Decision of a Firm

The firm is an important economic agent. Typically, they make up the supply side in a market.
Decision of a Firm

- The firm is an important economic agent. Typically, they make up the supply side in a market.
- Here we shall see how the firm decides to supply in the market.
Decision of a Firm

- The firm is an important economic agent. Typically, they make up the supply side in a market.
- Here we shall see how the firm decides to supply in the market.
- Before that, the firm must make an important action...Production.
The firm is an important economic agent. Typically, they make up the supply side in a market.

Here we shall see how the firm decides to supply in the market.

Before that, the firm must make an important action...Production.

Production involves a bunch of things. The firm needs to hire ”inputs” to produce output. It must pay these ”factors of production”.

Bibaswan Chatterjee

ECO 182: Summer 2015 Production & Cost
Decision of a Firm

- The firm is an important economic agent. Typically, they make up the supply side in a market.
- Here we shall see how the firm decides to supply in the market.
- Before that, the firm must make an important action...Production.
- Production involves a bunch of things. The firm needs to hire "inputs" to produce output. It must pay these "factors of production".
- The firm, will make the very important decision of how much to produce, and whether to actually operate in a market at all. It is not a trivial decision. Firms can make zero output, and remain/exit a market.
Decision of a Firm ...continued

Later we shall see, that many of the decisions of the firm are affected by the demand for the good it is trying to sell...in other words, firms react to the price of the goods.
Later we shall see, that many of the decisions of the firm are affected by the demand for the good it is trying to sell...in other words, firms react to the price of the goods.

Also, they care about the cost of the inputs.
Later we shall see, that many of the decisions of the firm are affected by the demand for the good it is trying to sell...in other words, firms react to the price of the goods.

Also, they care about the cost of the inputs.

While a seller in the market for the goods, firms are buyers in the market for inputs.
Decision of a Firm ...continued

- Later we shall see, that many of the decisions of the firm are affected by the demand for the good it is trying to sell...in other words, firms react to the price of the goods.
- Also, they care about the cost of the inputs.
- While a seller in the market for the goods, firms are buyers in the market for inputs.
- There are many ways to look at the decision making process of a firm. We shall look at the most basic line of study.
Later we shall see, that many of the decisions of the firm are affected by the demand for the good it is trying to sell...in other words, firms react to the price of the goods.

Also, they care about the cost of the inputs.

While a seller in the market for the goods, firms are buyers in the market for inputs.

There are many ways to look at the decision making process of a firm. We shall look at the most basic line of study.

Remember...the process of using inputs and converting them to output...this is the Technology of a firm.
Later we shall see, that many of the decisions of the firm are affected by the demand for the good it is trying to sell...in other words, firms react to the price of the goods.

Also, they care about the cost of the inputs.

While a seller in the market for the goods, firms are buyers in the market for inputs.

There are many ways to look at the decision making process of a firm. We shall look at the most basic line of study.

Remember...the process of using inputs and converting them to output...this is the Technology of a firm.

A firm (or an industry of many firms) is limited by the technology it has.
There are two types of inputs that a firm can use. **Variable** and **Fixed**.
There are two types of inputs that a firm can use. **Variable** and **Fixed**.

An input is **variable** if the firm changes the amount of input used for different output levels.

An input is **fixed**, if the firm doesn’t/can’t change the amount of input used for different output levels.

Example: A firm uses 10 men and one factory to build auto parts. The factory is the **fixed** input.
There are two types of inputs that a firm can use. **Variable** and **Fixed**.

An input is **variable** if the firm changes the amount of input used for different output levels.

An input is **fixed**, if the firm doesn’t/can’t change the amount of input used for different output levels.
There are two types of inputs that a firm can use. **Variable** and **Fixed**.

An input is **variable** if the firm changes the amount of input used for different output levels.

An input is **fixed**, if the firm doesn’t/can’t change the amount of input used for different output levels.

Example: A firm uses 10 men and one factory to build auto parts. The factory is the **fixed** input.
Is labour always the variable input?
Not really. It depends on the context...sometimes you might have fixed labour inputs. Hint: Look at this class!
Inputs...continued

- Is labour always the variable input?
- Not really. It depends on the context...sometimes you might have fixed labour inputs. Hint: Look at this class!
- Typical examples of Fixed inputs are: Land, Capital
Is labour always the variable input?

Not really. It depends on the context...sometimes you might have fixed labour inputs. Hint: Look at this class!

Typical examples of Fixed inputs are: Land, Capital

As stated earlier, the production of a firm depends on the technology available...and that in a way dictates the choice.
Productivity

- **Marginal Productivity of an input:** The extra output produced by using one extra unit of input is the MP of that unit of input.
Productivity

- **Marginal Productivity of an input:** The extra output produced by using one extra unit of input is the MP of that unit of input.

- **Example 1:** 10 workers build a house. Each worker can make one room. $MP_L : 1$ room/worker. Adding an extra worker doesn’t change the number of rooms that worker can make.
Productivity

- **Marginal Productivity of an input**: The extra output produced by using one extra unit of input is the MP of that unit of input.

- **Example 1**: 10 workers build a house. Each worker can make one room. $MP_L : 1$ room/worker. Adding an extra worker doesn’t change the number of rooms that worker can make.

- Typically MP is falling in the amount of units used for production.
Changing MP

<table>
<thead>
<tr>
<th>Number of Baristas</th>
<th>Output (50 cups of Coffee)</th>
<th>Change in Output</th>
<th>Change in number of Baristas</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>6.3096</td>
<td>6.3096</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9.5636</td>
<td>3.254</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>12.1976</td>
<td>2.634</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>14.49</td>
<td>2.2924</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>16.57</td>
<td>2.08</td>
<td>1</td>
</tr>
</tbody>
</table>

Column(3) from the left gives your Marginal Product of Baristas
Column(2) from the left gives your Total Product of Baristas
Constant and Diminishing Marginal Productivity

![Graph showing marginal productivity of labour vs. number of workers. The graph illustrates the concept of constant and diminishing marginal productivity.](image-url)
Law of Diminishing Marginal Productivity

Definition: If a firm uses more of a variable input, then eventually the MP of that input starts to fall, only when there is at least one fixed input used by the firm.

- Firm Produces output Y using inputs F, L and K. F is the fixed input, L and K are the variable inputs. If the firm starts to use more and more of L, then eventually there will come a point, when the MP of L will start to fall.
- Too much crowding: One counter, 200 cashiers.
- Sometimes, inputs are complements...to use more of one input, you need to use more of the other.
- Example: In a bar, number of bottles of whiskey and kegs of beer are fixed. The owner hires 2 new bartenders every hour. Too much crowding.
Average Productivity of Input.

The Average output for the current level of inputs used.

<table>
<thead>
<tr>
<th>Number of Baristas</th>
<th>Output (50 cups of Coffee)</th>
<th>Average Productivity</th>
<th>Change in Output</th>
<th>Change in number of Baristas</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>6.3096</td>
<td>6.3096</td>
<td>6.3096</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9.5636</td>
<td>4.7818</td>
<td>3.254</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>12.1976</td>
<td>4.066</td>
<td>2.634</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>14.49</td>
<td>3.6225</td>
<td>2.2924</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>16.57</td>
<td>3.314</td>
<td>2.08</td>
<td>1</td>
</tr>
</tbody>
</table>
Average and Marginal Productivity

- **Note:** For both the tables on AP and MP, the corresponding graphs should not be continuous but disjoint. You don’t need to worry about that yet.
Calculating the Marginal Productivity: Alternate way

<table>
<thead>
<tr>
<th>Number of Labour</th>
<th>Output</th>
<th>Marginal Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$1/2 = .5$ each</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>$1/6$ each</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>$1/7$ each</td>
</tr>
</tbody>
</table>

When a firm makes the hiring decision, one of the things it looks at is the productivity of the workers. Similarly for the time when a firm makes the decision to fire a worker.
Calculating the Marginal Productivity: Alternate way

<table>
<thead>
<tr>
<th>Number of Labour</th>
<th>Output</th>
<th>Marginal Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1/2 = .5 each</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1/6 each</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>1/7 each</td>
</tr>
</tbody>
</table>

- When a firm makes the hiring decision, one of the things it looks at is the productivity of the workers. Similarly for the time when a firm makes the decision to fire a worker.
- This is important, because MP tells the firm, how many extra labour it needs to hire to produce one extra unit of output. This will tell the firm, what it will need to pay this extra labour...i.e. the cost of producing one extra unit of output.
How many worker do I need to hire?

<table>
<thead>
<tr>
<th>Number of Labour</th>
<th>Output</th>
<th>Marginal Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

To produce the 6th unit, how many workers do I need to hire?
How many worker do I need to hire?

<table>
<thead>
<tr>
<th>Number of Labour</th>
<th>Output</th>
<th>Marginal Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

To produce the 6th unit, how many workers do I need to hire?

After the first 5 units are made, the next additional worker adds 4 extra units of output. So $\frac{1}{4}^{th}$ worker will produce the next unit, i.e. 6th unit of output. So to produce 6 units I need $1\frac{1}{4}$ workers in total.
How many worker do I need to hire?

<table>
<thead>
<tr>
<th>Number of Labour</th>
<th>Output</th>
<th>Marginal Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

To produce the 6th unit, how many workers do I need to hire?

After the first 5 units are made, the next additional worker adds 4 extra units of output. So \(\frac{1}{4} \) worker will produce the next unit, i.e. 6th unit of output. So to produce 6 units I need \(1 \frac{1}{4} \) workers in total.

If I hire 4 such \(\frac{1}{4} \) workers, I get the 2nd worker and add an extra 4 units to my existing 5 units of output.
Where do they come from?

The primary source of cost for a firm is the usage of inputs. If a firm hires a labour, it needs to pay that labour; if a firm rents a plot of land to build a factory, then it must pay rent every year on its lease.

- The cost that the firm incurs from using the *fixed* input is called **Fixed Input Cost** or **Fixed Cost**.
Where do they come from?

The primary source of cost for a firm is the usage of inputs. If a firm hires a labour, it needs to pay that labour; if a firm rents a plot of land to build a factory, then it must pay rent every year on its lease.

- The cost that the firm incurs from using the *fixed* input is called **Fixed Input Cost** or **Fixed Cost**.
- The cost that the firm incurs from using the *variable* input is called **Variable Input Cost** or **Variable Cost**.
Where do they come from?

The primary source of cost for a firm is the usage of inputs. If a firm hires a labour, it needs to pay that labour; if a firm rents a plot of land to build a factory, then it must pay rent every year on its lease.

- The cost that the firm incurs from using the *fixed* input is called **Fixed Input Cost** or **Fixed Cost**.
- The cost that the firm incurs from using the *variable* input is called **Variable Input Cost** or **Variable Cost**.
- If a firm has multiple variable(fixed) inputs then there will be a specific VC(FC) associated with each of them.
Where do they come from?

The primary source of cost for a firm is the usage of inputs. If a firm hires a labour, it needs to pay that labour; if a firm rents a plot of land to build a factory, then it must pay rent every year on its lease.

▶ The cost that the firm incurs from using the fixed input is called **Fixed Input Cost** or **Fixed Cost**.
▶ The cost that the firm incurs from using the variable input is called **Variable Input Cost** or **Variable Cost**.
▶ If a firm has multiple variable(fixed) inputs then there will be a specific VC(FC) associated with each of them.
▶ The **Total Cost** of a firm for a level of output is the sum of all the FC and the VC for that level of output.
Where do they come from?

The primary source of cost for a firm is the usage of inputs. If a firm hires a labour, it needs to pay that labour; if a firm rents a plot of land to build a factory, then it must pay rent every year on its lease.

- The cost that the firm incurs from using the *fixed* input is called **Fixed Input Cost** or **Fixed Cost**.
- The cost that the firm incurs from using the *variable* input is called **Variable Input Cost** or **Variable Cost**.
- If a firm has multiple variable(fixed) inputs then there will be a specific VC(FC) associated with each of them.
- The **Total Cost** of a firm for a level of output is the sum of all the FC and the VC for that level of output.
- **Total Variable Cost** of a firm for a level of output is the sum of all the VC for that level of output.
The concepts of Average and Marginal costs are almost similar in exposition to AP and MP. But be careful!!
Average and Marginal Costs

▶ The concepts of Average and Marginal costs are almost similar in exposition to AP and MP. But be careful!!

▶ **Average Total Cost** for a level of output is the **Total Cost** for that level of output, **divided** by the level of output.
The concepts of Average and Marginal costs are almost similar in exposition to AP and MP. But be careful!!

- **Average Total Cost** for a level of output is the **Total Cost** for that level of output, **divided** by the level of output.

- **Marginal Variable Cost** or Marginal Cost is the extra variable cost for one extra unit of output produced.
Average and Marginal Costs

- The concepts of Average and Marginal costs are almost similar in exposition to AP and MP. But be careful !!

- **Average Total Cost** for a level of output is the **Total Cost** for that level of output, divided by the level of output.

- **Marginal Variable Cost** or Marginal Cost is the extra variable cost for one extra unit of output produced.

- Is **Marginal Variable Cost** same as **Marginal Total Cost** ?
Average and Marginal Costs

- The concepts of Average and Marginal costs are almost similar in exposition to AP and MP. But be careful!!

- **Average Total Cost** for a level of output is the **Total Cost** for that level of output, divided by the level of output.

- **Marginal Variable Cost** or Marginal Cost is the extra variable cost for one extra unit of output produced.

- Is **Marginal Variable Cost** same as **Marginal Total Cost**?

- **Average Variable Cost** for a level of output is the **Total Variable Cost** for that level of output, divided by the level of output.
Average and Marginal Costs

- The concepts of Average and Marginal costs are almost similar in exposition to AP and MP. But be careful!!

- **Average Total Cost** for a level of output is the **Total Cost** for that level of output, *divided* by the level of output.

- **Marginal Variable Cost** or Marginal Cost is the extra variable cost for one extra unit of output produced.

- Is **Marginal Variable Cost** same as **Marginal Total Cost**?

- **Average Variable Cost** for a level of output is the **Total Variable Cost** for that level of output, *divided* by the level of output.

- **Total Variable Cost** at a level of output is the sum of all the MVC up to that level of output.
Calculating the Costs

Making Pizza. Labour Cost ($w = $3 per hour); Cost of Dough ($r = $6 per unit)

<table>
<thead>
<tr>
<th>Number of Slices</th>
<th>Number of Labour</th>
<th>Number of Dough</th>
<th>TVC($)</th>
<th>FC($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>5</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

Total Cost (17 slices) =
AVC (12 slices) =
The **TC** of a firm can be broken into two parts, the **TVC** and the **FC**.

\[TC = TVC + FC \]
Decomposing Total Cost

- The **TC** of a firm can be broken into two parts, the **TVC** and the **FC**.
 \[TC = TVC + FC \]

- The **MC** is the slope of the **TC** at any level of output.
Decomposing Total Cost

- The **TC** of a firm can be broken into two parts, the **TVC** and the **FC**.
 \[TC = TVC + FC \]

- The **MC** is the slope of the **TC** at any level of output.

- In fact, the **MC** is the slope of the **TVC** at any level of output too! Can you say why?
Relationship between the cost curves

- The **MC** of a firm passes through the *Minimum* point on the **AVC** or **ATC**.
The **MC** of a firm passes through the *Minimum* point on the **AVC** or **ATC**.

How do you think this graph will change when there is no **FC**?
The **MC** of a firm passes through the *Minimum* point on the **AVC** or **ATC**.

How do you think this graph (and the last one) will change when there is no **FC**?

What is the difference between **ATC** and **AVC** when there is fixed cost of production?
More about the MC and AC

- When the MC is $> \text{ than } AVC$, AVC is rising.
More about the MC and AC

- When the MC is $>$ than AVC, AVC is rising.
- When the MC is $<$ than AVC, AVC is falling.
More about the MC and AC

- When the MC is $>$ than AVC, AVC is rising.
- When the MC is $<$ than AVC, AVC is falling.
- The MC, AVC curves drawn correspond to the very special TC curve drawn before. If the TC has some other shape, you might not find the U-shaped AVC, MC curves.
All this time we talked about how there was a fixed input and that generated the fixed cost of production.
All this time we talked about how there was a fixed input and that generated the fixed cost of production.

The key idea is that, it is difficult to change some inputs on a short notice.
All this time we talked about how there was a fixed input and that generated the fixed cost of production.

The key idea is that, it is difficult to change some inputs on a short notice.

Eg: You buy a vacuum cleaner and hire a worker to vacuum floors in an office building. Now say you hire another worker, and then another. The three people take turns and share the vacuum cleaner. Each however covers less floor space than the last one. Why? Because the fixed input, or capital which is the vacuum cleaner is constant. It might not be possible to get an extra vacuum cleaner for some time.
All this time we talked about how there was a fixed input and that generated the fixed cost of production.

The key idea is that, it is difficult to change some inputs on a short notice.

Eg: You buy a vacuum cleaner and hire a worker to vacuum floors in an office building. Now say you hire another worker, and then another. The three people take turns and share the vacuum cleaner. Each however covers less floor space than the last one. Why? Because the fixed input, or capital which is the vacuum cleaner is constant. It might not be possible to get an extra vacuum cleaner for some time.

If you are manufacturing something in a factory, you can’t just build a new factory next day to increase production.
The concept of **Short Run** is as follows: It takes some time to change the amount of inputs used. These inputs are fixed in this duration. How long is the duration? Could be a week, a month, a year or two...depending on what type of inputs we are talking about.
The concept of **Short Run** is as follows: It takes some time to change the amount of inputs used. These inputs are fixed in this duration. How long is the duration? Could be a week, a month, a year or two...depending on what type of inputs we are talking about.

In the **Long Run**, all inputs are variable.
Short and Long Run

- The concept of **Short Run** is as follows: It takes some time to change the amount of inputs used. These inputs are fixed in this duration. How long is the duration? Could be a week, a month, a year or two...depending on what type of inputs we are talking about.

- In the **Long Run**, all inputs are variable.

- The question is: How long is the Short Run before we have Long Run?
 It depends. Long run could set in after 1 year, 5 years or 10. The idea is that you understand, in which case you will have fixed inputs.
Economies of Scale

- At smaller levels of output in the LR, firms may be able to enjoy a lowering of costs through expanding their production, through better use of inputs. This is *Economies of Scale*.

- At very large levels of production, it might become too ungainly to manage the firm's operations. This leads to *Diseconomies of Scale*.
Economies of Scale

- At smaller levels of output in the LR, firms may be able to enjoy a lowering of costs through expanding their production, through better use of inputs. This is *Economies of Scale*.

- At very large levels of production, it might become too ungainly to manage the firm’s operations. This leads to *Diseconomies of Scale*.

![Graph showing Economies of Scale and Diseconomies of Scale]
Economies of Scale

- At smaller levels of output in the LR, firms may be able to enjoy a lowering of costs through expanding their production, through better use of inputs. This is Economies of Scale.

- At very large levels of production, it might become too ungainly to manage the firm’s operations. This leads to Diseconomies of Scale.

- At falling (rising) LRAC we have EofScale (DofScale).
Another concept of measuring the use of inputs is **Returns to Scale**

- **Increasing Returns to Scale**: A firm increases all inputs by a proportion X, output rises by more than proportion X.
Returns to Scale

Another concept of measuring the use of inputs is **Returns to Scale**

- **Increasing Returns to Scale:** A firm increases all inputs by a proportion X, output rises by more than proportion X.
- **Constant Returns to Scale:** A firm increases all inputs by a proportion X, output rises by exactly proportion X.
Another concept of measuring the use of inputs is **Returns to Scale**

- **Increasing Returns to Scale:** A firm increases all inputs by a proportion X, output rises by more than proportion X.
- **Constant Returns to Scale:** A firm increases all inputs by a proportion X, output rises by exactly proportion X.
- **Decreasing Returns to Scale:** A firm increases all inputs by a proportion X, output rises by less than proportion X.