
1 

 

Mixed Convolved Action Variational Methods for Poroelasticity 
 

Bradley T. Darrall 
Mechanical and Aerospace Engineering 

University at Buffalo, State University of New York 

Buffalo, NY, USA 14260 

 

Gary F. Dargush 
Mechanical and Aerospace Engineering 

University at Buffalo, State University of New York 

Buffalo, NY, USA 14260 

Email: gdargush@buffalo.edu 

 

Abstract 

Although Lagrangian and Hamiltonian analytical mechanics represent perhaps the most remarkable 

expressions of the dynamics of a mechanical system, these approaches also come with limitations.  In 

particular, there is inherent difficulty to represent dissipative processes and the restrictions placed on end 

point variations are not consistent with the definition of initial value problems.  The present work on the 

time domain response of poroelastic media extends the recent formulations of the mixed convolved action.  

The action in this proposed approach is formed by replacing the inner product in Hamilton’s principle with 

a time convolution.  As a result, dissipative processes can be represented in a natural way and the required 

constraints on the variations are consistent with the actual initial and boundary conditions of the problem.  

The variational formulation developed here employs temporal impulses of velocity, effective stress, pore 

pressure and pore fluid mass flux as primary variables in this mixed approach, which also uses convolution 

operators and fractional calculus to achieve the desired characteristics.  The resulting mixed convolved 

action is formulated directly in the time domain to develop a new stationary principle for poroelasticity, 

which applies to dynamic poroelastic and quasistatic consolidation problems alike.  By discretizing the 

mixed convolved action using the finite element method over both space and time, new computational 

mechanics formulations are developed.  Here, this formulation is implemented for the two-dimensional case 

and several numerical examples of dynamic poroelasticity are presented to validate the approach. 
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1 Introduction                   

While Hamilton’s principle of stationary action has long been regarded as perhaps the most elegant 

formulation describing the dynamics of a physical system [1-4], it also has notable shortcomings, mainly 

the inability to model dissipative phenomena and the inconsistency of variations with respect to the 

specified initial conditions.  The former difficulty was noticed early on and in order to accommodate 

irreversible phenomena, a Rayleigh dissipation function can be introduced, along with a prescribed set of 

ad hoc rules for taking the variations [5-8].  While these methods have enjoyed great success for a range of 

problems, it is well known that such formulations do not lead to true variational principles in a strict 

mathematical sense.   

 

In order to resolve these main shortcomings of Hamilton’s principle, Gurtin [9-11] and Tonti [12-15] 

replaced the inner product operators over time with temporal convolutions.  The usual inner products 

appearing in Hamilton’s principle require zero variations at both endpoints and, thus, actually are consistent 

with boundary value problems.  On the other hand, the required restrictions on the variations for 

convolution-based functionals align well with the given data for initial value problems.  Furthermore, the 

convolution operators allow for the inclusion of dissipative processes without any ad hoc rules for the 

definition of stationarity of the functional.  Along these lines, Oden and Reddy [16] derived a number of 

continuum convolution-based formulations, including elastodynamics and thermoelasticity, with the latter 

incorporating the effects of dissipation.  In all of this convolution-based work, the objective was to recover 

the governing partial differential equations as the Euler-Lagrange equations of the variational formulation.   

 

In the present work, we strive to recover the complete definition of the initial/boundary value problem for 

poroelasticity, including not only the governing partial differential equations, but also the boundary and 

initial conditions, as the Euler-Lagrange equations of a single scalar action functional.  We denote this 

functional as the mixed convolved action (MCA), which has been developed in recent work for linear 
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lumped parameter single degree of freedom dynamical systems [17, 18], linear elastodynamic continua [19] 

and heat diffusion [20].  Here we extend the stationary principle of mixed convolved action to consider the 

response of linear poroelastic media, based upon the Biot theory [21-24].  Notably, this novel formulation 

is demonstrated to recover all of the governing partial differential equations, boundary conditions and initial 

conditions of Biot poroelasticity as the Euler-Lagrange equations associated with the mixed convolved 

action functional.  This MCA functional is written in terms of mixed impulsive variables, fractional 

derivatives and convolutions.  Thus, a single scalar functional captures all of the conservative and non-

conservative aspects of poroelastic response and a new stationary principle is derived without the need for 

ad hoc assumptions concerning the variations.   

 

Beyond the theoretical significance of the principle of stationary mixed convolved action for linear 

poroelastic response, these concepts lead directly to the development of novel computational methods 

involving finite element representations over both space and time.  The present paper includes the 

theoretical formulation in terms of primary mixed variables, which include the impulses of velocity, 

pressure, stress and flux.  From analysis of the mixed convolved action, the former two variables require 

0C  continuity over space, while the latter two may be defined with 
1C
 spatial continuity.  Thus, for a two-

dimensional numerical implementation, displacement and pressure impulse can be represented using 

standard three-node linear triangular finite elements, with stress impulse and relative pore fluid 

displacement defined by independent constants over each finite element.  Meanwhile, all four primary 

impulsive variables require 
0C  temporal continuity.  Consequently, linear temporal shape functions can be 

used to represent all of the primary variables over each time step.   

 

Before providing our detailed mixed convolved action formulation, we should mention several other 

approaches that have been offered to accommodate non-conservative processes within a variational 



4 

 

framework.  This includes approaches based upon mirrored systems [25], fractional calculus [26, 27], 

bracket formalisms [28-31] and the related GENERIC framework [32-35]. 

 

We begin our development in the next section with a review of the governing equations of Biot 

poroelasticity.  Then, in Section 3, the focus shifts to the theoretical development of the new stationary 

variational principle for poroelasticity in the time domain.  Next, to solve general problems of transient 

poroelasticity, the action principle is discretized in Section 4, using the finite element method in both space 

and time.  Finally, Section 5 provides some conclusions. 

 

2 Fundamental Relations                   

As a starting point for the development of a pure variational statement for the problem of dynamic 

continuum poroelasticity, in this section, we present the basic governing equations.  In particular, here we 

consider viscous flow of a pore fluid as a dissipative process and develop a mixed convolved action 

formalism for infinitesimal poroelasticity.  In a way, this formalism can be regarded as the evolution of 

previous work on the poroelastic problem in Reference [36], which used instead an inner product action 

variation based upon Lagrangian energy and Rayleigh dissipation functionals. 

 

For a continuum governed by infinitesimal poroelasticity theory, let iv  and 
e

ij  represent the velocity and 

effective stress of the solid skeleton, respectively.  Meanwhile, for the pore fluid, let  p  and iq  denote the 

pore pressure and the average velocity relative to the solid skeleton, respectively.  Then, the impulses of 

these four quantities are defined as iu , 
ijJ ,   and iw , respectively, where   

0
( ) ( )i

t

iu t v t dt                    (1a)                                                          

0 0
( ) ( ) ( )

t t

ij ijkl k

e

ij lJ t t dt C t dt                                 (1b)                                      
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0
( ) ( )

t

t p t dt                    (1c)                                                          

0
( ) ( )i

t

iw t q t dt                                         (1d)                                                       

Here, iu  is the solid skeleton displacement and iw  represents the average pore fluid displacement relative 

to the solid skeleton.  A number of dynamic poroelastic formulations are written in terms of 
iu  and 

iw  as 

primary variables, including Biot [24], Predeleanu [37] and Manolis and Beskos [38].  However, following 

the approach taken in Reference [36], we instead consider mixed formulations written in terms of all four 

variables.  Naturally, in the corresponding rate form, we have for these variables 

i iu v                        (2a)                                                                

e

ij ijkl kj liJ C                     (2b)                                                          

p                        (2c)                                                                   

i iw q                                   (2d) 

where 
e

ij  denotes the effective stress, 
ij  represents the total strain tensor and 

ijklC  is the linear elastic 

constitutive tensor for the solid skeleton written in terms of drained properties.  Meanwhile, the total stress 

ij  can be written in terms of the effective stress and pore pressure as  

e

ij ij ij p                                                                        (3) 

with 
ij  representing a constitutive tensor for anisotropic poroelastic media relating to compressibility of 

the two-phase mixture, which reduces to 
ij ij   for the isotropic case. 

 

In terms of these mixed variables, the governing differential equations for Biot dynamic poroelastic 

response over the domain   take the following form: 

 ijo kk f k ij ij ku w B J f                         (4a)                                          
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0ijkl kl ijk kA J B u                      (4b)                                                     

1
i i ij ijk kB w B u

Q
                             (4c)                                                

0
f

j f j ij i jw u w B
n


                                              (4d)                                             

where s  and 
f  represent the mass density of the solid and fluid, respectively, while o  is the mass 

density of the solid-fluid mixture, such that 

 1o s fn n                                                                (5) 

Furthermore, n  is the porosity and Q  is the Biot parameter to account for compressibility of the two phase 

mixture.   In addition, 
kf  represents a specified body force density, while   is a specified volumetric body 

source rate.  The constitutive tensors 
ijklA  and 

ij  are the inverses of the elastic moduli of the solid skeleton 

ijklC  and the permeability
ij , respectively.  The permeability, in turn, can be written as /ij ijk  , where 

ijk  and   represent the specific permeability and pore fluid viscosity, respectively.  Finally, iB  and 
ijkB  

represent differential operators that are defined as 

i

i

B
x





                                                                         (6a) 

 
1

2
ijk ik jq iq jk

q

B
x

   


 


                             (6b) 

Notice that equation (4a) represents linear momentum balance, (4b) is the linear elastic effective stress-

strain constitutive relation in rate form and (4c) is the pore fluid balance equation with 

,i iw                                                                         (7) 

as the fluid content rate.  The remaining governing equation (4d) represents an extended Darcy’s law for 

pore fluid flow.  For a detailed derivation of this particular governing equation, as well as an explicit 

description of its connection to Darcy’s law the reader is referred to Refs. [23,24,51]. 
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In addition to the governing differential equations, boundary conditions must be specified.  For the simplest 

form, these can be written: 

kku u   on  v                               (8a) 

kj j kj j kj j ktJ n n n       on  
t                               (8b) 

    on  
p                                           (8c) 

i iw n q   on  
q                                                                 (8d) 

where ku  and   represent essential boundary conditions of displacement and pore pressure impulse 

applied on the surfaces v  and 
p

 , respectively.  Meanwhile, for the natural boundary conditions, kt  are 

the tractions specified on the portion of the surface t , while q  represents the specified normal relative 

fluid volume discharge on 
q . 

 

Then, to complete the definition of the Biot poroelastic problem, initial conditions are required.  In mixed 

variables, these take the following form at time zero: 

 (0) (0) (0) (0) (0)ijko k f k ij ij ku w B J j                                        (9a)                                          

(0) (0) 0ijkl kl ijk kA J B u                                                            (9b)                                                     

1
(0) (0) (0) (0)i ij ii jk kB w B u

Q
                                     (9c)                                                

(0) (0) (0) (0) 0
f

j f j ij i jw u w B
n


                                        (9d) 

where kj  and   are the impulses of 
kf  and  , respectively. 
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Interestingly, the corresponding quasistatic problem of linear Biot consolidation can be studied using the 

formulation above by ignoring the inertial contributions with the approximation that 0o f   .     

 

3 Mixed Convolved Action 

As noted in the Introduction, previous mixed convolved action formulations have been developed for 

lumped parameter systems [17, 18] and continua [19, 20].  Here, we extend the MCA approach for 

poroelastic response, under both dynamic and quasistatic theory.  Elements of this formulation can be found 

already in the mixed Lagrangian formalism (MLF) [36], where an underlying action is defined implicitly 

for Biot dynamic poroelasticity by identifying Lagrangian and dissipation functions.  However, in [36], 

these functions are then integrated over time to provide an inner product-based variational formulation.  

Within this MLF, which was developed originally by Sivaselvan, Reinhorn and colleagues [39-41], the 

action in the presence of dissipative effects is never written in explicit form.  Instead, special restricted 

variations are introduced following the Rayleigh dissipation approach to write the stationarity of the action, 

which then may be used to produce effective numerical algorithms for dynamical problems. 

 

The mixed convolved action for this case can be written by starting from the definitions of the Lagrangian 

and Rayleigh dissipation functionals in equations (35)-(39) of Reference [36] and converting the inner 

products term by term to temporal convolutions.  The result is a single real scalar functional 
PCI  that can 

be written in the following form: 
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1
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1
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1
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1 1
2 2

1
2

1
2

1  
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PC k k

k k
k f k

ij ijkl kl

ij ijk k k

s

ijk ij

ij ijk k k i

i i

k ij

j j

j

I u n u d

w w
u n u d

n n

J A J d

d
Q

J B u u B J d

B u u B

w w





 

 



 











     

    
        

    

    

 
     

 

     
 

   











 1
2

1 1
2 2

1 1
2 2

 

 

  

  

  

t v

pq

i i i i

kk

k kk k

w w

u j

d

B B d

u u

w

d d

d d

d w d

 



 

 

 

 





 

  
 

      

       

 

  

   

         

        





 

 

                                    (10)       

with i iw w n  and 
i ji jJ n  .  The superposed breve symbol represents a left Riemann-Liouville semi-

derivative [42, 43], defined as 

 
 

1/20

0

1/2 1 (
(

)
)

t
d f

f f t d
d tt





 

 
D                                         (11) 

for any suitably continuous function ( )f t , where the non-italic   is the ratio of the circumference to the 

diameter of a circle.   

 

Notice from (11) that the semi-derivative operator also involves a convolution of the function ( )f t  with a 

kernel  1 t , so that many of the terms in the mixed convolved action in (10) are actually convolutions 

of convolutions.  In particular, the first of those terms, with action density 1
2 i ij jw w , models the viscous 

dissipation.  Here, we have the convolution of the semi-derivative of the relative displacement of the pore 

fluid iw  with itself through the inverse permeability tensor 
ij .  This captures the history dependence of 
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these irreversible processes, which is something that cannot be done within the classical Lagrangian inner 

product framework.  Interestingly, all of the other terms involving semi-derivatives can be written with 

balanced orders of the time derivatives across the two distinct variables.  As we shall see, this not only leads 

to a weak form with ideal properties, but also permits recovery of the complete initial/boundary value 

problem of dynamic poroelasticity. 

 

The next step is to enforce stationarity of the mixed convolved action (10) by setting the first variation equal 

to zero.  Despite the presence of both first- and semi-derivatives with respect to time, this operation is easily 

performed and the result can be written as follows: 
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1  
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n n

J A J d

d
Q
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J B u

w

u B J
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i i i i
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w w
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d
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B B d
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d d

   

     

   

 

 

 











 

 
 

     
 

     
 

      
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 

 
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 

                                      (12) 
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By using classical and fractional integration-by-parts, we will show that (12) does indeed reproduce all of 

the elements of the initial/boundary value problem, but first let us establish the weak form to be used as the 

foundation for a corresponding time-space finite element method for dynamic poroelastic response.  

Examining the temporal derivatives in (12), we notice that terms appear in which first derivatives of all four 

field variables (e.g., ku , 
ijJ ,  , iw ) are convoluted with first derivatives of their variations.  Consequently, 

integration-by-parts cannot reduce the maximum level of the temporal derivatives and we will require 
0C  

continuity of all variables in time.  Note, however, that these variables are impulses of velocity, stress, pore 

pressure and relative fluid velocity, so that the continuity requirements only apply to these impulses.  Thus, 

displacement and relative fluid displacement must be continuous in time, but the usual stress and pore 

pressure fields may be 
1C 

 continuous (or discontinuous) in time. 

 

On the other hand, the spatial derivatives in (12) are confined to terms involving variable pairs, including 

ku -
ijJ , ku -  and  - iw  pairs.  This means that there is an opportunity to reduce the continuity 

requirements on one variable in each pair.  In order to best accomplish this objective, we must choose to 

perform spatial integration-by-parts to shift all derivatives from 
ijJ , 

ijJ , iw  and iw  to the pair variable 

in each case.  Then, ku  and   will require 
0C  continuity in space, while 

ijJ  and iw  will need to maintain 

only 
1C 

 continuity.  After performing all of these recommended integration-by-parts operations, the weak 

form becomes: 
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                                     (13) 

In the subsequent section, we will discuss the discretization of (13) and develop a time and space finite 

element method.  Interestingly, for simple spatial and temporal variations, all of the integrals appearing in 

(13), including those involving fractional derivatives, can be evaluated in closed form.   

 

However, before moving on to that discussion, let us recover the strong form of the problem by shifting all 

spatial and temporal derivatives from the variations ( ku , 
ijJ ,   and iw ) to the real fields ( ku , 

ijJ , 

  and iw ) by using classical and fractional integration-by-parts for convolutions.  All of the required 

formulas are defined in References [42, 43, 17], making this a systematic procedure.  After some algebraic 

manipulation, the result can be written as follows: 
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           (14) 

again with i iw w n , i iq q n , 
i ji jJ n   and 

i ji jt n . 

 

From (14) for arbitrary variations, we have as the Euler-Lagrange equations: 

Governing partial differential equations 

 ijo kk f k ij ij ku w B J f                          (15a)                                          

0ijkl kl ijk kA J B u                 (15b)                                                     

1
i i ij ijk kB w B u

Q
                         (15c)                                                
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0
f

j f j ij i jw u w B
n


                                                    (15d) 

                                                                                                          for x , (0, )t                        

                        

Initial conditions over the spatial domain 

 (0) (0) (0) (0) (0)ijko k f k ij ij ku w B J j                                     (16a)                                          

(0) (0) 0ijkl kl ijk kA J B u                                                       (16b)                                                     

1
(0) (0) (0) (0)i ij ii jk kB w B u

Q
                                  (16c)                                                

(0) (0) (0) (0) 0
f

j f j ij i jw u w B
n


                                          (16d) 

                                                                                   for x                  

Boundary conditions over entire time span 

k kt t   tx                       (17a) 

k kv v   vx                       (17b) 

q q               
qx                       (17c) 

p p   
px                       (17d) 

                                                                                                            for (0, )t    

Boundary conditions at time zero 

(0(0) )k k    tx                       (18a) 

(0(0) )k ku u   vx                      (18b) 

)(0) (0w w   
qx                      (18c)  

(0) (0)    
px                      (18d) 
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In addition, the variations are constrained by the following:  

Zero variations for specified boundary conditions 

0k    tx , (0, )t        (19a) 

0ku    vx , (0, )t        (19b) 

0w    
qx , (0, )t        (19c)  

0                 
px , (0, )t        (19d) 

 

Zero end time variations for specified boundary conditions 

) 0(k t       tx          (20a) 

0( )ku t       vx          (20b) 

                               0( )w t                       
qx                                 (20c)  

( ) 0t           
px                                (20d) 

Zero variations at initial time 

(0) 0ku                          (21a) 

(0) 0ijJ                          (21b)  

(0) 0             (21c)  

(0) 0iw                          (21d)  

                                                                                                       for x       

This demonstrates that the Euler-Lagrange equations associated with the mixed convolved action, specified 

in (10), provide all of the relations that define the initial/boundary value problem of Biot dynamic 

poroelasticity. 
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As a result, we have now established a Principle of Stationary Mixed Convolved Action for a Linear 

Poroelastic Continuum undergoing infinitesimal deformation.  This may be stated as follows:  Of all the 

possible trajectories  { ( ), ( ), ( ), ( )}k ij iu J w      of the system during the time interval  0, t , the one that 

renders the action 
PCI  in (10) stationary, corresponds to the solution of the initial/boundary value problem.  

Thus, the stationary trajectory satisfies the balance laws of linear momentum (15a) and mass flow (15c), 

along with the linear elastic effective stress-strain constitutive relationship (15b) and the extended Darcy 

law (15d) in the domain   over the entire time interval.  In addition, the traction (17a), velocity (17b), 

mass flux (17c) and pressure (17d) boundary conditions are satisfied throughout the time interval, while 

also complying with the initial conditions defined by (16a-d) in   and (18a-d) on the appropriate portions 

of the bounding surface.  Furthermore, the possible trajectories under consideration during the variational 

process are constrained precisely by their need to satisfy the specified boundary and initial conditions of 

the problem in the form of (19a-d), (20a-d) and (21a-d). 

 

Therefore, we are able to define a single real scalar functional, based upon convolution and fractional 

derivatives, which encapsulates all of the governing differential equations, along with the boundary and 

initial conditions, for linear dynamic poroelasticity.  Furthermore, this represents the first true variational 

formulation for a dissipative poroelastic continuum. 

 

We should note that the related frequency domain mixed convolution action principle can be found in the 

initial version of this MCA poroelastic research [44]. 

 

4 Space and Time Finite Element Formulation 

In this section, we develop a computational formulation using finite elements for both space and time based 

on the weak form (13).  Recall that in formulating (13), we chose to move all spatial derivatives onto the 

displacements iu , pressure impulses  , and their corresponding variations, which was done to best reduce 
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the number of degrees of freedom in the final resulting system of equations.  In the present work we will 

only deal with 2-d problems, however most of the equations either generally apply to 3-d problems also, or 

can be simply extended for 3-d analysis.  Again, due to the appearance of first order spatial derivatives of 

displacements, pressure impulses, and the variations of these field variables in (13) we must enforce at least 

0C  continuity in space for the quantities for a convergent formulation.  However, for impulse of stress 
ijJ   

and fluid displacement 
iw  only 

1C 
 continuity is necessary.  This means that for the simplest case we can 

use linear spatial interpolation for displacements and pressure impulses, while we can consider the other 

quantities to be constant throughout the element and generally discontinuous across element boundaries.   

Temporally, first order derivatives appear for each field variable so we must maintain 
0C  continuity in 

time, which for the simplest finite element scheme refers to using linear shape functions in time.  Note that 

while the impulses of stress and fluid displacement must be continuous in time, generally the stresses and 

fluid velocities will not be.   

 

Again we wish to emphasize the absence of the end time constraints that would appear in any application 

of Hamilton’s principle.  This allows for very natural use of temporal finite elements without needing to 

resort to any of the ad-hoc methods of dealing with this constraint [8, 45-47, 39-41, 36]. 

 

Upon spatial discretization of our domain and spatial integration we can the write the terms appearing in 

the weak form as  

 
e

k k

T

o uuu u d 


    u M u                                                  (22a) 

 
e

ij ijkl kl

T

JJJ A J d 


    J A J                                                (22b) 

 
e

ij ijk k

T

JuJ B u d 


    J B u                                                 (22c) 

 
e

ijk k ij

T T

JuB u J d 


    u B J                                             (22d) 
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e

T

i ij j www w d  


    w w                 (22e) 

 
e

f

k k

T

www w d
n







    w M w                                (22f) 

 
e

k f k

T

uwu w d  


    u M w       (22g) 

1
 

e

Td
Q

  


    A                   (22h) 

 
e

ij ij

T

k ukB u d   


    B u                                                 (22i) 

 
e

T

i i wB dw  


    B w                                                   (22j) 

where the bold face characters represent the spatially discretized counterpart of a variable.  Here we wish 

to consider the simplest 2-d case where we use linear triangle elements for spatial interpolation of 

displacements and impulses of pressure.  We then consider impulses of stress and fluid displacement to be 

constant throughout the element.  The area shape functions can be written explicitly as 

1 2

1

2

1
T

 





  
 


 
 
 

N                                                               (23) 

where i  represent the local or natural element coordinates, which for the linear triangular elements are 

related to area coordinates.  The shape functions, along with the Jacobian, are used to map our physical 

elements to the master isoparametric triangle element shown in Fig. 1, with 1  and 2  ranging from 0 to 

1.  Then we can represent the geometry of an element in terms of these local coordinates by interpolating 

the coordinates at nodes 1-3, such that 

x  N x                                                                     (24a) 

y  N y                                                                     (24a) 

The components of the Jacobian matrix for an element are then defined as 
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i
ij

j

x







J                                                                        (25) 

such that  

1 2

1 2

x x

y y

 

 

 
 

 

 

 
  
 
 

J                                                                  (26) 

Then the area of an element, A , can be related to the determinant of the Jacobian by 

/ 2A  J                                                                      (27) 

 

 

Fig. 1.  Isoparametric master triangle element  

 

Next we will define sub-matrices ib  as 

 

0

0

i

i
Ju i

i i

dN

dx

dN

dy

dN dN

dy dx

 
 
 
 

  
 
 
 
 

b                                                              (28a) 

( ) ( ) i i
u i w i

dN dN

dx dy
 

 
   

 
b b                                                   (28b) 

Then the full b  matrices can be written by concatenating the sub-matrices such that 
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 1 2 3Ju Ju Ju Jub b b b
                                                     (29a) 

 1 2 3u u u u   b b b b
                                                    (29b) 

1

1

1

w

w w

w



 



 
 


 
 
 

b

b b

b
                                                                (29c) 

and finally we can the relate these b  matrices to the B  matrices appearing in our finite element formulation 

by 

eJu Ju d  B b                                                           (30a) 

ew w d   B b                                                          (30b) 

T

u e u d  B N b                                                      (30c) 

where all integration is carried out numerically via Gauss quadrature.  For more information on shape 

functions, mapped elements, and numerical integration the reader is referred to the standard finite element 

textbooks [48, 49].  For an isotropic material the other matrices in equations (22) can be computed as 

1 0

1 0

0 0

1

2

JJ A h
E

 


 

  
  
 
  


A             for plane strain        (31a) 

 

1 0

1 0

0 0 2 1

1
JJ A h

E







 
 

 
  

A            for plane stress       (31b) 

3

1
A h

Q
 A I                                                                (31c) 

3ww A h I                                                                (31d) 

where nI  is an [ ]n n  identity matrix, h  is the element thickness, Q  is the Biot parameter,   is the 

inverse of the isotropic permeability  ,   is Poisson’s ratio, and E  is Young’s modulus. 
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For the M  matrices we use lumped mass representations such that we have 

6 / 3uu o A hM I                                                            (32a) 

2

f

ww
n

A h


M I                                                             (32b) 

1 0 1 0 1 01

0 1 0 1 0 13

T

uw fAh 
 

  
 

M                                         (32c) 

However it would of course be just as simple to use linear interpolation to calculate these M  matrices.  For 

example, for the coupling mass terms we would have  

 
e

T

uw f d


 M h                                                               (33) 

where 

0

0
i

i

iN

N

 
  
 

h                                                               (34a) 

 1 2 3h h h h                                                             (34b) 

 

In a similar manner to the other terms appearing in the weak form (13), after spatial discretization, the body 

force contributions over an element become: 

 
e

T

kku j d 


    u j                                                       (35) 

while the terms from the boundary conditions can be obtained by integration over an element edge, yielding 

   1 1
2 2

 
t

k

T

k k du   


       u τ τ                                         (36a) 

   1 1
2 2

 
v

k

T

k kuu d 


       τ u u                                         (36b) 
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Although for higher order elements there are some interesting ways to accommodate the influences defined 

in (36a,b), here we simply equate the unknown variables to the known values (i.e., τ τ  and u u ) on 

edges associated with 
t  and v , such that the enforced tractions have a contribution defined by 

 1
2

 
t

k

T

k ku d   


      u τ                                             (37a) 

while the enforced displacement integral has no explicit additional effect, because  

 1
2

 0
v

k kk uu d


                                                       (37b) 

Similarly, for the hydraulic terms, after spatial discretization, the body source contributions over an element 

can be written: 

 
e

Td 


                                                            (38) 

while the terms from the boundary conditions can be evaluated through integration over an element edge, 

thus yielding 

   1 1
2 2

 
q

Tw w d 


       w w                                         (39a) 

   1 1
2 2

 
p

Tdw   


       w                                           (39b) 

similar to the elastic boundary condition terms, we simply equate the unknown variables to the known 

values (i.e., =w w  and   ) on edges associated with 
q  and 

p , such that the enforced fluid 

displacements have a contribution defined by 

 1
2

 
q

Tw w d 


      w                                               (40a) 

while the enforced pressure impulse integral has no explicit additional effect, because  

 1
2

 0
p

dw  


                                                     (40b) 

Substituting the preceding discretized representations into equation (13) provides the spatially discretized 

mixed weak form for an element, which can be written: 
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   

  

 

  

  

  



 

    

u M u J A J J B u u B J

w w

w w

u

u

w M w A

u M w w M u

B B

B

j u τ

u B

w

 

 

 

  

                               (41) 

Next we must consider temporal discretization of the weak form.  As previously mentioned, due to the 

presence of first derivatives we must maintain at least 
0C  continuity of our field variables, thus linear shape 

functions are used for temporal interpolation.  Then, over a time interval from 0 tt   , we have: 

0 0 1 1( ) ( ) ( )t N t N t u u u                                                       (42a) 

0 0 1 1( ) ( ) ( )t N t N t J J J                                                      (42b) 

0 0 1 1( ) ( ) ( )t N t N t                                                          (42c) 

0 0 1 1( ) ( ) ( )t N t N t w w w                                                     (42d) 

in terms of the temporal shape functions 

0( ) 1 t
t

N t


  ;  1( ) t
t

N t


                                                   (43a,b) 

with similar temporal interpolation for the variations of our field variables, as well as applied body force, 

traction, body source, and fluid displacement terms. 

 

We now substitute the temporally discretized variables (42a-d) into equation (41), perform all necessary 

convolution integrals in closed form, set all variations at 0t   to zero, while allowing the variations at 

t t   to remain arbitrary, multiply through by 4 / t , and collect like terms to arrive at the following 

symmetric set of linear algebraic equations: 
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where 

1 2
t

ww ww ww
M M                                                              (45a) 

0 2
t

ww ww ww
M M                                                              (45b) 

 

We are free to use (44) as our final set of equations, however there is one more simplification that can be 

made.  Because we chose to interpolate the impulses of stress and fluid displacements as element-by-

element 
1C 

 functions, we have the freedom to condense these variables out at the element level prior to 

solving (44), which can save considerable computation time.  Then solving (44) for 1J  and 1w  gives us 

 1

1 0012
t

JJ J JJu

     J A B u u A J                                                  (46a) 
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and after substituting these relations into (44) and rearranging we can write the condensed set of equations 

as 
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While all of this has been formulated on the element level, in practice we actually wish to solve the 

following global set of equations that can be arrived at via standard assembly procedures [48, 49]: 

1 1

1 1

u nuu u n

nu n



 
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 

fK K u

fK K 
                                                    (53) 

where nu  and n  consist of all nodal displacements and pressure impulses, respectively, at each time step 

n .  Then one simply needs to first compute the global stiffness K  matrices, specify known initial 

conditions, and then march the solution in time by computing the right hand side at each time step and 

solving (53). 

 

5 Dynamic Poroelasticity Problems 

In this section, the mixed convolved action finite element formulation is applied to a couple of two-

dimensional problems of dynamic poroelasticity.  For the first example, the MCA results are compared with 
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a boundary element solution [50], while a time step study is performed for the second example to 

demonstrate the convergence characteristics of the present development. 

  

5.1 Dynamic poroelastic half-space subject to traction pulses 

For this problem we consider the dynamic response of a poroelastic half-space to a spatially uniform normal 

traction pulse applied to the free surface at 0x  .  Figure 2 illustrates a problem schematic, while Fig. 3 

shows the actual domain used for analysis.  This domain is then split into 1260 triangular elements with 

biased refinement towards the free surface.  Elements have approximate edge length of 0.02 close to the 

free surface and 0.2 near to the fixed right side boundary.  Here we consider all material parameters to be 

non-dimensional, with 1o  , 1  , 0.316E  , 0.2  , 0.973f  , 1.459Q  , 0.667  , and 

0.333n  . 

 

For elastic boundary conditions we consider all surfaces to be on smooth rollers, except the free surface 

0x  , where a single normal traction pulse is applied.  This pulse is spatially constant but for case one is 

a half-sine pulse in time such that ( ) sin( )xt t t  for 0 1t  , and for case two is a sine-squared pulse 

in time such that 
2sin )(xt t  for 0 1t  .  The remaining boundary conditions are zero fluid 

displacement for all surfaces except the free surface, where we have the pressure free condition 0p  .  

For all simulations a time step of 0.01t   is used.  

 

In Figs. 4a and 4b we plot pore pressure p  and horizontal displacement xu  at two points, both located at 

1x   but having different vertical positions, versus time, respectively, for the half-sine pulse loading.  The 

results for these two points are essentially identical, as should be expected for this 1-d problem.  Meanwhile, 

in Figs. 5a and 5b we plot p  and xu  at the same point located at 1x   versus time, respectively, for the 
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sine-squared pulse loading.   For all plots we compare the MCA solutions to the analytical solutions 

presented in Ref. [51]. 

 

 

Fig. 2. Poroelastic half-space with applied surface traction pulse 

 

 

 

 

Fig. 3. Poroelastic half-space solution domain and boundary conditions 
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Fig. 4a. Pore pressure at 1x   versus time for half-sine pulse 

 

Fig. 4b. Horizontal displacement at 1x   versuss time for half-sine pulse 
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Fig. 5a. Pore pressure at 1x   versus time for sine-squared pulse 

 

Fig. 5b. Horizontal displacement at 1x   versus time for sine-squared pulse 
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5.2 Explosion in a cylindrical cavity beneath the surface of a half-space 

This second problem examines the dynamic poroelastic response resulting from a radial stress pulse 

supplied to the surface of a cylindrical cavity embedded in a half-space, as shown in Fig. 6.  The cavity is 

positioned at a depth of 2H   below the free surface 0y   and has diameter 1D  , where again all 

parameters are nondimensional.  This is shown in Fig. 7, which provides the actual mesh consisting of 1136 

triangular elements used for analysis.  Elements have approximate edge length of 0.1 surrounding the 

cavity, and approximate edge length of 1 on the surfaces furthest from the cavity.  The boundaries to the 

right and bottom of the cavity are far enough away such that waves never reach these distances for the time 

duration of our simulations, and hence despite the fixed boundary conditions on these surface we still have 

the equivalent of a half-space.   

 

The explosion pulse is modelled as a radially uniform applied traction ( )rt t  having unit amplitude and a 

sine-squared temporal profile with unit duration, such that for a single pulse we have 
2( ) sin )(rt t t  for 

0 1t  .  Then we also have two cases for hydraulic boundary conditions for the cavity.  For the first case 

we consider the cavity to be impermeable such that 0w   and for the second we consider a permeable 

cavity such that 0p  .  Then for other boundary conditions we consider the free surface to be traction free 

and permeable such that 0x xt t p  , and all other surface are on smooth rollers and impermeable, such 

that there is zero normal displacements and 0w  .  For material parameters, we use the following values: 

1o  , 1  , 1E  , 0  , 3 / 4f  , 3 / 2Q  , 3 / 4  , and 1/ 4n  .   

 

In Fig. 8, the time history of the pore pressure response at point A  is provided for the impermeable case 

for several different time step sizes.  Convergence is demonstrated clearly as the time step is reduced to a 

duration of 0.01t  , which is then selected for all subsequent analyses for this problem. 
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Next, Fig. 9 shows the pore pressure p  at point A  plotted over an extended period of time.  Meanwhile, 

in Fig. 10, the vertical displacements 
yu  at point O  located on the free surface above the cavity and at 

point A  on the top surface of the cavity are plotted against time.  Both Figs. 9 and 10 are for the impermeable 

cavity boundary condition case.  Finally, Fig. 11 presents the vertical displacements plotted against time, 

but for the permeable cavity boundary condition.  Interestingly the maximum displacement peak on the 

surface of the cavity is slightly larger than on the free surface for the permeable condition, while the 

maximum displacement peak on the free surface at point O  is slightly larger for the impermeable case. 

 

 

 

Fig. 6.  Explosion in a cylindrical cavity problem schematic 
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Fig. 7.  Explosion in a cylindrical cavity mesh 

 

 

Fig. 8.  Convergence study for pore pressure at point A  versus time, impermeable cavity 
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Fig. 9.  Pore pressure at point A  versus time, impermeable cavity 

 

 

Fig. 10.  Vertical displacement at points O  and A  versus time, impermeable cavity 
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Fig. 11.  Vertical displacement at points O  and A  versus time, permeable cavity 

 

6 Conclusion 

Starting with the idea first proposed by Gurtin and Tonti of substituting convolution for inner product 

operators as the basis for variational formulations for dynamical systems, we present a mixed convolved 

action approach for Biot poroelasticity.  The action functional involves a mixed set of impulsive variables, 

including skeleton displacement, relative pore fluid displacement, stress impulse and pore pressure impulse, 

which are selected to provide a well-defined and balanced structure to the formulation.  As a result, the 

mixed convolved action functional, although algebraically complicated, encapsulates all of the governing 

partial differential equations, boundary conditions and initial conditions of the poroelastic problem.  This 

provides the basis for the Principle of Stationary Mixed Convolved Action for a Linear Poroelastic 

Continuum undergoing infinitesimal deformation.  Moreover, a new time and space finite element method 
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is developed systematically from this framework, which inherits key characteristics of the underlying 

problem, such as energy conservation for cases without viscous dissipation. 

 

For future work, it will be interesting to investigate further these key characteristics of the finite element 

representations as the nature of the poroelastic problem shifts from a purely conservative process to one 

dominated by viscous dissipation.  In addition, there is a need to seek a fundamental understanding of the 

physical meaning of the convolved action and to explore the development of new computational algorithms. 
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