sum ofp at t, x exists att (T20);
if x is a permanentp-sum andy is a permanentp-sum then
the following are equivalent for all values oft: x exist att, y
exists att, x andy are mereologically equivalent att (T21).

T19 SMC xp ∧ x ∈ p→ SMP xp
T20 SMP xp→ (t)(FP pt↔ SMxpt ∧ SMxpt↔ E xt)
T21 SMP xp ∧ SMP yp→ (t)(E xt↔ E yt ∧ E xt↔ x ≈t y)

Conclusions
In the presented theory, we used parthood and summation
relations to distinguish key mereological properties of (i)
integral objects such as Julius (ii) portions of homogenous
unstructured stuff such as GOLD, and iii) structured stuffs
such as LEMONADE. Every portion of gold is a permanent
sum of the collection of its gold atoms and is a permanent
sum of the collection of its gold sub-portions. By contrast,
the collection of its molecules is typically only a constant
sum, not a bound sum, of a portion of lemonade. Also, the
portion of lemonade is typically only a bound sum of, not a
constant sum of, the collection consisting of its sub-portions
at a given time.

In general, integral objects will have even loser ties to a
constituting collection of atoms or molecules than do por-
tions of mixtures. For example, Julius is neither a con-
stant sum nor a bound sum of any collection of atoms or
molecules. Also, Julius is neither a constant sum nor a
bound sum of any collection consisting of portions of stuff.

The theory presented in this paper is useful for reason-
ing about parthood and composition relations among inte-
gral objects and portions of stuff, particularly in application
in, e.g., medicine where changes in objects are tracked over
time. It is part of the top-level ontology ‘Basic Formal On-
tology’ (BFO) and was developed usingIsabelle, a computa-
tional system for implementing logical formalisms (Nipkow,
Paulson, & Wenzel 2002). All proofs are computer-verified
and the computational representation of the theory is acces-
sible fromhttp://www.ifomis.org/bfo/fol .

Alternative top-level ontologies include DOLCE
(Gangemiet al. 2003; Masoloet al. 2004) and the SUMO
top-level ontology (Niles & Pease 2001). DOLCE is similar
in spirit to the theory presented here (it is a non-extensional

temporal mereology) but less detailed in its analysis of
the specific temporal properties of mereological relations.
SUMO, on the other hand, includes an atemporal exten-
sional mereology instead of a temporal non-extensional
mereology. Other related work in Artificial Intelligence also
includes (Hayes 1985) and (Collins & Forbus 1987).
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