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Abstract

Multidivisional multilevel programming is a methodology for modelling
multilevel organizations with more than one decision maker at each level of
the hierarchy. A decision maker may affect the feasible decisions and ben-
efit functions of all others in the organization. The problem is analyzed as
a multistage Stackelberg game with a Nash game embedded at each level.
Under mild conditions, it is proved that a Nash-Stackelberg equilibrium so-
lution must exist at an extreme point for any bounded linear multidivisional
multilevel programming problem. For a special case, a solution procedure
that searches all extreme points is described and used to solve an example
problem.

Keywords: mathematical programming, multilevel optimization, game
theory, bilevel programming, equilibrium solutions
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1 Introduction

Often planning problems involve a finite number of decision makers organized in
a hierarchical decision-making process with more than one decision maker at each
level of the hierarchy. This paper considers a class of planning problems called
multidivisional multilevel program problems where every decision maker may af-
fect the feasible decisions and benefit functions of any other decision makers in the
organization.

The concept of multidivisional multilevel programming is based on bilevel (two-
level) programming (see, for example, Amouzegar [1], Bard [4, 5], Bard and Falk [6],
Bialas and Karwan [8, 9], Candler and Townsely [12], Fortuny-Amat and Mc-
Carl [16], Migdalas et al. [20], Vicente and Calamai [32], Wen and Hsu [36] and
White and Anandalingam [37]). This paper will show these principles can be gen-
eralized allowing the analysis of an arbitrary number of levels and an arbitrary
number of decision-makers. The resulting problem will be a combination of non-
convex programming, game theory and a bit of topology.

The general structure of a multidivisional multilevel programming problem is il-
lustrated in Figure 1. The decision makers (referred to as divisions) are organized
as a hierarchy of L planning levels. The divisions at the top level (Level L) make
their decisions first. Then, the divisions at the next level (Level L− 1) specify their
decisions given the decisions made by Level L. Continuing down the hierarchy,
decisions are made one level after the other. All of the divisions at any one level re-
act simultaneously to the preemptive decisions from all upper levels. This decision
process is completed with a decision by the divisions at the bottom level (Level 1).

Multidivisional multilevel programming problems have the following characteris-
tics:

• The decision-making divisions are arranged within a hierarchical multilevel
structure with one or more divisions at each level.

• Each division controls only a subset of the decision variables in the system
but all variables are subject to global constraints that define the system-wide
relationships of the decision-making environment.

• Decisions are implemented sequentially from upper to lower level, and si-
multaneously within each level.

• Each division acts to maximize (or minimize) its own benefits (or costs), but
is affected by the actions of other divisions.
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Figure 1: A multidivisional multilevel decision-making system

• The external effect on a division’s problem from other divisions can alter
both its objective function and its set of feasible decisions.

• Every division has perfect information.

• Cooperation among the divisions is not permitted.

• When making its decision, a division is fully informed about all decisions at
upper levels, but provided no information about the decisions of other divi-
sions at its own level or below until the conclusion of the decision process.

When there is only one division at each level, the multidivisional multilevel pro-
gramming problem is a multilevel programming problem.

Multidivisional multilevel programming problems can be analyzed using concepts
from game theory. Within each level, the divisions play an n-person non-zero sum
game similar to those studied and solved by Nash [22]. Between levels, the sequen-
tial decision process is an n-person leader-follower game similar to those studied
and solved by von Stackelberg [34]. Thus, the overall problem can be thought of as
a Stackelberg game embedded with “Nash-type” decision problems at each level.
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Figure 2: The decision making system for Example One

For this reason, the multidivisional multilevel programming problem is called a
Nash-Stackelberg game.

The Nash-Stackelberg equilibrium solution concept has appeared in previous pa-
pers. For example, Cruz [13] studied Stackelberg-Nash equilibria as solutions for
dynamic hierarchical systems. Prentice and Sibly [25] and Rob [26] applied the
concept of Nash-Stackelberg-Hybrid Equilibria to obtain equilibrium price distri-
butions in economic markets.

Similar problems have been investigated by Anandalingam and Apprey [2], Bard [3],
Brito and Intriligator [11], Liu [19], Murphy et al. [21], Nishizaki et al. [24], Sher-
ali et al. [27, 28, 29], Sinha et al. [31], and Zangwill and Garcia [38, 39]. The
existence and characterization of solutions have been established for only a few
specific cases.

2 Example one

As an introductory example, consider the decision problem illustrated in Figure 2
with three divisions and two levels. Superscripts are used to index the levels and
subscripts are used to index the divisions at a specific level. Therefore, the decision
variable xk

i belongs to division Dk
i , the i-th division at Level k.

The vector of all decision variables is denoted by x ≡ (x1
1, x

2
1, x

2
2). At Level two

(the “top” level):

• Division D2
1 controls decision variable x2

1 and seeks to maximize the objec-
tive function c2

1x = 2x1
1 + 0.7x2

1 − 0.6x2
2
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Figure 3: A graphical representation of Example One

• Division D2
2 controls decision variable x2

2 and seeks to maximize the objec-
tive function c2

2x = −2x1
1 + 2x2

1 − 1.5x2
2

At Level one (the “bottom” level):

• DivisionD1
1controls decision variable x1

1 and seeks to maximize the objective
function c1

1x = x1
1 + 0.8x2

1 + 1.2x2
2

Furthermore, the values of x1
1, x2

1, and x2
2 must satisfy all of the following con-

straints:
x1

1 + x2
1 + x2

2 ≤ 3
−x1

1 + x2
1 + x2

2 ≥ 1
x1

1 + x2
1 − x2

2 ≤ 1
x1

1 − x2
1 + x2

2 ≤ 1
x1

1 ≤ 0.5
x1

1, x
2
1, x

2
2 ≥ 0.

The feasible values for x = (x1
1, x

2
1, x

2
2) are represented by the hexahedron shown

in Figure 3. First, D2
1 and D2

2 at Level two separately and simultaneously choose
values for x2

1 and x2
2. Then, given the value of (x2

1, x
2
2), the division D1

1 at Level
one selects x1

1. This results in a point (x1
1, x

2
1, x

2
2) that is an element of one of the

five upper facets of the hexahedron. Therefore, the effective feasible region for this
problem is merely the union of these five upper facets.

Figure 4 shows the hexahedron as viewed from above the (x2
1, x

2
2)-plane. For every
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Figure 4: Best response sets for Level two in Example One

possible choice of x2
2 byD2

2, the set BR2
1 contains those values of (x1

1, x
2
1, x

2
2) such

that

• x2
1 is the “best response” of D2

1 to the choice of x2
2, and

• x1
1 is the subsequent response of D1

1 at Level one to the combined choice of
(x2

1, x
2
2) by both divisions at Level 2.

A similar set, BR2
2, represents the “best responses” of D2

2 for each possible choice
of x2

1 by D2
1.

Any point x̂ = (x̂1
1, x̂

2
1, x̂

2
2) ∈ BR2

1 ∩ BR2
2 is an equilibrium solution for this

problem. It has the property that no division can improve its objective function by
unilaterally changing the value of the decision variable that it controls. Here, the
intersection consists of a single point, x̂ = (0, 1, 0).

For this example, BR2
1 ∩ BR2

2 is nonempty and contains an extreme point of the
polytope consisting of all feasible values of x. It will be shown that, under mild
conditions, every linear multidivisional multilevel programming problem has an
equilibrium solution set that exhibits these properties.



6 3 Nash Equilibrium Response Sets

3 Nash Equilibrium Response Sets

Consider a single level of the hierarchy composed of m divisions, where xi is the
vector of decision variables controlled by Division i (i = 1, . . . ,m). Let x ≡
(x1, . . . , xm). Suppose that all m divisions know the values of vectors y1, . . . , yn.
Later, the yk’s will represent the preemptive decisions of divisions at n levels above
the current level. For now, simply think of them as parameters for the problem of
the m divisions. Let w ≡ (x, y1, . . . , yn).

Define x−i ≡ (x1, ..., xi−1, xi+1, ..., xm). Then, given values for y1, ..., yn, the
objective for Division i is

max{fi(w) : (xi, x−i | y1, ..., yn)}

which denotes the maximization of the bounded real function fi(w) with Division
i choosing a value for xi as the best response of to the choices x−i of the other
m − 1 divisions at this level. (The notation x|y is to be read “x given y” and was
suggested and used by Dantzig [14] to represent matrix games.)

From the point of view of Division i, the values of y1, ..., yn are predetermined
parameters. The value of x−i, however, may vary as a function of xi as the other
m − 1 divisions seek to simultaneously maximize their respective objective func-
tions. The set of all feasible w is the compact set S.

For the combined decision problem of the m divisions:

Definition 1 The set Ψf1,...,fm(S) defined as

Ψf1,...,fm(S) ≡





ŵ ∈ S

∣∣∣∣∣∣∣∣∣∣

f1(ŵ) = max{f1(w) : (x1, x̂−1 | ŷ1, ..., ŷn)}
f2(ŵ) = max{f2(w) : (x2, x̂−2 | ŷ1, ..., ŷn)}

...
fm(ŵ) = max{fm(w) : (xm, x̂−m | ŷ1, ..., ŷn)}





is the set of Nash equilibrium responses of f1, . . . , fm over S.

Assumption 1 For each fixed value of ŷ = (ŷ1, ..., ŷn), the set Ψf1,...,fm(S) has at
most one element.

Under Assumption 1, when given ŷ1, ..., ŷn, the parametric problem for the m de-
cision makers is not permitted to have multiple equilibrium solutions. Later, for
problems with multiple levels, this assumption will insure that the sequential deci-
sion problem is well-defined. Such an assumption has been employed previously
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for similar multi-stage Stackelberg games (see, Bard [5], Bialas and Karwan [8],
and Simaan and Cruz [30]).

In Section 5, it will be shown that at least one solution exists when the multidivi-
sional multilevel programming problem is bounded and linear. In those cases, the
assumption of at most one element implies exactly one element.

4 A Definition of the Problem

The concept of a Nash equilibrium response set (Definition 1) provides a way for
the multidivisional multilevel programming problem to be defined as a nested col-
lection of Nash equilibrium problems. First, the optimization problem that is solved
at each level will be defined. Then that definition will be used to recursively define
the multidivisional multilevel programming problem.

4.1 Notation

Let L denote the number of levels and let nk denote the number of divisions at Level
k (k = 1, . . . , L). The quantity D ≡ ∑L

k=1 nk is the total number of divisions in
the system. The following notation will be used where k = 1, . . . , L and i =
1, . . . , nk:

Dk
i represents Division i at Level k

Lk ≡ {Dk
1 , . . . ,Dk

nk
} represents Level k

Dk
−i ≡ Lk ∩ {Dk

i }c

Let the decision vector xk
i ∈ Xk

i ⊂ Rmki denote the vector of mki
decision vari-

ables that are controlled by Dk
i , for k = 1, 2, . . . , L, and i = 1, . . . , nk. Let

N ≡ ∑L
k=1

∑nk
i=1 mki

denote the total number of decision variables for all divi-
sions and all levels. Assume that the strategy sets, Xk

i , are compact for all k and i
and define

xk ≡ (xk
1, x

k
2, . . . , x

k
nk

) ∈ Xk ≡ ∏nk
i=1 Xk

i

xk
−i ≡ (xk

1, . . . , x
k
i−1, x

k
i+1, . . . , x

k
nk

) ∈ Xk
−i ≡ ∏

j 6=i X
k
j

x ≡ (x1, x2, . . . , xL) ∈ X ≡ ∏L
k=1

∏nk
i=1 Xk

i .

Let the function fk
i : RN → R1 denote the objective function of Dk

i . Then for a
compact set S ⊆ X , use Definition 1 to define Ψk(S) ≡ Ψfk

1 ,...,fk
nk

(S) for each
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k = 1, . . . , L− 1, as follows:

Ψk(S) ≡





ŵ ∈ S

∣∣∣∣∣∣∣∣∣∣

fk
1 (ŵ) = max{fk

1 (w) : (xk
1, x̂

k−1 | x̂k+1, ..., x̂L)}
fk
2 (ŵ) = max{fk

2 (w) : (xk
2, x̂

k−2 | x̂k+1, ..., x̂L)}
...

fk
nk

(ŵ) = max{fk
nk

(w) : (xk
nk

, x̂k−nk
| x̂k+1, ..., x̂L)}





.

4.2 The problem at Level one

Let S be a compact subset ofRN . The lowest level of the hierarchy, L1, is provided
predetermined values for x2, . . . , xL, and the mathematical programming problem
that is simultaneously solved by every D1

i ∈ L1 (each controlling x1
i ) is

(P 1)

{
max {f1

i (x) : (x1
i , x

1
−i |x2, . . . , xL)} for i = 1, . . . , n1

st: x ∈ S1 = S

which is a function of x2, . . . , xL. The set of feasible solutions, S1 = S common
to all D1

i , is called the level-one feasible region.

For each D1
i (i = 1, . . . , n1), the value of x1

i is chosen as the best response to x1
−i

as all divisions seek to simultaneously maximize their respective objective func-
tions. If (x2, . . . , xL) is varied over all feasible choices for L2, . . . ,LL, the set that
is produced is S2 ≡ Ψ1(S1) representing all Nash equilibrium responses of L1.
Given a specific choice of (x3, . . . , xL), the set S2 contains the feasible combina-
tions of (x1, x2) available to the divisions of L2 who must consider the reactions of
L1 for every feasible choice of x2.

4.3 The problem for all levels

In general, the level-k feasible region for Lk is defined as

Sk ≡ Ψk−1(Sk−1). (1)

Note that Sk ⊂ RN for all k = 1, . . . , L. For any given (xk+1, . . . , xL), each
element of Sk provides a possible choice for xk and the corresponding response,
(x1, . . . , xk−1), from the decision makers at L1, . . . ,Lk−1. An equilibrium solu-
tion

(x1, . . . , xk−1, xk
i , x

k
−i, x

k+1, . . . , xL) for all Dk
i ∈ Lk

must be an element of Sk. If x ∈ Sk, then x satisfies the condition that it will con-
form to the rational response of levelsL1 . . . ,Lk−1 and x is said to be Stackelberg-
feasible.
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Figure 5: The problem (P k) at Level k

The mathematical programming problem that is simultaneously solved by every
Dk

i ∈ Lk (each controlling xk
i ) is

(P k)

{
max {fk

i (x) : (xk
i , x

k
−i |xk+1, . . . , xL)} for i = 1, . . . , nk

st: x ∈ Sk

which is a function of xk+1, . . . , xL (see Figure 5). In order to maintain Assump-
tion 1, this problem must result in, at most, one solution for any feasible choice of
(x̂k+1, . . . , x̂L). A solution to (P k) has the property that it is a Nash equilibrium
response and a Stackelberg-feasible solution for Lk. Such a solution is called a
Nash-Stackelberg equilibrium solution.

Ultimately, the top level, LL, solves

(PL)

{
max {fL

i (x) : (xL
i , xL

−i)} for i = 1, . . . , nL

st: x ∈ SL.

A Nash-Stackelberg equilibrium solution to (PL) is a stable solution to the collec-
tion of nested equilibrium programming problems {P 1, . . . , PL} representing the
decision making process at all levels.

Problem (PL) is called a D-divisional L-level programming problem and can
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be written in explicit form as:

(PL)





max {fL
i (x) : (xL

i , xL
−i)} for i = 1, . . . , nL

where x1, . . . , xL−1 solve

(PL−1)





max {fL−1
i (x) : (xL−1

i , xL−1
−i |xL)} for i = 1, . . . , nL−1

where x1, . . . , xL−2 solve
. . .

(P 2)





max {f2
i (x) : (x2

i , x
2
−i |x3, . . . , xL)} for i = 1, . . . , n2

where x1 solves

(P 1)

{
max {f1

i (x) : (x1
i , x

1
−i |x2, . . . , xL)} for i = 1, . . . , n1

st: x ∈ S.

Three questions immediately arise:

1. Do Nash-Stackelberg equilibrium solutions exist for problem (PL)?

2. What are the mathematical characteristics of Nash-Stackelberg equilibrium
solutions for problem (PL)?

3. How does one find Nash-Stackelberg equilibrium solutions for problem (PL)?

For the class of bounded linear multidivisional multilevel programming problems,
the next sections will answer question (1) and begin to answer questions (2) and
(3).

5 Equilibrium Solutions for Linear Problems

The remainder of this paper will be devoted to finding Nash-Stackelberg equilib-
rium solutions for linear multidivisional multilevel programming problems. Specif-
ically, for all k = 1, . . . , L and i = 1, . . . , nk, let ck

i ∈ RN , A ∈ R(M×N),
and b ∈ R(M×1) with S = {x ∈ RN |Ax ≤ b, x ≥ 0}. It is assumed that
S is nonempty and bounded so that S is a polytope. Each objective function
fk

i (x) = ck
i x ≡

∑N
j=1 ck

ijxj depends on all of the decision variables.

Let C(T ) denote the convex hull of a set T ⊂ RN . Let P(T ) denote the extreme
points of a convex set T . If T is not convex, then let P(T ) ≡ P(C(T )).

The following sections establish two important facts about linear multidivisional
multilevel programming problems when S is nonempty and bounded:

(a) For every level Lk and each feasible (x̂k+1, . . . , x̂L), there exists at least one
x ∈ Sk that is a Nash equilibrium response for (P k), and
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(b) At least one Nash-Stackelberg equilibrium solution for (PL) is an extreme
point of S.

These facts permit the development of extreme point search procedures to find
Nash-Stackelberg equilibrium solutions for bounded linear multidivisional multi-
level programming problems.

Section 5.1 will present several useful properties of Nash equilibrium response sets,
Sk, for problem (P k) if solutions exist. In Section 5.2, these characteristics will be
used to help prove that, for linear problems, solutions do exist.

The proof of existence in Section 5.2 will recursively use the results in Section 5.1
for each Sk as k = 1, . . . , L. In other words, the existence of Sk will imply proper-
ties for Sk that will be used to prove the existence of Sk+1. This iterative process is
the foundation for the proof of the main theorem, Theorem 6 in Section 5.3, which
states that at least one extreme point of S is a solution to PL. Figure 6 provides a
flowchart of the overall logical structure of that proof and the relationships among
the results in Sections 5.1 and 5.2.

5.1 Properties of Nash equilibrium response sets

This section presents some of the basic properties of the set function Ψk(·) for
linear multidivisional multilevel programming problems. Let E ⊂ RN be any
nonempty, compact convex set. A vector x̂ = (x̂1, . . . , x̂L) ∈ Ψk(E) if and only if
x̂ ∈ E and

(ck
i )(x̂

1, . . . , x̂k−1, x̂k
i , x̂

k
−i, x̂

k+1, . . . , x̂L) ≥
(ck

i )(x
1, . . . , xk−1, xk

i , x̂
k
−i, x̂

k+1, . . . , x̂L)
for all (x1, . . . , xk−1, xk

i , x̂
k
−i, x̂

k+1, . . . , x̂L) ∈ E
for all i = 1, . . . , nk

(2)

This leads to the following theorem:

Theorem 1 Let E ⊂ RN be a nonempty, compact convex set and let k ∈ {1, . . . , L−
1}. Suppose that x̂, ŷ, ẑ ∈ E. If x̂ ∈ Ψk(E) and x̂ = λŷ + (1 − λ)ẑ where
0 < λ < 1, then ŷ, ẑ ∈ Ψk(E).

PROOF. It will be shown that ŷ ∈ Ψk(E) by contradiction. The proof for ẑ is
similar. Suppose that ŷ /∈ Ψk(E). Then condition (2) must fail for some i. Without
loss of generality, suppose that this occurs for i = 1. Hence, there exists ỹ ∈ E
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with ỹk−1 = ŷk−1, and ỹj = x̂j for j = k + 1, . . . , L such that

(ck
1)(ŷ

1, . . . , ŷk−1, ŷk
1 , ŷk

−1, x̂
k+1, . . . , x̂L) <

(ck
1)(ỹ

1, . . . , ỹk−1, ỹk
1 , ŷk−1, x̂

k+1, . . . , x̂L).

Since ŷ, ỹ ∈ E, then λŷ + (1 − λ)ỹ ≡ x̃ ∈ E. Furthermore, x̃k−1 = x̂k−1 and
ỹj = x̂j for j = k + 1, . . . , L. Thus a vector x̃ ∈ E has been constructed such that

(ck
1)(x̂

1, . . . , x̂k−1, x̂k
1, x̂

k
−1, x̂

k+1, . . . , x̂L) <
(ck

1)(x̃
1, . . . , x̃k−1, x̃k

1, x̂
k−1, x̂

k+1, . . . , x̂L).

Therefore x̂ /∈ Ψk(E), a contradiction.

Theorem 1 is a generalization of a theorem by Bialas and Karwan [8] and provides
that any points of E that strictly contribute in a convex combination to form a point
in Ψk(E) must also be elements of Ψk(E). The set Ψk(E) possesses a convex-
like property with respect to the convex set E. This property is also evident in the
rational reaction sets (inducible regions) of two-level (bilevel) linear programming
problems (see Bard [5], and Bialas and Karwan [8]).

Corollary 1 For any nonempty, compact convex set E ⊂ RN ,

P(Ψk(E)) ⊆ P(E) for k = 1, . . . , L− 1. (3)

PROOF. This will be proved by contradiction. Choose x ∈ P(Ψk(E)). Suppose
that x /∈ P(E). Then there exists y, z ∈ E such that x = λy + (1 − λ)z for
some 0 < λ < 1. Theorem 1 implies y, z ∈ Ψk(E). Therefore x /∈ P(Ψk(E)),
producing a contradiction.

Theorem 1 and Corollary 1 apply when E is a nonempty, compact convex set. If,
in addition, the set E is a polytope, one obtains the following:

Theorem 2 If E ⊂ RN is a polytope, then Ψk(E) is the union of a finite collection
of polytopes.

PROOF. Let P(E) = {z1, . . . , zν} where ν < ∞ is the cardinality of P(E).
Since E is a polytope, every x ∈ E can be expressed as x =

∑ν
i=1 λizi where

0 ≤ λi ≤ 1 for all i = 1, . . . , ν and
∑ν

i=1 λi = 1. For every x ∈ E, define M(x)
as the set of indices i ∈ {1, . . . , ν} such that λi > 0. Note that M(x) 6= Ø for
every x ∈ E. Say that x ' y if and only if M(x) = M(y). As a result, (') is an
equivalence relation over the elements of E. This partitions E into at most 2ν − 1
sets, each representing an equivalence class.



5 Equilibrium Solutions for Linear Problems 13

From Theorem 1, if y ∈ Ψk(E) and M(x) ⊆ M(y), then x ∈ Ψk(E). For each
y ∈ Ψk(E) define Ty ≡ {x ∈ E |M(x) ⊆ M(y)}. Since there are a finite
number of unique M(x)’s, there are a finite number of unique Ty’s. Also, every
P(Ty) 6= Ø with P(Ty) ⊆ P(Ψk(E)), and every x ∈ Ty can be written as a con-
vex combination of the elements of P(Ty). Therefore, each Ty is a polytope with
Ty ⊆ Ψk(E), and P(Ty) ⊆ P(Ψk(E)). Furthermore,

⋃
y∈Ψk(E) Ty = Ψk(E).

The set Ψk(E) is an uncountable set, but varying y over Ψk(E) results in only a
finite number of unique sets Ty. Hence, Ψk(E) is the union of a finite number of
polytopes.

Section 5.2 will prove that Sk must exist for all k = 1, . . . , L. However, for now,
suppose that Sk does exist. Note that, in general, Ψk(Sk) 6= Ψk(C(Sk)). Specifi-
cally, C(Sk) may contain choices that are desirable to divisions at Lk but unattain-
able because they are not Stackelberg feasible. Also, Sk is not necessarily a convex
set. So, Theorems 1 and 2 cannot be used for E = Sk. However, Theorems 1 and
2 do imply the following properties of Sk:

Theorem 3 Suppose that S` 6= Ø for ` = 1, . . . , k. Let Ψk ≡ Ψfk
1 ,...,fk

nk
where

fk
i (x) = ck

i x ≡ ∑N
j=1 ck

ijxj . Then Ψk(Sk) is the union of a finite collection of
polytopes for k = 1, . . . , L, and P(Ψk(Sk)) ⊆ P(Sk).

PROOF. For k = 1, S is a polytope with a finite number of extreme points. Hence,
S1 = S is a polytope and the statement P(S2) ⊆ P(S1) is implied by Corollary 1.

For k > 1, suppose that

P(S1) ⊇ · · · ⊇ P(Sk−1) ⊇ P(Sk)

and S` is a finite union of polytopes for ` = 1, . . . , k. Let V k
1 , . . . , V k

r denote the
polytopes of Sk with Sk =

⋃r
i=1 V k

i .

It is claimed that Ψk(Sk) =
⋃r

i=1 Ψk(V k
i ) with the following justification by con-

tradiction: Suppose that Ψk(Sk) 6= ⋃r
i=1 Ψk(V k

i ). Then there exists

x = (x1, . . . , xk−1, xk, xk+1, . . . , xL) ∈ Ψk(Sk)

and j ∈ {1, . . . , r} with

y = (y1, . . . , yk−1, xk, xk+1, . . . , xL) ∈ Ψk(V k
j )

such that x 6= y. (In other words, for the choice of xk, . . . , xL by Lk, . . . ,LL, the
solution x must be a Nash equilibrium response among the solutions in Sk and the
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solution y 6= x must be a Nash equilibrium response among the solutions in V k
j for

some j ∈ {1, . . . , r}. That is, there exists at least two Nash equilibrium responses
for that choice of xk, . . . , xL.) But Assumption 1 requires that for any such x and
y, the components x` = y` for ` = 1, . . . , k − 1. Hence x = y, which produces a
contradiction. Therefore, Ψk(Sk) =

⋃r
i=1 Ψk(V k

i ).

From Theorem 2, since each V k
i is a polytope, then each Ψk(V k

i ) is a finite union
of polytopes for every i = 1, . . . , r. Hence, since r is finite, Sk+1 ≡ Ψk(Sk) =⋃r

i=1 Ψk(V k
i ) is a finite union of polytopes.

Using Corollary 1, P(Ψk(V k
i )) ⊆ P(V k

i ) ⊆ P(Sk). Therefore, P(Sk+1) =
P(Ψk(Sk)) = P

(⋃r
i=1 Ψk(V k

i )
)
⊆ ⋃r

i=1 P(Ψk(V k
i )) ⊆ ⋃r

i=1 P(V k
i ) ⊆ P(Sk).

Therefore, Ψk(Sk) is the union of a finite collection of polytopes and P(Ψk(Sk)) ⊆
P(Sk).

Theorem 3 is similar to a result proved by Wen [35] for linear multilevel program-
ming problems (i.e., linear multidivisional multilevel programming problems with
only one division at every level).

5.2 Existence of equilibrium solutions

This section will prove that, for any k = 1, . . . , L and each feasible (x̂k+1, . . . , x̂L),
if Sk 6= Ø, then there exists at least one x ∈ Sk that is a Nash equilibrium response
for the problem (P k) for Lk. That is, Sk+1 6= Ø. The proof employs Freund’s [17]
generalization of the von Neumann Intersection Theorem [33].

Let E ⊂ ∏n
j=1Rmj be a nonempty, compact convex set. For each i = 1, . . . , n, let

Y−i denote the projection of E onto
∏

j 6=iRmj . That is,

Y−i ≡
{

(y1, . . . , yi−1, yi+1, . . . , yn)

∣∣∣∣∣
there exists ξi ∈ Rmi such that
(y1, . . . , yi−1, ξi, yi+1, . . . , yn) ∈ E

}
.

Let E1, . . . , En be closed subsets of E with the property that for each i = 1, . . . , n
and each y−i ∈ Y−i the set

[Ei]
−1 (y−i) ≡ { ξi ∈ Rmi | (y1, . . . , yi−1, ξi, yi+1, . . . , yn) ∈ Ei} (4)

is a nonempty, compact convex set.

Theorem 4 Under the above conditions,
⋂n

i=1 Ei 6= Ø.
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PROOF. See Freund [17].

Theorem 4 is a direct consequence the Fixed Point Theorem of Kakutani [18]. This
version by Freund generalizes von Neumann’s theorem in two ways: (1) by allow-
ing the intersection of more than two sets, and (2) by relaxing the condition that
the feasible set E must be the cross-product of nonempty, compact convex sets. A
similar result, based on a generalized intersection theorem by Fan [15], is provided
by Border [10].

Fix k ∈ {1, . . . , L} and assume a given value for (x̂k+1, . . . , x̂L) that is an element
of the projection of S onto

∏L
j=k+1 Xj .

Definition 2 For given (x̂k+1, . . . , x̂L), the set of best responses for Dk
i against

Dk
−i over Sk is

BRk
i ≡





x ∈ Sk

∣∣∣∣∣∣∣

(ck
i )(x

1, . . . , xk−1, xk
i , x

k
−i, x̂

k+1, . . . , x̂L) ≥
(ck

i )(ξ
1, . . . , ξk−1, ξk

i , xk
−i, x̂

k+1, . . . , x̂L)
for all (ξ1, . . . , ξk−1, ξk

i , xk
−i, x̂

k+1, . . . , x̂L) ∈ Sk





,

Corollary 2 Under Assumption 1, if Sk 6= Ø, then BRk
i is nonempty and is the

union of a finite collection of polytopes with P(BRk
i ) ⊆ P(Sk).

PROOF. Fix the values of x̂k+1, . . . , x̂L. For any i = 1, . . . , nk, use Assump-
tion 1 and Definition 1 with a single linear objective function, fi(x) = (ck

i )x. Then
BRk

i = Ψk
fi

(Sk) 6= Ø. (That is, BRk
i is the Nash equilibrium response set that

results from Dk
i playing a “one-person” game over Sk as xk

−i is varied over all
possible choices of Dk

−i given fixed (x̂k+1, . . . , x̂L).) Hence, BRk
i has the proper-

ties provided by Theorem 1, Corollary 1 and Theorem 3. In particular, BRk
i is the

union of a finite collection of polytopes and P(BRk
i ) ⊆ P(Sk).

Lemma 1 Every projection of a polytope is a polytope.

PROOF. See Nemhauser and Wolsey [23] or Ziegler [40].

The existence proof will use the following set mappings for E ⊆ X:

⊥k(E) denotes the projection of E onto Xk

⊥k
i (E) denotes the projection of E onto Xk

i

⊥k
−i(E) denotes the projection of E onto Xk

−i

To prove the existence of Nash equilibrium responses for the problem (P k), it is
assumed that Sk 6= Ø and the nonempty sets BRk

i ⊆ Sk ⊆ C(Sk) are projected
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onto Xk. Using Theorem 4, it will be shown that the projections of the BRk
i ’s

have a nonempty intersection. Then under Assumption 1, it will be proved that
this further implies that the BRk

i ’s have a nonempty intersection. In order to use
Theorem 4, the following substitutions are made:

• the set ⊥k(C(Sk)) takes on the role of E.

• the set ⊥k
−i(C(Sk)) = ⊥k

−i(⊥k(C(Sk))) takes on the role of Y−i for i =
1 . . . , nk.

• the set ⊥k(BRk
i ) takes on the role of Ei for i = 1 . . . , nk.

• as defined by equation (4), the set
[
⊥k(BRk

i )
]−1

(xk
−i) takes on the role of

[Ei]
−1 (y−i) for i = 1 . . . , nk.

Note that an Ei (namely⊥k(BRk
i )) is provided only for each Xk

i (the subspaces of
the divisions of Lk) where i = 1 . . . , nk. The values of x̂k+1, . . . , x̂L are fixed, and
C(Sk) is projected onto Xk. As a result, the application of Theorem 4 is restricted
to the subspace Xk =

∏nk
i=1 Xk

i with ⊥k(Sk) = ⊥k(C(Sk)).

Theorem 5 Under Assumption 1, for any given (x̂k+1, . . . , x̂L), if Sk 6= Ø, then
the set

⋂nk
i=1⊥k(BRk

i ) is nonempty.

PROOF. From Theorem 4, the following are sufficient conditions to insure that⋂nk
i=1⊥k(BRk

i ) 6= Ø:

(a) [E is a nonempty, compact convex set] The set C(Sk) 6= Ø is a polytope.
Therefore, using Lemma 1, ⊥k(C(Sk)) is a nonempty, compact convex set.

(b) [For all i, Ei are closed subsets of E] Under Assumption 1, Corollary 2
provides that BRk

i , is the union of a finite collection of polytopes. Lemma 1,
then implies⊥k(BRk

i ), is the union of a finite collection of polytopes. Hence,
⊥k(BRk

i ) is a closed subset of ⊥k(C(Sk)).

(c) [For all i and all y−i ∈ Y−i, the inverse image [Ei]
−1 (y−i) is a

nonempty, compact convex set] For each xk
−i ∈ ⊥k

−i(C(Sk)) = ⊥k
−i(S

k),

the set
[
⊥k(BRk

i )
]−1

(xk
−i) is the set of optimal solutions (with fixed values

for xk
−i, and (x̂k+1, . . . , x̂L)) to the mathematical programming problem

maxx (ck
i )(x)

st: x ∈ Sk (5)
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projected onto Xk
i . Since the objective function is linear, the set of solutions

to (5) may be a singleton or (with alternate optima) a polytope. In either case,

using Lemma 1,
[
⊥k(BRk

i )
]−1

(xk
−i) is a nonempty, compact convex set.

Therefore,
⋂nk

i=1⊥k(BRk
i ) 6= Ø.

Corollary 3 Under Assumption 1, if Sk 6= Ø, then for any given and feasible
(x̂k+1, . . . , x̂L), the set

⋂nk
i=1 BRk

i is nonempty.

PROOF. Under Assumption 1, for every x̂k ∈ ⋂nk
i=1⊥k(BRk

i ) there exists unique
values x̂1, . . . , x̂k−1 such that (x̂1, . . . , x̂k−1, x̂k, x̂k+1, . . . , x̂L) ∈ BRk

i for all
i = 1, . . . nk. Therefore, (x̂1, . . . , x̂k−1, x̂k, x̂k+1, . . . , x̂L) ∈ ∩nk

i=1BRk
i ⊆ Sk.

Therefore,
⋂nk

i=1 BRk
i 6= Ø.

Corollary 4 For any linear multidivisional multilevel programming problem, un-
der Assumption 1, if Sk 6= Ø, then Sk+1 = Ψk(Sk) 6= Ø for k = 1, . . . , L− 1.

PROOF. For k = 1, S1 = S is nonempty by definition. For k = 1, . . . , L − 1,
Corollary 3 implies that, for every feasible (x̂k+1, . . . , x̂L), there exists an x ∈ Sk

such that x ∈ ⋂nk
i=1 BRk

i ⊆ Sk+1. Hence, Sk+1 6= Ø.

It is important to note that the closure property implied by Corollary 3 was used in
part (b) of the proof of Theorem 5. However, Section 5.1 and Corollary 3 assume
the existence of Sk, which is what is being proved here. To address this issue, the
existence Sk is established recursively for k = 1, . . . , L. Specifically, for k = 1,
the existence of S1 = S is assumed. Then, for k = 1, . . . , L − 1, the closure
property for (b) and existence are recursively inherited by Sk+1 from Sk using
Corollary 2 and Corollary 4.

5.3 Existence of extreme point solutions

The preceding sections have shown that Nash-Stackelberg equilibrium solutions
must exist for every problem (P k) where k = 1, . . . , L. Combining these results,
it can now be shown that at least one Nash-Stackelberg equilibrium solution to
problem (PL) is an extreme point of S, as follows:

Theorem 6 Under Assumption 1, a Nash-Stackelberg equilibrium solution to the
bounded linear multidivisional multilevel programming problem

(PL)

{
max {cL

i x : (xL
i , xL

−i)} for i = 1, . . . , nL

st: x ∈ SL
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must exist at an extreme point of the set S.

PROOF. Figure 6 presents the iterative argument that establishes the existence of
SL, and the fact that, if x is an extreme point of SL, then x is an extreme point of
S. Specifically, from Corollaries 3 and 4, a Nash-Stackelberg equilibrium solution
must exist for

(PL)

{
max {cL

i x : (xL
i , xL

−i)} for i = 1, . . . , nL

st: x ∈ SL

Since a solution exists, Theorem 3 implies that a Nash-Stackelberg equilibrium
solution x∗ to (PL) must exist such that x∗ ∈ P(SL) ⊆ P(SL−1) ⊆ · · · ⊆
P(S1) = P(S).

6 Finding Equilibrium Solutions for Linear Problems

Suppose a multidivisional multilevel programming problem has L levels with nk

divisions at Level k. In order to specify the number of divisions at each level,
it is sometimes said that the problem is an (n1, n2, . . . , nL)-divisional L-level
programming problem.

This section presents a procedure to enumerate all extreme point Nash-Stackelberg
equilibrium solutions for a bounded linear (1, 2)-divisional two-level programming
problem using the results in Section 5. An example using this method is provided
in Section 6.2. This procedure can be readily extended to the entire class of linear
multidivisional multilevel programming problems.

6.1 An enumeration procedure

Let x = (x1, x2), where x1 = (x1
1), x2 = (x2

1, x
2
2), and

S2 = Ψ1(S1) = {x̂ ∈ S1 | c1x̂ = max{c1x : (x1 | x̂2)}}
S1 = S = {x |A1x1 + A2x2 ≤ b, x ≥ 0}.

The linear (1, 2)-divisional two-level programming problem is written in explicit
form as follows:

(P 2)





max {c2
i x = c21

i x1 + c22
i x2 : (x2

i , x
2
−i)} for i = 1, 2

where x1 solves

(P 1)





max {c1x = c11x1 + c12x2 : (x1 |x2)}
st: A1x1 + A2x2 ≤ b

x ≥ 0.
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Figure 6: Flowchart for the proof of Theorem 6



20 6 Finding Equilibrium Solutions for Linear Problems

Let x̂[1], x̂[2], ..., x̂[N ] denote the N extreme points of S. Their order does not
matter in this procedure. Using the results in Section 5, it is known that x̂[i] =
(x̂1

1[i], x̂
2
1[i], x̂

2
2[i]) solves (P 2) if and only if

1. x̂[i] ∈ S2. That is, the candidate extreme point solves (P 1), which implies
that x̂[i] is Stackelberg feasible, and

2. x̂[i] ∈ BR2
1 ∩ BR2

2. That is, the candidate extreme point is an Nash equilib-
rium response for (P 2).

In other words, the goal is to find all extreme points of x̂[i] ∈ S such that x̂[i] ∈
BR2

1 ∩BR2
2.

To test whether or not x̂[i] ∈ S2, the constraint (x2
1, x

2
2) = (x̂2

1[i], x̂
2
2[i]) is added to

S1, and then P 1 is solved. If x̂[i] solves P 1, then x̂[i] ∈ S2.

To check if the best response set BR2
1 3 x̂[i], the constraint x2

2 = x̂2
2[i] is added

to S1, and then the following two-level linear programming problem is solved (see
Bard [5], and Bialas and Karwan [8, 9]):

(P 2
1 )





max {c2
1x : (x2

1)}
where x1 solves

(P 1)

{
max {c1x : (x1

1 |x2
1)}

st: x ∈ S1 ∩ {x2
2 = x̂2

2[i]}.

If x̂[i] solves problem (P 2
1 ), then x̂[i] ∈ BR2

1. Similarly (P 2
2 ) is solved and the

condition x̂[i] ∈ BR2
2 is tested.

More formally, the procedure can be stated as follows:

Step 1: Set i = 1 and W = Ø.

Step 2: Solve the following linear programming problem using the bounded simplex
method:

max c1x
st: x ∈ S1 ∩ {x2

1 = x̂2
1[i]} ∩ {x2

2 = x̂2
2[i]}.

(6)

Let x̃ denote the optimal solution to (6). If x̃ = x̂[i], then go to Step 3.
Otherwise, go to Step 6.
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Step 3: Solve the following two-level linear programming problem:

(P 2
1 )





max {c2
1x : (x2

1)}
where x1 solves

(P 1)

{
max {c1x : (x1

1 |x2
1)}

st: x ∈ S1 ∩ {x2
2 = x̂2

2[i]}.
(7)

Let x̃ denote the optimal solution to (7). If x̃ = x̂[i], then go to Step 4.
Otherwise, go to Step 6.

Step 4: Solve the following two-level linear programming problem:

(P 2
2 )





max {c2
2x : (x2

2)}
where x1 solves

(P 1)

{
max {c1x : (x1

1 |x2
2)}

st: x ∈ S1 ∩ {x2
1 = x̂2

1[i]}.
(8)

Let x̃ denote the optimal solution to (8). If x̃ = x̂[i], then go to Step 5.
Otherwise, go to Step 6.

Step 5: Set W = W ∪ {x̂[i]}. Go to Step 6.

Step 6: Set i = i + 1. If i > N , then stop. W 6= Ø contains the extreme point
Nash-Stackelberg equilibrium solutions to P 2. Otherwise, go to Step 2.

An alternative solution approach would be to search the extreme points of BR2
1 for

an extreme point that is also in BR2
2. First, solve the following two-level linear

programming problem:

(P̂ 2
1 )





max {c2
1x : (x2

1)}
where x1 solves

(P 1)

{
max {c1x : (x1

1 |x2
1)}

st: x ∈ S1.

(9)

Let x̂ = (x̂1
1, x̂

2
1, x̂

2
2) be the solution to (9). Note that x̂ ∈ BR2

1. If x̂ is not
an extreme point of S1, then move to an adjacent extreme point of S1 using a
degenerate simplex pivot and call that new point x̂. The result is an extreme point
x̂ ∈ BR2

1 (see Bialas and Karwan [8]). Then search among adjacent extreme points
of BR2

1 using simplex pivots, testing each one using (8) to find an extreme point
x̂ that is also in BR2

2. Such a point solves (P 2) and must exist as implied by
Theorem 6.
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6.2 Example one revisited

Example one (Section 2) can be expressed in extensive form as the following linear
(1, 2)-divisional two-level programming problem:

(P 2)





max {2x1
1 + 0.7x2

1 − 0.6x2
2 : (x2

1, x
2−1)}

max {−2x1
1 + 2x2

1 − 1.5x2
2 : (x2

2, x
2−2)}

where x1 solves

(P 1)





max {x1
1 + 0.8x2

1 + 1.2x2
2 : (x1

1 |x2
1, x

2
2)}

st: x1
1 + x2

1 + x2
2 ≤ 3

−x1
1 + x2

1 + x2
2 ≥ 1

x1
1 + x2

1 − x2
2 ≤ 1

x1
1 − x2

1 + x2
2 ≤ 1

x1
1 ≤ 0.5

x1
1, x

2
1, x

2
2 ≥ 0.

As before, the feasible region S1 = S 3 x = (x1
1, x

2
1, x

2
2) is the entire hexahedron

shown in Figure 3. The set Ψ1(S1) ≡ S2 is the nonconvex set consisting of the
union of the five upper facets of the hexahedron.

Recall that Figure 4 shows the hexahedron as viewed from above the (x2
1, x

2
2) plane

with the best response sets BR2
1 and BR2

2 highlighted. Theorem 5 implies that
BR2

1∩BR2
2 6= Ø. Since (0, 1, 0) ∈ BR2

1∩BR2
2, it is a Nash equilibrium response,

and since it is an element of S2, it is also a Stackelberg feasible solution. Hence,
(0, 1, 0) is a Nash-Stackelberg equilibrium solution to (P 2). Furthermore, (0, 1, 0)
is an extreme point of S as asserted by Theorem 6.

To systematically find the solution to (P 2), Table 1 displays the results of the enu-
meration procedure described in Section 6.1. Note that x̂[4] = (0, 2, 1) is an ex-
treme point Pareto-optimal solution to (P 2). However, if D2

2 chooses x̂2
2 = 1, D2

1

will choose x2
1 = 1.5 in order to maximize f2

1 = 1.45. The Pareto-optimal solution
x̂[4] = (0, 2, 1) is not a stable solution for this problem.

6.3 Example two

The second example is based on a simplified, hypothetical water quality problem
illustrated in Figure 7. Along a river and its tributary, three factories generate a
pollutant as a result of their production processes. Two downstream surveillance
points monitor the amount of the pollutant in the river. The factories can indepen-
dently decide to treat any portion of the pollutant they produce. The remaining
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2 Days

Quality Checkpoint 2
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Time 0 

Time 0 
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Quality Checkpoint
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Figure 7: Hypothetical river basin for Examples Two and Three

amounts become point sources of pollution in the river. As the pollutant flows
downstream, it does not change in composition and when the pollutant from more
than one source is mixed within the river, the effect is additive.

Define the following terms (see also Figure 7):

x ≡ (x1
1, x

2
1, x

2
2) = amounts of pollutant released by

the three factories
Q1, Q2 = maximum amount permitted

at each checkpoint
ck
i = ([ck

i ]
1
1, [c

k
i ]

2
1, [c

k
i ]

2
2) = vector of benefit coefficients

for each factory

The scalar coefficient [ck
i ]

r
s is the benefit for each released unit of xr

s awarded to the
factory that controls decision variable xk

i .

This linear (1, 2)-divisional two-level programming problem can be written in ex-
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Figure 8: Solutions for Examples Two and Three

plicit form as

(P 2)





max {[c2
1]

1
1x

1
1 + [c2

1]
2
1x

2
1 + [c2

1]
2
2x

2
2 : (x2

1, x
2−1)}

max {[c2
2]

1
1x

1
1 + [c2

2]
2
1x

2
1 + [c2

2]
2
2x

2
2 : (x2

2, x
2−2)}

where x1
1 solves

(P 1)





max {[c1
1]

1
1x

1
1 + [c1

1]
2
1x

2
1 + [c1

1]
2
2x

2
2 : (x1

1 |x2
1, x

2
2)}

st: x2
1 + x2

2 ≤ Q2

x1
1 + x2

1 + x2
2 ≤ Q1

x1
1, x

2
1, x

2
2 ≥ 0.

Using the results of Section 5, the solution to (P 2) can be any one of the extreme
points of the polytope S ≡ S1 shown in Figure 8(a) and depends on the values
of Q1, Q2 and the vectors ck

i = ([ck
i ]

1
1, [c

k
i ]

2
1, [c

k
i ]

2
2). When Q1 > Q2 > 0 and

[ck
i ]

1
1 < 0 the set S2 = Ψ1(S1) is the facet C({a, b, c}). When Q1 > Q2 > 0 and

[ck
i ]

1
1 > 0, S2 is the facet C({d, e, f}).

6.4 Example three

Consider, once again, the water quality problem in Section 6.3, but now suppose
that there is an additional decision-maker D3

1 at a new level, L3, who controls the
water quality standard x3

1 ≡ Q2 at Quality Checkpoint 2. Furthermore, suppose
that the objective of D3

1 is to maximize Q2 such that Q2 ≤ Q1.
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Written in explicit form, the linear (1, 2, 1)-divisional three-level programming
problem is:

(P 3)





max {Q2 : (Q2)}
where x1

1, x
2
1, x

2
2 solve

(P 2)





max {[c2
1]

1
1x

1
1 + [c2

1]
2
1x

2
1 + [c2

1]
2
2x

2
2 : (x2

1, x
2−1)}

max {[c2
2]

1
1x

1
1 + [c2

2]
2
1x

2
1 + [c2

2]
2
2x

2
2 : (x2

2, x
2−2)}

where x1
1 solves

(P 1)





max {[c1
1]

1
1x

1
1 + [c1

1]
2
1x

2
1 + [c1

1]
2
2x

2
2 : (x1

1 |x2
1, x

2
2)}

st: x2
1 + x2

2 −Q2 ≤ 0
x1

1 + x2
1 + x2

2 ≤ Q1

Q2 ≤ Q1

x1
1, x

2
1, x

2
2, Q2 ≥ 0.

For each feasible choice of Q2, L3 must consider the corresponding response of
L2. Suppose that [ck

i ]
r
s > 0 for all i,k,r and s. Then, using the analysis in Sec-

tion 6.3, under Assumption 1, the response from L2 (and L1) will be the point d
or e. Therefore, depending on the values [ck

i ]
r
s > 0, a solution to the three-level

multidivisional multilevel programming problem will be either the extreme point
(x1

1, x
2
1, x

2
2, Q2) = (0, 0, Q1, Q1) (represented by the point f in Figure 8(b)) or the

extreme point(0, Q1, 0, Q1) (represented by g).

For some choices of [ck
i ]

r
s > 0, the response of L2 is not unique and may be any

point on the line segment (d, e). In those cases, Assumption 1 is violated. However,
for this particular problem, all of these alternative responses (including the extreme
points) result in the same objective function value (i.e., Q1) for L3. For those
multidivisional multilevel programming problems where Assumption 1 is violated,
a perturbation of the problem will sometimes permit a unique equilibrium solution
to be achieved (see, Bialas and Karwan [9]).

7 Conclusions

This paper has presented a mathematical programming technique called multidivi-
sional multilevel programming to help study decentralized planning problems. For
bounded linear multidivisional multilevel programming problems, the existence of
extreme point Nash-Stackelberg equilibrium solutions is established under mild
conditions. In addition, a simple (but computationally demanding) enumeration
procedure has been provided to find Nash-Stackelberg equilibrium solutions for
bounded linear problems with two levels and three divisions.
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The results provided in this paper also apply to important special cases of the mul-
tidivisional multilevel programming problem. When there is only one division at
each level, the linear multidivisional multilevel programming problem is a multi-
level linear programming problem. Therefore, Theorem 6 implies that a solution to
a multilevel linear programming problem (see Bialas and Karwan [9]) must exist at
an extreme point of the feasible region S, a result previously proved by Wen [35].
When there is only one level, the linear multidivisional multilevel programming
problem is an n-person polytope game (see Bhattacharjee, et al. [7]) and the ap-
propriate results apply. Finally, when there is only one level and one division,
Theorem 6 implies the well-known fact that the solution to a bounded linear pro-
gramming problem must exist at an extreme point of the convex polytope S (see
Dantzig [14]).

There are readily apparent applications and generalizations of the multidivisional
multilevel programming formulation presented here. As a first step, it is hoped
that this paper encourages further investigation into multidivisional multilevel de-
centralized programming problems and their extensions. Perhaps future research
will provide a better understanding of multilevel decision-making organizations
and their behavior. These are challenging, but tractable, problems.
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Step 2 Step 3 Step 4 Step 5 Step 6
x̂[1] = ∈ S2 x̃ = x̂[1] x̃ = x̂[1] W = Set i = 2
(0, 1, 0) f1

1 = 0.8 f2
1 = 0.7 f2

2 = 2 {(0, 1, 0)} Go to Step 2
x̂[2] = ∈ S2 x̃ = x̂[2] x̃ = (0, 1, 0) Set i = 3
(0.5, 1, 0.5) f1

1 = 1.9 f2
1 = 1.4 f2

2 (x̃) = 2 Go to Step 2
x̃ 6= x̂[2] —
f2
2 (x̂[2]) = 0.25

Go to Step 6
x̂[3] = ∈ S2 x̃ = (0.5, 1.5, 1) Set i = 4
(0, 0, 1) f1

1 = 1.2 f2
1 (x̃) = 1.45 Go to Step 2

x̃ 6= x̂[3] — —
f2
1 (x̂[3]) = −0.6

Go to Step 6
x̂[4] = ∈ S2 x̃ = (0.5, 1.5, 1) Set i = 5
(0, 2, 1) f1

1 = 2.8 f2
1 (x̃) = 1.45 Go to Step 2

x̃ 6= x̂[4] — —
f2
1 (x̂[4]) = 0.8

Go to Step 6
x̂[5] = ∈ S2 x̃ = (0.5, 1.5, 1) Set i = 6
(0.5, 0.5, 1) f1

1 = 2.1 f2
1 (x̃) = 1.45 Go to Step 2

x̃ 6= x̂[5] — —
f2
1 (x̂[5]) = 0.75

Go to Step 6
x̂[6] = ∈ S2 x̃ = x̂[6] x̃ = (0, 1.5, 0.5) Set i = 7
(0.5, 1.5, 1) f1

1 = 2.9 f2
1 = 1.45 f2

2 (x̃) = 2.25 Go to Step 2
x̃ 6= x̂[6] —
f2
2 (x̂[6]) = 0.5

Go to Step 6
x̂[7] = ∈ S2 x̃ = x̂[7] x̃ = (0, 1, 0) Set i = 8
(0.5, 1, 1.5) f1

1 = 3.1 f2
1 = 0.8 f2

2 (x̃) = 2 Go to Step 2
x̃ 6= x̂[7] —
f2
2 (x̂[7]) = −1.25

Go to Step 6
x̂[8] = ∈ S2 x̃ = x̂[8] x̃ = (0, 1, 0)
(0, 1, 2) f1

1 = 3.2 f2
1 = −0.5 f2

2 (x̃) = 2 Stop
x̃ 6= x̂[8] —
f2
2 (x̂[8]) = −1

Go to Step 6

Table 1: Results of the enumeration procedure for Example One.


