THE OPERATIONS RESEARCH PROGRAM
DEPARTMENT OF INDUSTRIAL ENGINEERING
STATE UNIVERSITY OF NEW YORK AT BUFFALO

INDUSTRIAL ENGINEERING

SUNY AT BUFFALOS

MATHEMATICAL METHODS
FOR MULTILEVEL PLANNING

by
Wayne F. Bialas
Mark H. Karwan

Research Report No. 79-2
February 1979

Department of Industrial Engineering
State University of New York at Buffalo
Buffalo, New York 14260



Mathematical Methods for Multilevel Planning®

Wayne F. Bialas' Mark H. Karwan®

Technical report No. 79-2
February 1979

Abstract

Thegeneral multilevel programming problem isa set of nested optimization problems over
asingle feasible region. Control over the decision variables is partitioned among the levels,
but a decision variable may impact the objective function of severd, if not al, levels. This
approach is applicableto avariety of water resource planning problems, and will be compared
to previous methods of multilevel planning.

*Presented at the ASCE Water Resource Systems Specialty Conference, February 26, 1979.

T Assistant Professor, Department of Industrial Engineering, State University of New York at Buffalo, Amherst,
New York 14260.

tAssistant Professor, Department of Industrial Engineering, State University of New York at Buffalo, Amherst,
New York 14260.

$ Reprinted March 24, 2000. ThislATEX version reproducesthe original manuscript skillfully typed (on atypewriter)
by Ms. Terry DeGeorge.



Mathematical Methods for Multilevel Planning

1 Introduction

Many water resource planning problems require compromises among the objectives of several
interacting individuals or agencies. Often, these groups are arranged within an administrative
or hierarchical structurewithindependent and perhaps conflicting objectives. For example, the
water resource policies set forth by the Federal government affect the objective and options,
and hence the strategies, of state officials. This process continues within a hierarchy of
decision-makers, including local governments, planning agencies, and basic economic units,
such as firms and households. Each unit of the hierarchy wishes to maximize its individual
benefit function (or functions) inview of the partial exogenous control exercised at other levels.
In the above example, actions at the state level also affect the benefits sought by the Federal
government. The Federal government can control this effect by exercising preemptive partia
control over the state through budget modifications or regul ations.

An important feature of multilevel optimization problemsisthat a planner at one level of
the hierarchy may have his objective function determined, in part, by variables controlled at
other levels. However, hiscontrol instrumentsmay alow him to influence the policies at other
levels, and thereby improve his own objective function. Such policies may include the control
of the allocation and use of resources at lower levels, and the control of the benefits conferred
upon subordinate levels. Some particular problems are amenabl e to this framework:

1. International Water Systems: Aninternational river basin agency desires to equitably
distribute the benefits conferred from a multi-national, multi-reservoir, multi-purpose
water system. To do so, the agency will control the operating policies of some, but
perhaps not al, reservoirs in the system. In view of these controls, individual nations
will determine their water use policiesto best meet their individua requirements.

2. Flood Control: Seeking to reduce flood risk, government can provide structural flood
control measures, implement floodplain zoning programs, and subsidizeflood insurance.
These policieswill influence floodplain development based on the individua objectives
and benefits of land users. If not carefully conceived, the governmental programs can
be rendered useless if they inadvertently encourage expanded floodplain devel opment.

Note that the above problems have the following characteristics in common:

1. Thesystemshaveinteracting decision-making unitswithin a predominantly hierarchical
or multiechelon structure.

2. Each decision-making unit maximizes net benefits independently of other units, but is
affected by the actions of other units as an externality.

3. The externa effect on a decision-maker’s problem is reflected in both his objective
function and his set of feasible decisions.

This paper will present an approach for solving a large class of such multilevel planning
problemswhich can be adequately represented as constrained optimization problems.
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2 Previouswork

Decentralized planning has been long recognized as an important decision-making problem.
Mathematical programming methods to solve such problems trace back early in the develop-
ment of linear programming. The decomposition method of Dantzig and Wolfe [16] for the
solution of certain large-scale linear programming problems has served well as the underpin-
ning for much of thisstudy (see, for example, Balas[2], Cooper [12], Geoffrion[19, 20, 21, 23],
Lasdon [29]). Such aformulation partitions the decision space among several planning di-
visions. These units interact through a set of “corporate’ constraints involving the decision
variables of al divisions. The remaining constraints can be apportioned to each of the divi-
sions, with each constraint a function of the decision variables under the jurisdiction of only a
singledivision.

The subproblem solved by a division maximizesthat portion of the overall objective func-
tion controlled by the division, subject to the divisiona constraints. However, and individual
division does not account for interdivisional interactions. This may result in suboptimal (and
perhaps infeasible) behavior for the overall problem. The Dantzig-Wolfe method can then be
viewed as providing inducements to the division to encourage overall optimal behavior of the
corporation. Thisinterpretation rests heavily on the concepts of Koopmans [28] who associ-
ated the notions of dual prices and decentralization. A more detailed discussionis providedin
an excellent paper by Baumol and Fabian [5].

These techniqueswere furthered with thework of Charnes, et al. [10], who recognized that
when subdivisions have adternative solutions to their individua optimization problems, they
must receive information from the master planner in order to operate coherently. To provide
thisinformation, a preemptive goal was applied to the division objective function forcing it to
choose a decision in harmony with the overall system.

The decomposition approach has been successfully applied by Haimes and his associates
to a wide range of multilevel planning problems. For example, Haimes, Foley and Yu [25]
effectively solve alarge model for the control of water quality by a central planning agency
with asingle overall system objective. The dua variables are interpreted to determine prices
(taxes) to be charged to each subproblem (polluter) for violating pollution standards.

Generdlly, the decomposition approach includes a coordinating mechanism of dual prices
preventing the variousdivisionsor agencies from working against the goa sof amaster planner.
However, as pointed out by Baumol and Fabian [5], in practical situations, decentralized
decisions may not take into account the benefits or costs incurred by its activities on other
subdivisions. When coordination is absent, the system may inherently exhibit suboptimal
behavior. Each division can have goals distinct and independent of the others, optimizing its
positionin view of the external effectsimposed by their decisions.

Cassidy, et al. [9] proposed amodel and solution procedure for a specific case where such
a coordinating mechanism does not exist. In analyzing the distribution of a federal budget
among severa states, they offered amodel with some fundamentad distinctions. Let 7' denote
the overall budget of the federal government to be distributed to IV states, with s; unitsto be
allocated to state i. Each state, 4, has K; cities and each city has J;; projects from which to
chooseto fund. Let

) 1 if project j isundertakenin state, city &
Tk =) 0 otherwise
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Associated with each project isa cost, ¢; 5, and a conferred benefit, w; ;.. The problem each
state wishesto solveis

max 3, WijkTijk

st Dk CijkTijk < Si Vi
Zj SL‘Z'jk Z 1 YV ik
Tijk € {0, 1} Vijk
Let
. 2ok Wijk — 2k WijkTijk
' ij Wijk
which represents the relative regret of state ¢ with its budget. The problem to be solved by the
federal level is
min  [max; r; — min; r;]
St: ZZ s; <T

Using a parametric analysis, the optimal x;;;’s resulting from the states’ subproblems were
determined as a function of the s;’s. Here, a strict two-level structure was employed. A
state maximizesitsindividual objective given theresource level s; and impacts directly on the
objective function of the master (federal) level.

In the study of a Dutch milk cooperative, Candler and Norton [8] sought a solution to a
generdization of the problem posed by Cassidy, et al. The government could not influence
thedairy pricesdirectly. However, using the mechanism of a subsidy on liquid milk sales and
an import duty on butter, the cooperative and its memberswould vary their production mix of
dairy products and thereby alter the price index. This problem required a continuous decision
space, and an objective function for each level more genera than those proposed by Cassidy,
et al. Unfortunately, the general problem of Candler and Norton was imprecisely defined,
and they did not recognize that the effective feasible regions resulting from the parametric
problems at the lower levels were nonconvex sets. This property causes the Candler and
Norton algorithm to fail sinceit requires convexity.

The use of multilevel control theory for the analysis of some multilevel economic systems
has been fruitful (see, for example, the work of Meserovic [32]). Often these techniques
view the system as a Stackelberg game, a highly structured n-person game (see, for example,
Bagar [4], Cruz [13, 14], Simaan [37]). Within a broad definition of such games, a static
Stackelberg game with fixed leaders and a continuous (or discrete) control space could be
defined to encompass multilevel programming problems. However, current methodology
does not consider the activity space of one player to be a function of the strategies of other
players, afeature necessary for most constrained problems. Such an extension of Stackelberg
games would require the payoff function of one level to have discontinuities dependent on the
decisions of other players. Thisformulationis, at best, unwieldy and perhaps intractable.

It must also be noted that multi objective optimization techniques have been devel oped to
permit a more faithful analysis of the tradeoffs among competing goals (see, for examples,
[6, 22, 26, 27, 33, 34, 36, 38, 40, 41, 42]), and assist a planner in reaching an acceptable
compromise. Such approaches assume that all objectives are those of a single planner, im-
pacting directly on his state of well-being. Hence, these methods are largely inappropriate
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for multilevel optimization with incoherent objectives. The multilevel approach raises and
answers guestions regarding the assignment of control over certain variablesto various levels.
In some cases, coditions of levels could improve the objective functions of al levels. Hence,
the multiobjective planner could be viewed as the one, and only, coalition. Furthermore,
because of the structure of some multilevel problems, a single level could exercise complete
control over the actions of al levels, although controlling only a proper subset of the decision
variables.

3 General definition

L et the decision variable space (Euclidean n-space), R" > x = (1, 22, ..., z,), bepartitioned
among r levels,

ko k k
R™ 3 zF = (1,23, ...,2p, ) fork=1,...n,
where >} _1 nr = n. Denote the maximization of a function f(z) over R" by varying only
xF € R™ givenfixed zF+1, 2k 2 2" inR™%+1 x R™+2 x ... x R™ by
c ok kL k42
max{f(z) : (z"| 2" "2 2

Let the full set of system constraints for al levels be denoted by S. Then the problem at
the lowest level of the hierarchy, level one, is given by

. 1,2 T

Thefeasibleregion, S = S, is defined as the level-one feasible region. The solutionsto
PYinRY for each fixed 22, 23, ..., 2" form aset,

S?={ze st fu(d) =max{fi(x) : («'2%32%...,2")}},
called the level-two feasible region® over which fo(z) is then maximized by varying =2 for

fixed 23, 2%, ..., 2".
Thusthe problem at level two is given by

D (2| a8 2t 2T

In generd, the level-k feasibleregion is defined as
S*={& € S* | fra(@) = max{fr-a(x) : (13", 20},
Note that 2*~1 is a function of z*,...,Z". Furthermore, the problem at each level can be

written as
i max {fip(x) : (F| 2k .. 2"}
(P%) st: zeSk

Yntheterminology of differential games, thisis equivalent to therational reaction set of level one. (see Cruz[13]).
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whichisafunction of z**1 ... 2", and

(P") : max f, (x)
defines the entire problem. This establishes a collection of nested mathematical programming
problems { P!, ..., P"}.

Note that the objective at level k, fi.(z), is defined over the decision space of all levels.
Thus, the level-k planner may have his objective function determined, in part, by variables
controlled at other levels. However, by controlling z*, after decisions from levels k + 1 to r
have been made, level k£ may influencethepoliciesat level £ — 1 and hence all lower levelsto
improve his own objective function.

4 Two examples

4.1 Thetwo-leve linear resource control problem

The two-level linear resource control problem is the multilevel programming problem of the
form

max c2x
st: zeS2
where
S2={z eS8t i =max{ctz : (z1|7?)}}
and

Sl:S:{aﬁ : Al:cl—l—Azngb,a:ZO}

Here, level 2 controls z:? which, in turn, varies the resource space of level one by restricting
Atz < b — A222. Perhaps the idea of nested optimization can be better seen by writing the
problem asfollows:

max {c?z = c?lal + Px? 1 (2?)}
where z! solves

2
(P*) max {ctz = Mol + 222 1 (21| 2?)})
(PY st: Azl A222 <b
x>0

Note that, by this definition, the model of Cassidy, et al. [9] isatwo-level resource control
problem. The highest level, level two, represents afederal government with anonlinear objec-
tive based on the integer-valued decisions of the states. In this case, no direct cost is assigned
to the decision variables of the federal government, i.e., s1, s2, ..., sy (this corresponds to
¢? = 0inthelinear model). Level one represents the states whose constraints insure distribu-
tion of resources to the cities (which Cassidy, et al. denotesasathird level, but which istaken
here to be part of the decomposable level-one problem).
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4.2 Thetwo-leve linear price control problem

The two-level linear price control problem is another special case of the general multilevel
programming problem given by

max {c?x = ol + c?2? : (2?)}
st A%? < b?
where z! solves

max {(z2)t?! : (21| 22)}
(P1) st: Azt <pt
21>0

In this problem, level two controls the cost coefficients of level one, a problem important to
the analysis of tax and other control programs.

The field of application and variation appears fruitful and is by no means limited to the
two cases cited above.

5 Properties of the linear resource control problem

Attention will now focus on the two-level linear resource control problem. Of particular
importance in devel oping a solution procedure is anayzing the structure of the set of feasible
solutions from which the level-two planner can choose his optimal solution.

5.1 Alternative optimal solutions

Care must be taken when P* results in aternative optimal solutions for fixed 2%+, ..., 2".
Although not affecting the value of the level-k objective function, fi(z), these solutions can
have drastically varying impact on the objectives of other levels. Therefore, control over the
choice among alternative optimal solutions may have to be delegated to other levels, or an
incentive scheme may be required to induce the level-% planner to choose a solution desirable
to other levels. If no such scheme is employed, the problem may beill-defined. Consider the
following example of atwo-level linear resource control problem:

max {l‘l—l— %1‘2 . (:L‘z)}
where (z1, x3) solves

max {xz+ w3 . (r1,23]22)}
(P2) St: r2+23 = 4
1 T2 > 1
(P7) —r1+22 < 2
r1+a2 < 4
r1, 72,73 > 0

For z, = 2, the unique level-one solution is (z1, x2, x3) = (2,2, 2) with vdlue 4. The
corresponding level-two solutionvalueis 3. However, for z, = 1, there exist aternate optimal
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solutionsto P?, still with value 4, of theform o = {(z1, 22, 23) : 0< 21 <3, 20 =2, 23 =
3}. The corresponding level-two objective for this set of solutionsranges continuously from %
to 3%. For amost favorable solution to bereturned to level two for fixed z», i.€., toinducelevel
onetoreturn z; = 3for 2z = 1, aside payment to the level-one objective from level two may
be employed. For the example, thelevel-one objective function, max{z, + 3+ e(x1 + %xz)}
with ¢ > O sufficiently small, is a perturbation which accomplishes this. Given this side
payment scheme, z, = 1isthe optimal decision for level two.

Notethat, ingeneral, such aperturbation method may not determine aunique solutionsince
level two may have the same objective for a number of level-one aternate optimal solutions.
However, any of these solutions are satisfactory for level two.

A moreformal scheme, employingthe conceptsof preemptivegoa sdevel oped by Charnes,
et al. [10], may be suggested. Although developed for a problem [that] fits the structure of
alarge-scale linear programming model solvable by Dantzig-Wolfe decomposition, the same
concepts can be employed in the fundamentally different problem presented here. This may
be accomplished by introducing a preemptive goal into the functional of level one asfollows:

max {clz + M|cPx* — x| : (x1]2?)}

1
(P7) st: Alzl < b — A2
x>0

where 2* = (7}, x») is a solution to P? with highest level-two objective value, and M isa

positive, arbitrarily large number.

5.2 Nonconvexity
In the two-level linear resource control problem,
St={x>0: Azl + A%2 < b},
isaconvex set. However,
S2={z eS8t i =max{ctz : (z1|7?)}}
need not be. Therefore, P2, which can be written as

max c2x
st: xe S?

involvesthe optimization of alinear function over anonconvex region. Thisisacharacteristic
not found in decentralized planning models[that] fit alarge-scale linear programming format.
Consider the example shown in Figure 1. The set 52 for the problem in Figure 1 is a subset of
the edges of the boundary of S*. In problems of higher dimension, S? is composed of edges
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Figure 1. Example of Nonconvexity of 52

Figure 2: Example of S? in Three Dimensions
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and faces of the boundary of S*. In the following three dimensional example:

max {z2+ 3 : (z2)}
where (1, x3) solves

max {x3: (x1,23|z
(P?) st x1+w2— 3
(Pl) r1— X2+ T3
T1+ T2+ x3
T1+ T2+ x3
x3

—

INIVIANIN IVE

P NODNDN

S2 isthe red region shown in Figure 2.

5.3 Further characterization of S2 and P?

Thefollowing theorem and its corol laries hel p to characterize both 5?2 and the optimal solution
for P? in the two-level linear resource control problem. The proofs for these results can be
found in Appendix A.

Theorem 5.1 Suppose St = {x : Az = b, = > 0} isbounded. Let
52 ={z=(2%,2%) € St : 12! = max{ctz! : (z1|2?)}}
then the following hold:
(i) S2cC st
(ii) Let {y:}7_, be any r points of S?, such that 2 = >, \sy; € S? with \; > 0 and
Sy A = 1. Then \; > 0impliesy, € S2.

Hence, any point in S* which positively contributes in any convex combination forming
apoint in S2, must also bein S2. Since thisistrue of any 3, € S, including y; which are
extreme points of S*, the following corollary results:

Corollary 5.1 If z isan extreme point of S2, then z is an extreme point of S*.

Using the results above, one can conclude that S? isavery special portion of the boundary
of St.

Recalling that P? may be formulated as max,, . o> c2x and noting the correspondence of
extreme pointsin S2 and S*, the following result is easily derived:

Corollary 5.2 An optimal solution to the two-level linear resource control problem (if one
exists) occurs at an extreme point of the constraint set of all variables (SY).

Thisisan important result since it justifies extreme point search procedures as a basis for
algorithmic approaches to solving the two-level linear resource control problem.

10



Mathematical Methods for Multilevel Planning

5.4 Cooperation of levels

Optimal solutionsto the multilevel programming problem may not be Pareto optimal. While
cooperation might improve the objective function at every level, the order and independence
with which decisions are made prevent such cooperation. This rules out any agorithmic
approach which seeks only Pareto optimal solutionsand is one of the distinguishing charac-
teristics between multiobjective and multilevel programming.

The model of Cassidy et al. [9] discussed previously can posses optimal solutions which
are not Pareto optimal. Recall that it is viewed here as a two-level resource control problem.
While model s exist to achieve Pareto optimal solutions, they areinappropriate for applications
such as Cassidy’s.

For aspecificexampleof thisbehavior, consider Figure1. Bothlevelshavehigher objective
values at point (a). However, for x; fixed at x2, level one will choose z; = x1 (point (b)),
thus point (a) is not in S2. Thisleads to the best choice of x; to be 2, = 0 with the optimal
solution at point (c).

55 A complete control theorem for the two-level linear resource
control problem

Consider the two-level linear resource control problem. Given any basis B C A for the set of
constraints Az = b, one can write the equivalent set of constraintson z:

Brg+Nxy =0

or, rewriting,
xp =Bl — B INuxy.

When x isfixed, zp isuniquely determined. Thusto have complete control of the solution,
the level-two planner need only control the complete set of nonbasic variables corresponding
to any basis.

6 Algorithmic approachestothetwo-level resource con-
trol problem

Based on the above characteristics of the set of level-two feasible solutions, S2, a number of
algorithmic approaches can be suggested. Since the optimal solution has been shown to be an
extreme point of S2, an equivalent formulation would be the following:

2

max c x
(Pz){ & e 97

where [S?] represents the convex hull of S2. The set of extreme points for [S?] are, by
definition of convex hull, identical to the set of extreme points of S2.

A number of algorithmic approaches for finding optimal solutionsto the general problem,
by establishing the convex hull of S? with a cutting plane method, are being explored. An

11
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approach based on an “ outer approximation” appears promising but must be further devel oped.
Another technique based on cutting planes constructed from the level-two objective function
is adso being examined closely. This approach is based on two nested parametric linear
programming problems. All of the methods discussed above possess the ability to generate
local and potentially global optimal solutions in S? before adding cuts to achieve global
optimality.

Any desirable agorithm for the two-level linear resource control problem should exhibit
some particular properties.

Consider the solution, £ = (2%, 22) to the following problem:

2

A max c°x
(P) st: Ar=b
x>0

In (P), the level-two planner is given full control over al variables. Now fix 22 = 72 and
solve the following problem with solution = to determineif z € 52

1

[ max cx
(P) st: Azl =b— A,72
>0

If z = Z then & € S? isan optimal solution to the overall problem. For example, note that
in Figure 1, the vector ¢2 could be changed to produce a solution to (P) at any extreme point
of S2. The set S? does not vary with changes in the second-level objective, and hence quite
different choices of ¢2 can produce an optimal solution after solving (). For the example
shown in Figure 1, two particular choices of ¢? which lead to such acondition for thelevel-one
objective shown are both ¢? = ¢! and ¢? = —c!. Thus both highly complementary and highly
conflicting objectives (aswell as many in between) may lead to solutionsafter solving thetwo
linear programming problems (]5) and (P). Any reasonable algorithm should have the ability
to easily solve any problemsfor which z € S2.

6.1 Analgorithm to find local optimal solutions

While the cutting plane and other approaches to be further explored will guarantee global
optimal solutions, an important step in some of the procedures will consist of first finding a
local optimal solution. Consider the following portion of a bounded simplex tableau to be
employed in the proposed agorithm to find aloca optimal solution:

> > >
T2 o Ty | %
TB, | yu Y2 - Y | b1
TB, | Y21 Y22 - Yo | b2
TBp | Yml Ym2 - Ymk bm

12
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The variables 23, ..., 22, represent the nonbasic level-two variables which are at nonzero
values, and 7%, . .., r2 represent the reduced costs of these variables with respect to the level -
two objective function. In terms of the present basis B C A, b = B~1b — 3-F_; y;22 where

(Y15, Y251 -+ Ymj)t = y; = B~Haas, agj, - .., am;)t and 2, isthe it basic variable.
The following a gorithm guarantees alocal optimal solution:

Step 1. Solve the following problem with optimal solution Z = (£, 22) and optimal tableau

T viathe simplex method:
2

max cx
st: Az =0
x>0

Step 2. Set 2* = #* and solve the following problem via bounded simplex (I = u = #?)
beginning with tableau 7'

max ctz
st: Az =0
22 =72
21>0

Let the optimal solutionbe z. If = = Z, stop; Z isaglobal optimal solution. Otherwise,
go to step 3awith current tableau T and relax the constraints 22 = 22.

Step 3a. If al nonbasic variables are equal to zero, go to step 4 with current tableau 7',
Otherwise go to step 3b.

Step 3b. If b; > 0 for al i, go to step 3c. Otherwise, without loss of generaity, consider
by = 0. Choose y; such that 1 < j < k and ys; # 0. Bring 2 into the basis viaa
degenerate pivot. Go to step 3a.

Step 3c. Consider any nonbasic variablewhichisat astrictly positivevalue, say z5. 1f r# < 0,
increase % until it enters the basis. If 7% > 0, decrease 2% until it either reaches zero or
it must enter the basis. Go to Step 3a.

Step 4. Beginning with tableau 7" solve the following problem viaamodified simplex proce-

dure:
max c2x
st: Az =b
x>0

The modification is as follows: Given a candidate to enter the basis (one for which c?x
will increase) only alow it to enter if the resultinngasic solution, Z, will be contained in
S2. Thisis determined by obtaining the solution  to the following problem:

max clx
St: All‘l <b- Azl‘z
21>0
SL‘2 — ‘%2

viadua simplex on repeated applications of step 4. If 7' = 71 then enter the candidate
into the basis. Repeat step 4 until no more candidates exist which satisfy the above
maodification, then stop.

13
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6.2 Validation and convergence

The algorithm begins by finding the maximum of the second-level objective over the entire
feasible region, S1. A check in step 2 is then made to determine if the resulting solution is
in S2. If so, the algorithm terminates with a global optimal solution and has solved what was
previously termed an easy problem. If the termination does not occur in step 2, the resulting
solution from step 2 is by definition contained in S2. Since the bounded simplex algorithm was
employed, a number of nonbasic level-two variables may be at nonzero val ues corresponding
to appropriate components of 2. Degeneracy may also have been introduced by fixing the
components of 22 from step 1.

The purpose of step 3 is to relax the constraint 22 = #2 and to move to an extreme point
x° which satisfiesz° € $? and c?z° > c?z. If aright hand side b, from the current tableau is
equal to zero then step 3b is entered to perform a degenerate pivot. Some nonbasic variable,
:c§ j=1,2,...,k,isthen brought into the basis at its current positive level and =, becomes
nonbasic at its current value of zero. Thus the number of basic variables [equal to] zero
is reduced by one. Thisis repeated until no degeneracy is present. Note that such a pivot
is always possible, that is, y,; # O for some j = 1,..., k. Suppose that y,, = O for all
j=1,..., k. Thenrepeated applicationsof step 3c would result in a degenerate extreme point
of the original feasible region, S, since 23, will remain zero no matter how 23, ..., 22 are
varied. This contradictsthe original nondegeneracy assumption.

If all b; > 0 but there are still nonbasic level-two variables, 23, ..., 22, a nonzero values,
then step 3cis entered. Any variable:c]z, j=1,..., k,ischosen to be increased or decreased
depending on its reduced level-two cost, TJZ». Since there are no explicit upper bounds on x§
any increase is limited by a current basic variable reaching zero. The original problem is
bounded, so this must occur. If x§ is decreased, again a current basic variable may reach zero
or else :c§ itself will become zero. In either case, the number of nonzero nonbasic variablesis
decreased by one.

The points generated in step 3c can be shown to be contained in S2 which isassumed when
step 4isentered. Recall that b; > Ofor al i asaresult of step 3b. Thusthere existstwo scalars,
f1 > 0and 6, > 0 such that any increase or decrease in x§ by an amount less than or equal to
61 and 0, respectively resultsin afeasible solution (i.e., a point in S1). Thisimpliesthat the
current solution, which isin S?, isaconvex combination of two feasible points resulting from
astrict increase and astrict decrease in 2. By Theorem 5.1, such points must also bein S2.
Thus each point resulting from step 3¢ must be contained in S2.

Step 4 is entered when an extreme point of S? has been obtained. A modified simplex
method is used to take steps in S? dong which the level-two objective increases. Thisis
accomplished by using the normal simplex rules with objective c?x along with a check that no
basis change results in leaving S2. The agorithm terminates with an extreme point solution
in S2 which has the property that all adjacent extreme points either lead to a decrease in c?x
or are not in 2. Thusalocal optimal solutionis obtained.

Convergence of the algorithm is established by noting the following facts:

1. The feasible region defined by S* = {z : Az = b, > 0} isbounded and each basis
is nondegenerate.

2. Stepsl, 2 and 4 arefinitesincethesimplex, bounded simplex and dual simplex procedures
arefinite under fact (2).

14
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3. Each application of step 3b strictly decreases the number of basic variables [equal to
zero] and also the number of nonzero nonbasic variables.

4. Each application of step 3c reduces the number of nonzero nonbasic variables by one.

7 Conclusions

Multilevel mathematical programming problems, if carefully defined, can serve as useful tools
in modeling structured economic systems. Such models can predict the inefficiencies of non-
Pareto optimal decisionsand identify the seats of true control within hierarchical organizations.

This paper has proposed a general mathematical structure for such problems, and specif-
ically characterizes the two-level linear resource control problem. For this problem, Theo-
rem 5.1 illustrates a key property of the nonconvex feasible region viewed by level two. Asa
foundation, it justifies extreme point solution techniques and [suggests] the need for methods
to establish the convex hull of the level-two feasible region. Towards thisgoal, this paper has
offered an adjacent extreme point method which can find local, and sometimesglobal, optimal
solutionsto the two-leve linear resource control problem.

A Proofs of major results
Theorem A.1 (Theorem 5.1) Suppose S* = {x : Az = b, = > 0} isbounded. Let
S22 = {7 = (2%, 2% e ST : 2t = max{ctzt : (21221
then the following hold:
(i) S2C St
(ii) Let {y:}7_, be any r points of S1, such that = = >, \iyy € S? with A, > 0 and
Sy A = 1. Then \; > Oimpliesy; € S°.

Proof: (i) S? C S? by the definition of S2.
(i) (By contradiction) Let y1, o, ..., y, € ST with

= (zt,2%) = Z)\tyt € 52
t=1

and
A >0, A >0, S =1
Suppose y1 = (yi,y2) ¢ S?. Thenthereexists §i suchthat §; = (71, %) € S? with y2 = 72
and 11 > clyi.
Using (i), #* € S*. Therefore,

T
E= (343 =M+ Ay € St
t=2

15
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since St isconvex. Noting that 72 = 22 and A1 > 0, we have

T T

1.1 1y .1 1y 1 _ Ay ~1 1y 1 d~1

cwt = cihyr + chAtyt < Ay + Z caly; =T
t=2 t=2

given, z = (z1, 2%) € S? and \; > 0, we have established an # with the following properties:
(@ 7= (31,7%) e St
(b) 2% =72
(© ctzl < 3t

This contradicts the definition of 52 since = € S? maximizes cz?! for the fixed value of 22.

Therefore A1 > 0 impliesy; € S2. Since the choice of y; among the 3's was arbitrary, we
have proven that \; > Oimpliesy; € S°m

Corollary A.1 (Corollary 5.1) If « isan extreme point of 52, then 2 isan extreme point of S*.

Proof: (By contradiction) Let - be an extreme point of S?. Suppose x is not an extreme
point of S%. Then there exist extreme points y1,...,y, € S and A1 > 0,...,\, > 0,
Si_i A = 1suchthat z = S°/_; Ay From Theorem A1, thisimpliesys, ...,y € S?and
hence = cannot be an extreme point of S2, a contradiction.m

Corollary A.2 (Corollary 5.2) An optimal solution to the two-level linear resource control
problem (if one exists) occurs at an extreme point of the constraint set of all variables (S2).

Proof: Thetwo-level linear resource control problem can bewritten as max,, g2 c?r. Since
c?z islinear, if asolution exists, one must occur at an extreme point of S2 (aternative optimal
solutionsat nonextreme pointsmay exist). By Corollary A.1, this must be an extreme point of
Slm
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