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1 Introduction

Many water resource planning problems require compromises among the objectives of several
interacting individuals or agencies. Often, these groups are arranged within an administrative
or hierarchical structure with independent and perhaps conflicting objectives. For example, the
water resource policies set forth by the Federal government affect the objective and options,
and hence the strategies, of state officials. This process continues within a hierarchy of
decision-makers, including local governments, planning agencies, and basic economic units,
such as firms and households. Each unit of the hierarchy wishes to maximize its individual
benefit function (or functions) in view of the partial exogenous control exercised at other levels.
In the above example, actions at the state level also affect the benefits sought by the Federal
government. The Federal government can control this effect by exercising preemptive partial
control over the state through budget modifications or regulations.

An important feature of multilevel optimization problems is that a planner at one level of
the hierarchy may have his objective function determined, in part, by variables controlled at
other levels. However, his control instruments may allow him to influence the policies at other
levels, and thereby improve his own objective function. Such policies may include the control
of the allocation and use of resources at lower levels, and the control of the benefits conferred
upon subordinate levels. Some particular problems are amenable to this framework:

1. International Water Systems: An international river basin agency desires to equitably
distribute the benefits conferred from a multi-national, multi-reservoir, multi-purpose
water system. To do so, the agency will control the operating policies of some, but
perhaps not all, reservoirs in the system. In view of these controls, individual nations
will determine their water use policies to best meet their individual requirements.

2. Flood Control: Seeking to reduce flood risk, government can provide structural flood
control measures, implement floodplain zoning programs, and subsidize flood insurance.
These policies will influence floodplain development based on the individual objectives
and benefits of land users. If not carefully conceived, the governmental programs can
be rendered useless if they inadvertently encourage expanded floodplain development.

Note that the above problems have the following characteristics in common:

1. The systems have interacting decision-making units within a predominantly hierarchical
or multiechelon structure.

2. Each decision-making unit maximizes net benefits independently of other units, but is
affected by the actions of other units as an externality.

3. The external effect on a decision-maker’s problem is reflected in both his objective
function and his set of feasible decisions.

This paper will present an approach for solving a large class of such multilevel planning
problems which can be adequately represented as constrained optimization problems.
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2 Previous work

Decentralized planning has been long recognized as an important decision-making problem.
Mathematical programming methods to solve such problems trace back early in the develop-
ment of linear programming. The decomposition method of Dantzig and Wolfe [16] for the
solution of certain large-scale linear programming problems has served well as the underpin-
ning for much of this study (see, for example, Balas [2], Cooper [12], Geoffrion [19, 20, 21, 23],
Lasdon [29]). Such a formulation partitions the decision space among several planning di-
visions. These units interact through a set of “corporate” constraints involving the decision
variables of all divisions. The remaining constraints can be apportioned to each of the divi-
sions, with each constraint a function of the decision variables under the jurisdiction of only a
single division.

The subproblem solved by a division maximizes that portion of the overall objective func-
tion controlled by the division, subject to the divisional constraints. However, and individual
division does not account for interdivisional interactions. This may result in suboptimal (and
perhaps infeasible) behavior for the overall problem. The Dantzig-Wolfe method can then be
viewed as providing inducements to the division to encourage overall optimal behavior of the
corporation. This interpretation rests heavily on the concepts of Koopmans [28] who associ-
ated the notions of dual prices and decentralization. A more detailed discussion is provided in
an excellent paper by Baumol and Fabian [5].

These techniques were furthered with the work of Charnes, et al. [10], who recognized that
when subdivisions have alternative solutions to their individual optimization problems, they
must receive information from the master planner in order to operate coherently. To provide
this information, a preemptive goal was applied to the division objective function forcing it to
choose a decision in harmony with the overall system.

The decomposition approach has been successfully applied by Haimes and his associates
to a wide range of multilevel planning problems. For example, Haimes, Foley and Yu [25]
effectively solve a large model for the control of water quality by a central planning agency
with a single overall system objective. The dual variables are interpreted to determine prices
(taxes) to be charged to each subproblem (polluter) for violating pollution standards.

Generally, the decomposition approach includes a coordinating mechanism of dual prices
preventing the various divisions or agencies from working against the goals of a master planner.
However, as pointed out by Baumol and Fabian [5], in practical situations, decentralized
decisions may not take into account the benefits or costs incurred by its activities on other
subdivisions. When coordination is absent, the system may inherently exhibit suboptimal
behavior. Each division can have goals distinct and independent of the others, optimizing its
position in view of the external effects imposed by their decisions.

Cassidy, et al. [9] proposed a model and solution procedure for a specific case where such
a coordinating mechanism does not exist. In analyzing the distribution of a federal budget
among several states, they offered a model with some fundamental distinctions. Let T denote
the overall budget of the federal government to be distributed to N states, with si units to be
allocated to state i. Each state, i, has Ki cities and each city has Jik projects from which to
choose to fund. Let

xijk =

{
1 if project j is undertaken in state i, city k
0 otherwise
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Associated with each project is a cost, cijk , and a conferred benefit, wijk. The problem each
state wishes to solve is

max
∑
jk wijkxijk

st:
∑
jk cijkxijk ≤ si ∀ i∑
j xijk ≥ 1 ∀ ik

xijk ∈ {0, 1} ∀ ijk

Let

ri =
∑
jk wijk −

∑
jk wijkxijk∑

jk wijk

which represents the relative regret of state i with its budget. The problem to be solved by the
federal level is

min [maxi ri −mini ri]

st:
∑
i si ≤ T

si ≥ 0 ∀ i

Using a parametric analysis, the optimal xijk’s resulting from the states’ subproblems were
determined as a function of the si’s. Here, a strict two-level structure was employed. A
state maximizes its individual objective given the resource level si and impacts directly on the
objective function of the master (federal) level.

In the study of a Dutch milk cooperative, Candler and Norton [8] sought a solution to a
generalization of the problem posed by Cassidy, et al. The government could not influence
the dairy prices directly. However, using the mechanism of a subsidy on liquid milk sales and
an import duty on butter, the cooperative and its members would vary their production mix of
dairy products and thereby alter the price index. This problem required a continuous decision
space, and an objective function for each level more general than those proposed by Cassidy,
et al. Unfortunately, the general problem of Candler and Norton was imprecisely defined,
and they did not recognize that the effective feasible regions resulting from the parametric
problems at the lower levels were nonconvex sets. This property causes the Candler and
Norton algorithm to fail since it requires convexity.

The use of multilevel control theory for the analysis of some multilevel economic systems
has been fruitful (see, for example, the work of Meserovic [32]). Often these techniques
view the system as a Stackelberg game, a highly structured n-person game (see, for example,
Başar [4], Cruz [13, 14], Simaan [37]). Within a broad definition of such games, a static
Stackelberg game with fixed leaders and a continuous (or discrete) control space could be
defined to encompass multilevel programming problems. However, current methodology
does not consider the activity space of one player to be a function of the strategies of other
players, a feature necessary for most constrained problems. Such an extension of Stackelberg
games would require the payoff function of one level to have discontinuities dependent on the
decisions of other players. This formulation is, at best, unwieldy and perhaps intractable.

It must also be noted that multiobjective optimization techniques have been developed to
permit a more faithful analysis of the tradeoffs among competing goals (see, for examples,
[6, 22, 26, 27, 33, 34, 36, 38, 40, 41, 42]), and assist a planner in reaching an acceptable
compromise. Such approaches assume that all objectives are those of a single planner, im-
pacting directly on his state of well-being. Hence, these methods are largely inappropriate
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for multilevel optimization with incoherent objectives. The multilevel approach raises and
answers questions regarding the assignment of control over certain variables to various levels.
In some cases, coalitions of levels could improve the objective functions of all levels. Hence,
the multiobjective planner could be viewed as the one, and only, coalition. Furthermore,
because of the structure of some multilevel problems, a single level could exercise complete
control over the actions of all levels, although controlling only a proper subset of the decision
variables.

3 General definition

Let the decision variable space (Euclidean n-space), Rn 3 x = (x1, x2, . . . , xn), be partitioned
among r levels,

Rnk 3 xk = (xk1 , x
k
2, . . . , xknk) for k = 1, . . . , r,

where
∑r
k=1 nk = n. Denote the maximization of a function f(x) over Rn by varying only

xk ∈ Rnk given fixed xk+1, xk+2, . . . , xr in Rnk+1 × Rnk+2 × · · · × Rnr by

max{f(x) : (xk | xk+1, xk+2, . . . , xr)}.

Let the full set of system constraints for all levels be denoted by S. Then the problem at
the lowest level of the hierarchy, level one, is given by

(P 1)

{
max {f1(x) : (x1 | x2, . . . , xr)}

st: x ∈ S1 = S

The feasible region, S = S1, is defined as the level-one feasible region. The solutions to
P 1 in Rn1 for each fixed x2, x3, . . . , xr form a set,

S2 = {x̂ ∈ S1 : f1(x̂) = max{f1(x) : (x1 | x̂2, x̂3, . . . , x̂r)}},

called the level-two feasible region1 over which f2(x) is then maximized by varying x2 for
fixed x3, x4, . . . , xr.

Thus the problem at level two is given by

(P 2)

{
max {f2(x) : (x2 | x3, x4, . . . , xr)}

st: x ∈ S2

In general, the level-k feasible region is defined as

Sk = {x̂ ∈ Sk−1 | fk−1(x̂) = max{fk−1(x) : (xk−1 | x̂k, . . . , x̂r)}},

Note that x̂k−1 is a function of x̂k, . . . , x̂r. Furthermore, the problem at each level can be
written as

(P k)

{
max {fk(x) : (xk | xk+1, . . . , xr)}

st: x ∈ Sk

1In the terminology of differential games, this is equivalent to the rational reaction set of level one. (see Cruz [13]).
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which is a function of xk+1, . . . , xr, and

(P r) : max
x∈Sr

fr(x)

defines the entire problem. This establishes a collection of nested mathematical programming
problems {P 1, . . . , P r}.

Note that the objective at level k, fk(x), is defined over the decision space of all levels.
Thus, the level-k planner may have his objective function determined, in part, by variables
controlled at other levels. However, by controlling xk , after decisions from levels k + 1 to r
have been made, level k may influence the policies at level k− 1 and hence all lower levels to
improve his own objective function.

4 Two examples

4.1 The two-level linear resource control problem

The two-level linear resource control problem is the multilevel programming problem of the
form

max c2x
st: x ∈ S2

where
S2 = {x̂ ∈ S1 : c1x̂ = max{c1x : (x1 | x̂2)}}

and
S1 = S = {x : A1x1 + A2x2 ≤ b, x ≥ 0}

Here, level 2 controls x2 which, in turn, varies the resource space of level one by restricting
A1x1 ≤ b − A2x2. Perhaps the idea of nested optimization can be better seen by writing the
problem as follows:

(P 2)



max {c2x = c21x1 + c22x2 : (x2)}
where x1 solves

(P 1)


max {c1x = c11x1 + c12x2 : (x1 | x2)}

st: A1x1 + A2x2 ≤ b
x ≥ 0

Note that, by this definition, the model of Cassidy, et al. [9] is a two-level resource control
problem. The highest level, level two, represents a federal government with a nonlinear objec-
tive based on the integer-valued decisions of the states. In this case, no direct cost is assigned
to the decision variables of the federal government, i.e., s1, s2, . . . , sN (this corresponds to
c22 = 0 in the linear model). Level one represents the states whose constraints insure distribu-
tion of resources to the cities (which Cassidy, et al. denotes as a third level, but which is taken
here to be part of the decomposable level-one problem).
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4.2 The two-level linear price control problem

The two-level linear price control problem is another special case of the general multilevel
programming problem given by

(P 2)



max {c2x = c21x1 + c22x2 : (x2)}
st: A2x2 ≤ b2

where x1 solves

(P 1)


max {(x2)tx1 : (x1 | x2)}

st: A1x1 ≤ b1

x1 ≥ 0

In this problem, level two controls the cost coefficients of level one, a problem important to
the analysis of tax and other control programs.

The field of application and variation appears fruitful and is by no means limited to the
two cases cited above.

5 Properties of the linear resource control problem

Attention will now focus on the two-level linear resource control problem. Of particular
importance in developing a solution procedure is analyzing the structure of the set of feasible
solutions from which the level-two planner can choose his optimal solution.

5.1 Alternative optimal solutions

Care must be taken when P k results in alternative optimal solutions for fixed xk+1, . . . , xr.
Although not affecting the value of the level-k objective function, fk(x), these solutions can
have drastically varying impact on the objectives of other levels. Therefore, control over the
choice among alternative optimal solutions may have to be delegated to other levels, or an
incentive scheme may be required to induce the level-k planner to choose a solution desirable
to other levels. If no such scheme is employed, the problem may be ill-defined. Consider the
following example of a two-level linear resource control problem:

(P 2)



max {x1 + 1
2x2 : (x2)}

where (x1, x3) solves

(P 1)



max {x2 + x3 : (x1, x3 | x2)}
st: x2 + x3 = 4

x2 ≥ 1
−x1 + 2x2 ≤ 2

x1 + x2 ≤ 4
x1, x2, x3 ≥ 0

For x2 = 2, the unique level-one solution is (x1, x2, x3) = (2, 2, 2) with value 4. The
corresponding level-two solution value is 3. However, for x2 = 1, there exist alternate optimal
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solutions to P 1, still with value 4, of the form x = {(x1, x2, x3) : 0 ≤ x1 ≤ 3, x2 = 2, x3 =
3}. The corresponding level-two objective for this set of solutions ranges continuously from 1

2
to 3 1

2. For a most favorable solution to be returned to level two for fixed x2, i.e., to induce level
one to return x1 = 3 for x2 = 1, a side payment to the level-one objective from level two may
be employed. For the example, the level-one objective function, max{x2 +x3 + ε(x1 + 1

2x2)}
with ε > 0 sufficiently small, is a perturbation which accomplishes this. Given this side
payment scheme, x2 = 1 is the optimal decision for level two.

Note that, in general, such a perturbation method may not determine a unique solution since
level two may have the same objective for a number of level-one alternate optimal solutions.
However, any of these solutions are satisfactory for level two.

A more formal scheme, employing the concepts of preemptive goals developed by Charnes,
et al. [10], may be suggested. Although developed for a problem [that] fits the structure of
a large-scale linear programming model solvable by Dantzig-Wolfe decomposition, the same
concepts can be employed in the fundamentally different problem presented here. This may
be accomplished by introducing a preemptive goal into the functional of level one as follows:

(P 1)


max {c1x + M |c2x∗ − c2x| : (x1 | x2)}

st: A1x1 ≤ b−A2x2

x ≥ 0

where x∗ = (x∗1, x2) is a solution to P 2 with highest level-two objective value, and M is a
positive, arbitrarily large number.

5.2 Nonconvexity

In the two-level linear resource control problem,

S1 = {x ≥ 0 : A1x1 + A2x2 ≤ b},

is a convex set. However,

S2 = {x̂ ∈ S1 : c1x̂ = max{c1x : (x1 | x̂2)}}

need not be. Therefore, P 2, which can be written as

max c2x
st: x ∈ S2

involves the optimization of a linear function over a nonconvex region. This is a characteristic
not found in decentralized planning models [that] fit a large-scale linear programming format.
Consider the example shown in Figure 1. The set S2 for the problem in Figure 1 is a subset of
the edges of the boundary of S1. In problems of higher dimension, S2 is composed of edges
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x1

x2
c1

c2

S1

2x

1x

b a

c

optimal
solution

S2

Figure 1: Example of Nonconvexity of S2

x1

x2

x3

S2

Figure 2: Example of S2 in Three Dimensions
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and faces of the boundary of S1. In the following three dimensional example:

(P 2)



max {x2 + x3 : (x2)}
where (x1, x3) solves

(P 1)



max {x3 : (x1, x3 | x2)}
st: x1 + x2 − x3 ≥ 2

x1 − x2 + x3 ≤ 2
x1 + x2 + x3 ≤ 6
x1 + x2 + x3 ≥ 2

x3 ≤ 1

S2 is the red region shown in Figure 2.

5.3 Further characterization of S2 and P 2

The following theorem and its corollaries help to characterize both S2 and the optimal solution
for P 2 in the two-level linear resource control problem. The proofs for these results can be
found in Appendix A.

Theorem 5.1 Suppose S1 = {x : Ax = b, x ≥ 0} is bounded. Let

S2 = {x̂ = (x̂1, x̂2) ∈ S1 : c1x̂1 = max{c1x1 : (x1 | x̂2)}}

then the following hold:

(i) S2 ⊆ S1

(ii) Let {yt}rt=1 be any r points of S1, such that x =
∑
t λtyt ∈ S2 with λt ≥ 0 and∑

t λt = 1. Then λt > 0 implies yt ∈ S2.

Hence, any point in S1 which positively contributes in any convex combination forming
a point in S2, must also be in S2. Since this is true of any yt ∈ S1, including yt which are
extreme points of S1, the following corollary results:

Corollary 5.1 If x is an extreme point of S2, then x is an extreme point of S1.

Using the results above, one can conclude that S2 is a very special portion of the boundary
of S1.

Recalling that P 2 may be formulated as maxx∈S2 c2x and noting the correspondence of
extreme points in S2 and S1, the following result is easily derived:

Corollary 5.2 An optimal solution to the two-level linear resource control problem (if one
exists) occurs at an extreme point of the constraint set of all variables (S1).

This is an important result since it justifies extreme point search procedures as a basis for
algorithmic approaches to solving the two-level linear resource control problem.
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5.4 Cooperation of levels

Optimal solutions to the multilevel programming problem may not be Pareto optimal. While
cooperation might improve the objective function at every level, the order and independence
with which decisions are made prevent such cooperation. This rules out any algorithmic
approach which seeks only Pareto optimal solutions and is one of the distinguishing charac-
teristics between multiobjective and multilevel programming.

The model of Cassidy et al. [9] discussed previously can posses optimal solutions which
are not Pareto optimal. Recall that it is viewed here as a two-level resource control problem.
While models exist to achieve Pareto optimal solutions, they are inappropriate for applications
such as Cassidy’s.

For a specific example of this behavior, consider Figure 1. Both levels have higher objective
values at point (a). However, for x2 fixed at x̄2, level one will choose x1 = x̄1 (point (b)),
thus point (a) is not in S2. This leads to the best choice of x2 to be x2 = 0 with the optimal
solution at point (c).

5.5 A complete control theorem for the two-level linear resource
control problem

Consider the two-level linear resource control problem. Given any basis B ⊆ A for the set of
constraints Ax = b, one can write the equivalent set of constraints on x:

BxB + NxN = b

or, rewriting,
xB = B−1b−B−1NxN .

When xN is fixed, xB is uniquely determined. Thus to have complete control of the solution,
the level-two planner need only control the complete set of nonbasic variables corresponding
to any basis.

6 Algorithmic approaches to the two-level resource con-
trol problem

Based on the above characteristics of the set of level-two feasible solutions, S2, a number of
algorithmic approaches can be suggested. Since the optimal solution has been shown to be an
extreme point of S2, an equivalent formulation would be the following:

(P 2)

{
max c2x

st: x ∈
[
S2]

where
[
S2] represents the convex hull of S2. The set of extreme points for

[
S2] are, by

definition of convex hull, identical to the set of extreme points of S2.
A number of algorithmic approaches for finding optimal solutions to the general problem,

by establishing the convex hull of S2 with a cutting plane method, are being explored. An
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approach based on an “outer approximation” appears promising but must be further developed.
Another technique based on cutting planes constructed from the level-two objective function
is also being examined closely. This approach is based on two nested parametric linear
programming problems. All of the methods discussed above possess the ability to generate
local and potentially global optimal solutions in S2 before adding cuts to achieve global
optimality.

Any desirable algorithm for the two-level linear resource control problem should exhibit
some particular properties.

Consider the solution, x̂ = (x̂1, x̂2) to the following problem:

(P̂ )


max c2x

st: Ax = b
x ≥ 0

In (P̂ ), the level-two planner is given full control over all variables. Now fix x2 = x̂2 and
solve the following problem with solution x̄ to determine if x̂ ∈ S2:

(P̄ )


max c1x

st: A1x
1 = b−A2x̂

2

x1 ≥ 0

If x̄ = x̂ then x̂ ∈ S2 is an optimal solution to the overall problem. For example, note that
in Figure 1, the vector c2 could be changed to produce a solution to (P̂ ) at any extreme point
of S2. The set S2 does not vary with changes in the second-level objective, and hence quite
different choices of c2 can produce an optimal solution after solving (P̂ ). For the example
shown in Figure 1, two particular choices of c2 which lead to such a condition for the level-one
objective shown are both c2 = c1 and c2 = −c1. Thus both highly complementary and highly
conflicting objectives (as well as many in between) may lead to solutions after solving the two
linear programming problems (P̂ ) and (P̄ ). Any reasonable algorithm should have the ability
to easily solve any problems for which x̂ ∈ S2.

6.1 An algorithm to find local optimal solutions

While the cutting plane and other approaches to be further explored will guarantee global
optimal solutions, an important step in some of the procedures will consist of first finding a
local optimal solution. Consider the following portion of a bounded simplex tableau to be
employed in the proposed algorithm to find a local optimal solution:

x2
1 x2

2 · · · x2
k RHS

r2
1 r2

2 · · · r2
k z2

xB1 y11 y12 · · · y1k b̄1

xB2 y21 y22 · · · y2k b̄2
...

...
...

xBm ym1 ym2 · · · ymk b̄m
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The variables x2
1, . . . , x2

k, represent the nonbasic level-two variables which are at nonzero
values, and r2

1, . . . , r2
k represent the reduced costs of these variables with respect to the level-

two objective function. In terms of the present basis B ⊆ A, b̄ = B−1b −∑k
j=1 yjx

2
j where

(y1j, y2j, . . . , ymj)t = yj = B−1(a1j, a2j, . . . , amj)t and xBi is the ith basic variable.
The following algorithm guarantees a local optimal solution:

Step 1. Solve the following problem with optimal solution x̂ = (x̂1, x̂2) and optimal tableau
T̂ via the simplex method:

max c2x
st: Ax = b

x ≥ 0

Step 2. Set x2 = x̂2 and solve the following problem via bounded simplex (l = u = x̂2)
beginning with tableau T̂ :

max c1x
st: Ax = b

x2 = x̂2

x1 ≥ 0

Let the optimal solution be x̄. If x̄ = x̂, stop; x̂ is a global optimal solution. Otherwise,
go to step 3a with current tableau T̄ and relax the constraints x2 = x̂2.

Step 3a. If all nonbasic variables are equal to zero, go to step 4 with current tableau T̃ .
Otherwise go to step 3b.

Step 3b. If b̄i > 0 for all i, go to step 3c. Otherwise, without loss of generality, consider
b̄` = 0. Choose y`j such that 1 ≤ j ≤ k and y`j 6= 0. Bring x2

j into the basis via a
degenerate pivot. Go to step 3a.

Step 3c. Consider any nonbasic variable which is at a strictly positive value, say x2
j . If r2

j ≤ 0,
increase x2

j until it enters the basis. If r2
j > 0, decrease x2

j until it either reaches zero or
it must enter the basis. Go to Step 3a.

Step 4. Beginning with tableau T̃ solve the following problem via a modified simplex proce-
dure:

max c2x
st: Ax = b

x ≥ 0

The modification is as follows: Given a candidate to enter the basis (one for which c2x
will increase) only allow it to enter if the resulting basic solution, x̃, will be contained in
S2. This is determined by obtaining the solution ˜̃x to the following problem:

max c1x
st: A1x

1 ≤ b−A2x
2

x1 ≥ 0
x2 = x̃2

via dual simplex on repeated applications of step 4. If ˜̃x1 = x̃1 then enter the candidate
into the basis. Repeat step 4 until no more candidates exist which satisfy the above
modification, then stop.



Mathematical Methods for Multilevel Planning 14

6.2 Validation and convergence

The algorithm begins by finding the maximum of the second-level objective over the entire
feasible region, S1. A check in step 2 is then made to determine if the resulting solution is
in S2. If so, the algorithm terminates with a global optimal solution and has solved what was
previously termed an easy problem. If the termination does not occur in step 2, the resulting
solution from step 2 is by definition contained in S2. Since the bounded simplex algorithm was
employed, a number of nonbasic level-two variables may be at nonzero values corresponding
to appropriate components of x̂2. Degeneracy may also have been introduced by fixing the
components of x2 from step 1.

The purpose of step 3 is to relax the constraint x2 = x̂2 and to move to an extreme point
x◦ which satisfies x◦ ∈ S2 and c2x◦ ≥ c2x̄. If a right hand side b̄`, from the current tableau is
equal to zero then step 3b is entered to perform a degenerate pivot. Some nonbasic variable,
x2
j , j = 1, 2, . . . , k, is then brought into the basis at its current positive level and xB` becomes

nonbasic at its current value of zero. Thus the number of basic variables [equal to] zero
is reduced by one. This is repeated until no degeneracy is present. Note that such a pivot
is always possible, that is, y`j 6= 0 for some j = 1, . . . , k. Suppose that y`j = 0 for all
j = 1, . . . , k. Then repeated applications of step 3c would result in a degenerate extreme point
of the original feasible region, S1, since xB` will remain zero no matter how x2

1, . . . , x2
k are

varied. This contradicts the original nondegeneracy assumption.
If all b̄i > 0 but there are still nonbasic level-two variables, x2

1, . . . , x2
k, at nonzero values,

then step 3c is entered. Any variable x2
j , j = 1, . . . , k, is chosen to be increased or decreased

depending on its reduced level-two cost, r2
j . Since there are no explicit upper bounds on x2

j ,
any increase is limited by a current basic variable reaching zero. The original problem is
bounded, so this must occur. If x2

j is decreased, again a current basic variable may reach zero
or else x2

j itself will become zero. In either case, the number of nonzero nonbasic variables is
decreased by one.

The points generated in step 3c can be shown to be contained in S2 which is assumed when
step 4 is entered. Recall that b̄i > 0 for all i as a result of step 3b. Thus there exists two scalars,
θ1 > 0 and θ2 > 0 such that any increase or decrease in x2

j by an amount less than or equal to
θ1 and θ2 respectively results in a feasible solution (i.e., a point in S1). This implies that the
current solution, which is in S2, is a convex combination of two feasible points resulting from
a strict increase and a strict decrease in x2

j . By Theorem 5.1, such points must also be in S2.
Thus each point resulting from step 3c must be contained in S2.

Step 4 is entered when an extreme point of S2 has been obtained. A modified simplex
method is used to take steps in S2 along which the level-two objective increases. This is
accomplished by using the normal simplex rules with objective c2x along with a check that no
basis change results in leaving S2. The algorithm terminates with an extreme point solution
in S2 which has the property that all adjacent extreme points either lead to a decrease in c2x
or are not in S2. Thus a local optimal solution is obtained.

Convergence of the algorithm is established by noting the following facts:

1. The feasible region defined by S1 = {x : Ax = b, x ≥ 0} is bounded and each basis
is nondegenerate.

2. Steps 1, 2 and 4 are finite since the simplex, bounded simplex and dual simplex procedures
are finite under fact (1).
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3. Each application of step 3b strictly decreases the number of basic variables [equal to
zero] and also the number of nonzero nonbasic variables.

4. Each application of step 3c reduces the number of nonzero nonbasic variables by one.

7 Conclusions

Multilevel mathematical programming problems, if carefully defined, can serve as useful tools
in modeling structured economic systems. Such models can predict the inefficiencies of non-
Pareto optimal decisions and identify the seats of true control within hierarchical organizations.

This paper has proposed a general mathematical structure for such problems, and specif-
ically characterizes the two-level linear resource control problem. For this problem, Theo-
rem 5.1 illustrates a key property of the nonconvex feasible region viewed by level two. As a
foundation, it justifies extreme point solution techniques and [suggests] the need for methods
to establish the convex hull of the level-two feasible region. Towards this goal, this paper has
offered an adjacent extreme point method which can find local, and sometimes global, optimal
solutions to the two-level linear resource control problem.

A Proofs of major results

Theorem A.1 (Theorem 5.1) Suppose S1 = {x : Ax = b, x ≥ 0} is bounded. Let

S2 = {x̂ = (x̂1, x̂2) ∈ S1 : c1x̂1 = max{c1x1 : (x1 | x̂2)}}

then the following hold:

(i) S2 ⊆ S1

(ii) Let {yt}rt=1 be any r points of S1, such that x =
∑
t λtyt ∈ S2 with λt ≥ 0 and∑

t λt = 1. Then λt > 0 implies yt ∈ S2.

Proof: (i) S2 ⊆ S1 by the definition of S2.
(ii) (By contradiction) Let y1, y2, . . . , yr ∈ S1 with

x = (x1, x2) =
r∑
t=1

λtyt ∈ S2

and
λt ≥ 0, λ1 > 0,

∑r
t=1 λt = 1.

Suppose y1 = (y1
1, y

2
1) /∈ S2. Then there exists ỹ1

1 such that ỹ1 = (ỹ1
1, ỹ

2
1) ∈ S2 with y2

1 = ỹ2
1

and c1ỹ1
1 > c1y1

1 .
Using (i), ỹ1 ∈ S1. Therefore,

x̃ = (x̃1, x̃2) = λ1ỹ1 +
r∑
t=2

λtyt ∈ S1
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since S1 is convex. Noting that x̃2 = x2 and λ1 > 0, we have

c1x1 = c1
1λ1y

1
1 +

r∑
t=2

c1
1λty

1
t < c1

1λ1ỹ
1
1 +

r∑
t=2

c1
1λty

1
t = c1x̃1

given, x = (x1, x2) ∈ S2 and λ1 > 0, we have established an x̃ with the following properties:

(a) x̃ = (x̃1, x̃2) ∈ S1

(b) x2 = x̃2

(c) c1x1 < c1x̃1.

This contradicts the definition of S2 since x ∈ S2 maximizes c1x1 for the fixed value of x2.
Therefore λ1 > 0 implies y1 ∈ S2. Since the choice of yi among the y’s was arbitrary, we
have proven that λt > 0 implies yt ∈ S2.

Corollary A.1 (Corollary 5.1) If x is an extreme point of S2, then x is an extreme point of S1.

Proof: (By contradiction) Let x be an extreme point of S2. Suppose x is not an extreme
point of S1. Then there exist extreme points y1, . . . , yr ∈ S1, and λ1 > 0, . . . , λr > 0,∑r
t=1 λt = 1 such that x =

∑r
t=1 λtyt. From Theorem A.1, this implies y1, . . . , yr ∈ S2 and

hence x cannot be an extreme point of S2, a contradiction.

Corollary A.2 (Corollary 5.2) An optimal solution to the two-level linear resource control
problem (if one exists) occurs at an extreme point of the constraint set of all variables (S1).

Proof: The two-level linear resource control problem can be written as maxx∈S2 c2x. Since
c2x is linear, if a solution exists, one must occur at an extreme point of S2 (alternative optimal
solutions at nonextreme points may exist). By Corollary A.1, this must be an extreme point of
S1.
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