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ABSTRACT   

Although Lagrangian and Hamiltonian analytical 
mechanics represent perhaps the most remarkable expressions 
of the dynamics of a mechanical system, these approaches also 
come with limitations.  In particular, there is inherent difficulty 
to represent dissipative processes and the restrictions placed on 
end point variations are not consistent with the definition of 
initial value problems.  The present work on poroelastic media 
extends the recent formulation of a mixed convolved action to 
address a continuum dynamical problem with dissipation 
through the development of a new variational approach.  The 
action in this proposed approach is formed by replacing the 
inner product in Hamilton’s principle with a time convolution.  
As a result, dissipative processes can be represented in a natural 
way and the required constraints on the variations are consistent 
with the actual initial and boundary conditions of the problem.  
The variational formulations developed here employ temporal 
impulses of velocity, effective stress, pore pressure and pore 
fluid mass flux as primary variables in this mixed approach, 
which also uses convolution operators and fractional calculus 
to achieve the desired characteristics.  The resulting mixed 
convolved action is formulated in both the time and frequency 
domains to develop two new stationary principles for dynamic 
poroelasticity.  In addition, the first variation of the action 
provides a temporally well-balanced weak form that leads to a 
new family of finite element methods in time, as well as space.   
                                                                                          
INTRODUCTION 

While Hamilton’s principle of stationary action has long 
been regarded as perhaps the most elegant formulation 
describing the dynamics of a physical system, it also has notable 
shortcomings, mainly the inability to model dissipative 
phenomena and the inconsistency of variations with respect to 
the specified initial conditions.  In order to accommodate 
irreversible phenomena, a Rayleigh dissipation function can be 
introduced, along with a prescribed set of rules for taking the 
variations.  While these methods have enjoyed great success for 
a range of problems, it is well known that such formulations do 
not lead to true variational principles in a strict mathematical 
sense.   

In order to resolve these main shortcomings of Hamilton’s 
principle, the concept of mixed convolved action (MCA) has 

been developed in recent work for linear lumped parameter 
single degree of freedom dynamical systems [1,2] and linear 
elastodynamic continua [3].  Here we extend the stationary 
principle of mixed convolved action to consider the dynamic 
response of linear poroelastic media, based upon the Biot theory 
[4-6].  Notably, this novel formulation is demonstrated to 
recover all of the governing partial differential equations, 
boundary conditions and initial conditions of Biot poroelasticity 
as the Euler-Lagrange equations associated with the mixed 
convolved action functional.  This MCA functional is written in 
terms of mixed impulsive variables, fractional derivatives and 
the convolution of convolutions.  Thus, a single scalar 
functional encapsulates all of the conservative and non-
conservative aspects of dynamic poroelastic response and a 
stationary principle is derived without the need for ad hoc 
assumptions concerning the variations.   

Beyond the theoretical significance of the principle of 
stationary mixed convolved action for linear poroelastic 
dynamic response, these concepts lead directly to the 
development of novel computational methods involving finite 
element representations over both space and time.  The present 
paper includes the theoretical formulation in terms of primary 
mixed variables, which include the impulses of velocity, 
pressure, stress and flux.  From analysis of the mixed convolved 
action, the former two variables require 0C  continuity over 

space, while the latter two may be defined with 1C  spatial 
continuity.  Thus, for a two-dimensional numerical 
implementation, displacement and pressure impulse can be 
defined using standard three-node linear triangular finite 
elements, with stress impulse and relative pore fluid 
displacement defined by independent constants over each finite 
element.  Meanwhile, all four primary impulsive variables 
require 0C  temporal continuity.  Consequently, linear temporal 
shape functions can be used to represent all of the primary 
variables over each time step.   

The focus of the present work is on the theoretical 
formulations needed to develop new stationary variational 
principles for dynamic poroelasticity in both the time and 
frequency domains.  For the former case, a brief description of 
the corresponding space and time finite element methods is also 
provided. 



 
GOVERNING EQUATIONS 

In this section, we direct attention to the continuum 
problem for poroelasticity involving energy dissipation and 
develop for the first time a pure variational statement for an 
irreversible process.  As an initial example, we consider viscous 
flow of a pore fluid as the dissipative process and develop a 
mixed convolved action formalism for infinitesimal 
poroelasticity.  In a way, this formalism can be regarded as the 
evolution of previous work on the poroelastic problem in 
Reference [7], which used instead an inner product action 
variation based upon Lagrangian energy and Rayleigh 
dissipation functionals. 

For a continuum governed by infinitesimal poroelasticity 

theory, let iv  and e

ij  represent the velocity and effective stress 

of the solid skeleton, respectively.  Meanwhile, for the pore 

fluid, let  p  and iq  denote the pore pressure and the average 

velocity relative to the solid skeleton, respectively.  Then, the 

impulses of these four quantities are defined as iu , 
ij

J ,   and 

iw , respectively, where   
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Here, iu  is the solid skeleton displacement and iw  represents 

the average pore fluid displacement relative to the solid 
skeleton.  A number of dynamic poroelastic formulations are 

written in terms of iu  and iw  as primary variables, including 

Biot [6], Predeleanu [8] and Manolis and Beskos [9].  However, 
following the approach taken in Reference [7], we instead 
consider mixed formulations written in terms of all four 
variables.  Naturally, in the corresponding rate form, we have 
for these variables 
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where e

ij  denotes the effective stress, ij  represents the total 

strain tensor and ijklC  is the linear elastic constitutive tensor for 

the solid skeleton written in terms of drained properties.  

Meanwhile, the total stress 
ij

  can be written in terms of the 

effective stress and pore pressure as  

e

ij ij ij p                                      (3) 

with ij  representing a constitutive tensor for anisotropic 

poroelastic media relating to compressibility of the two-phase 

mixture, which reduces to ij ij   for the isotropic case. 

In terms of these mixed variables, the governing 
differential equations for Biot dynamic poroelastic response 
over the domain   take the following form: 
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where s  and f  represent the mass density of the solid and 

fluid, respectively, while 
o
  is the mass density of the solid-

fluid mixture, such that 
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o s f

n n                              (5) 

Furthermore, n  is the porosity and Q  is the Biot parameter to 

account for compressibility of the two phase mixture.   In 

addition, kf  represents a specified body force density, while   

is a specified volumetric body source rate.  The constitutive 

tensors ijklA  and 
ij
  are the inverses of the elastic moduli of the 

solid skeleton ijklC  and the permeability
ij

 , respectively.  The 

permeability, in turn, can be written as /ij ijk  , where ijk  

and   represent the specific permeability and pore fluid 

viscosity, respectively.  Finally, iB  and ijkB  represent 

differential operators that are defined as 
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Notice that equation (4a) represents linear momentum balance, 
(4b) is the linear elastic effective stress-strain constitutive 
relation in rate form and (4c) is the pore fluid balance equation 
with 

,i i
w                                    (7) 

as the fluid content rate.  The remaining governing equation 
(4d) represents an extended Darcy’s law for pore fluid flow.  

In addition to the governing differential equations, 
boundary conditions must be specified.  For the simplest form, 
these can be written: 
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where 
k

u  and   represent essential boundary conditions of 

displacement and pore pressure impulse applied on the surfaces 

v  and p , respectively.  Meanwhile, for the natural boundary 

conditions, 
k
t  are the tractions specified on the portion of the 

surface t , while q  represents the specified normal relative 

fluid volume discharge on q . 

Then, to complete the definition of the Biot poroelastic 
problem, initial conditions are required.  In mixed variables, 
these take the following form at time zero: 
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where kj  and   are the impulses of kf  and  , respectively.        

 
TIME DOMAIN VARIATIONAL FORMULATION 

In Reference [7], an underlying action is defined implicitly 
for Biot dynamic poroelasticity by identifying Lagrangian and 
dissipation functions, which are then integrated over time to 
provide an inner product-based variational formulation.  Within 
this Mixed Lagrangian Formalism (MLF) [10-12], in the 
presence of dissipative effects, the action is never written in 
explicit form.  Instead, special restricted variations are 
introduced following the Rayleigh dissipation approach to write 
the stationarity of the action, which then may be used to produce 
effective numerical algorithms for dynamical problems. 

However, as first noted by Gurtin [13-15] and Tonti [16-
19], the use of an inner product operator over time is more 
consistent with boundary value problems, rather than initial 
value problems.  Tonti, in particular, emphasized that the more 
appropriate operators are convolution based.  Afterwards, Oden 
and Reddy [20] derived a number of convolution-based 
formulations for continuum problems, including 
elastodynamics and thermoelasticity, with the latter including 
the effects of dissipation.  In all of this work, the objective was 
to recover the governing partial differential equations as the 
Euler-Lagrange equations of the variational formulation.   

In the present work, we strive to recover the complete 
definition of the initial/boundary value problem, including the 
governing partial differential equations, boundary conditions 
and initial conditions, as the Euler-Lagrange equations of a 
single scalar action functional, which we denote as the Mixed 

Convolved Action (MCA).  We should perhaps mention that, 
while this action is defined in explicit form, it is not possible to 
define Lagrange energy or Rayleigh dissipation state functions, 
because the temporal inner product has been replaced by 
convolution.  Interestingly, if we transform the problem to the 
frequency or Laplace domain, then the classical Lagrangian 
formulation becomes a convolution, whereas the mixed 
convolved action transforms to a simple product. 

As noted in the Introduction, previous formulations have 
been developed for lumped parameter systems [1,2] and for 
elastodynamic continua [3].  Here, we extend the MCA 
approach defined in Reference [3] for dynamic poroelastic 
response.  The mixed convolved action for this case can be 
written: 
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with i iw w n  and i ji jJ n  .  Here and in what follows, the 

superposed breve symbol represents a left Riemann-Liouville 
semi-derivative [21,22], defined as 
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for any suitably continuous function ( )f t , where the non-italic 

  is the ratio of the circumference to the diameter of a circle.   

Notice from (11) that the semi-derivative operator also 

involves a convolution of the function ( )f t  with a kernel  

1 t , so that many of the terms in the mixed convolved 

action in (10) are actually convolutions of convolutions.  In 
particular, the first of those terms, with action density 

1

2 i ij j
w w 

, models the viscous dissipation.  Here, we have the 

convolution of the semi-derivative of the relative displacement 

of the pore fluid 
i

w


 with itself through the inverse permeability 

tensor 
ij
 .  This captures the history dependence of these 



irreversible processes, which is something that cannot be done 
within the classical Lagrangian inner product framework.  
Interestingly, all of the other terms involving semi-derivatives 
can be written with balanced orders of the time derivatives 
across the two distinct variables.  As we shall see, this not only 
leads to a weak form with ideal properties, but also permits 
recovery of the complete initial/boundary value problem of 
dynamic poroelasticity. 

The next step is to enforce stationarity of the mixed 
convolved action (10) by setting the first variation equal to zero.  
Despite the presence of both first- and semi-derivatives with 
respect to time, this operation is easily performed and the result 
can be written as follows: 
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By using classical and fractional integration-by-parts, we 

will show that (12) does indeed reproduce all of the elements of 
the initial/boundary value problem, but first let us establish the 
weak form to be used as the foundation for a corresponding 
time-space finite element method for dynamic poroelastic 
response.  Examining the temporal derivatives in (12), we 
notice that terms appear in which first derivatives of all four 

field variables (e.g., ku , ijJ ,  , iw ) are convoluted with first 

derivatives of their variations.  Consequently, integration-by-
parts cannot reduce the maximum level of the temporal 

derivatives and we will require 0C  continuity of all variables in 
time.  Note, however, that these variables are impulses of 
velocity, stress, pore pressure and relative fluid velocity, so that 
the continuity requirements only apply to these impulses.  Thus, 

displacement and relative fluid displacement must be 
continuous in time, but the usual stress and pore pressure fields 

may be 1C  continuous (or discontinuous) in time. 
On the other hand, the spatial derivatives in (12) are 

confined to terms involving variable pairs, including ku - ijJ , 

ku -  and  - iw  pairs.  This means that there is an opportunity 

to reduce the continuity requirements on one variable in each 
pair.  In order to best accomplish this objective, we must choose 
to perform spatial integration-by-parts to shift all derivatives 

from ijJ , ijJ , iw  and iw  to the pair variable in each case.  

Then, ku  and   will require 0C  continuity in space, while ijJ  

and iw  will need to maintain only 1C  continuity.  After 

performing all of these recommended integration-by-parts 
operations, the weak form becomes: 
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In a subsequent section, we will briefly discuss the 
discretization of (13) toward development of a time and space 
finite element method.  Interestingly, for simple spatial and 
temporal variations, all of the integrals appearing in (13), 
including those involving fractional derivatives, can be 
evaluated in closed form.   

However, before moving on to that discussion, let us 
recover the strong form of the problem by shifting all spatial 

and temporal derivatives from the variations (
k

u , 
ij

J ,   

and 
i

w ) to the real fields (
k

u , 
ij

J ,   and 
i

w ) by using 

classical and fractional integration-by-parts for convolutions.  
All of the required formulas are defined in References [21, 22, 



1], making this a systematic procedure.  After some algebraic 
manipulation, the result can be written as follows: 
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again with i iw w n , i iq q n , i ji jJ n   and i ji jt n . 

From (14) for arbitrary variations, we have as the Euler-

Lagrange equations: 

Governing partial differential equations 

 ijo kk f k ij ij k
u w B J f             (15a)               

0
ijkl kl ijk k

A J B u        (15b)               

1
i i ij ijk k

B w B u
Q
           (15c)               

0
f

j f j ij i j
w u w B

n


                        (15d)               

for x, (0, )t   

Initial conditions over the spatial domain 

 (0) (0) (0) (0) (0)
ijko k f k ij ij k

u w B J j            (16a)               

(0) (0) 0
ijkl kl ijk k

A J B u                           (16b)               

1
(0) (0) (0) (0)

i ij ii jk k
B w B u

Q
             (16c)               

(0) (0) (0) (0) 0
f

j f j ij i j
w u w B

n


           (16d) 

for x 

Boundary conditions over entire time span 

k kt t   tx    (17a) 

k kv v   vx    (17b) 

q q   qx    (17c) 

p p   px    (17d) 

for (0, )t    

Boundary conditions at time zero 

(0(0) )k k    tx   (18a) 

(0(0) )k ku u   vx   (18b) 

)(0) (0w w   qx   (18c)  

(0) (0)    px   (18d) 

In addition, the variations are constrained by the following:  

Zero variations for specified boundary conditions 

0k    tx , (0, )t    (19a) 

0ku    vx , (0, )t    (19b) 

0w    qx , (0, )t    (19c)  

0    px , (0, )t    (19d) 



 

Zero end time variations for specified boundary conditions 

) 0(k t    tx   (20a) 

0( )ku t    vx   (20b) 

0( )w t     qx   (20c)  

( ) 0t     px   (20d) 

Zero variations at initial time 

(0) 0ku      (21a) 

(0) 0ijJ      (21b)  

(0) 0       (21c)  

(0) 0iw      (21d)  

for x   

This demonstrates that the Euler-Lagrange equations associated 
with the mixed convolved action, specified in (10), provide all 
of the relations that define the initial/boundary value problem 
of Biot dynamic poroelasticity. 

As a result, we have now established a Principle of 
Stationary Mixed Convolved Action for a Linear Poroelastic 
Continuum undergoing infinitesimal deformation.  This may be 
stated as follows:  Of all the possible trajectories  

{ ( ), ( ), ( ), ( )}k ij iu J w      of the system during the time 

interval  0, t , the one that renders the action 
P

C
I  in (10) 

stationary, corresponds to the solution of the initial/boundary 
value problem.  Thus, the stationary trajectory satisfies the 
balance laws of linear momentum (15a) and mass flow (15c), 
along with the linear elastic effective stress-strain constitutive 
relationship (15b) and the extended Darcy law (15d) in the 
domain   over the entire time interval.  In addition, the 
traction (17a), velocity (17b), mass flux (17c) and pressure 
(17d) boundary conditions are satisfied throughout the time 
interval, while also complying with the initial conditions 
defined by (16a-d) in   and (18a-d) on the appropriate 
portions of the bounding surface.  Furthermore, the possible 
trajectories under consideration during the variational process 
are constrained precisely by their need to satisfy the specified 
boundary and initial conditions of the problem in the form of 
(19a-d), (20a-d) and (21a-d). 

Therefore, we are able to define a single real scalar 
functional, based upon convolution and fractional derivatives, 
which encapsulates all of the governing differential equations, 
along with the boundary and initial conditions, for linear 
dynamic poroelasticity.  Furthermore, this represents the first 
true variational formulation for a dissipative poroelastic 
continuum. 
 
 

 
FREQUENCY DOMAIN VARIATIONAL FORMULATION 

As mentioned previously, the mixed convolved action also 
has some interesting characteristics in the frequency domain.  
Introducing a time harmonic response of the field variables 
directly into (10) or by performing a Fourier transform, one can 
write the following action at frequency  :  
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           (22) 

where the superposed tilde denotes the Fourier transform of the 
variable.   

Of course, the convolutions present in the time domain 

action 
P

C
I  are transformed to a simple product at each 

frequency in 
P

C
I .  This leads directly to a frequency domain 

variational formulation for dynamic poroelasticity, which will 
be developed next. 

We begin by taking the first variation of (22).  Then, after 
several integration-by-parts operations, the following weak 
form can be defined:  
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            (23) 

Notice that this weak form requires only 1C  spatial 

continuity of the stress impulse and relative pore fluid 

displacement amplitudes represented by 
ij

J  and 
i

w , 

respectively, while both skeleton displacement and pore 

pressure impulse amplitudes must maintain 0C  continuity.  

Consequently, (23) can provide the foundation for a frequency 
domain finite element method for dynamic poroelasticity. 

On the other hand, if we perform integration-by-parts on 
(23) to isolate all of the field variable variations from spatial 
derivatives, then the Euler-Lagrange equations of (22) will 

emerge.  This form of the stationarity of 
P

C
I  can be written: 
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  (24) 

Then, for arbitrary variations, the following strong form is 

recovered: 

Governing partial differential equations in frequency domain 

 2 2 0
ijko k f k ij ij k

u w i B J f                (25a) 

2 0
ijkl kl ijk k

A J i B u        (25b) 

2 1 0
i i ij ijk kQ i B w i B u               (25c) 

   2 0
j f j ij i j

f

n w u i w B


              (25d) 

for x 

Boundary conditions in frequency domain 

k kt t    tx    (26a) 

k kvv     vx    (26b) 

q q    qx    (26c) 

p p    px    (26d) 

along with the following restrictions on the variations 

Zero variations for specified boundary conditions 

0k    tx ,   (27a) 

0ku    vx ,   (27b) 

0w    qx ,   (27c)  

0    px ,   (27d) 

 
This establishes the Principle of Stationary Mixed 

Convolved Action for a Linear Poroelastic Continuum 
undergoing time harmonic infinitesimal deformation.  This new 
principle may be stated as follows: Of all the possible solutions  

{ ( ), ( ), ( ), ( )}k ij iu J w        of the system at frequency  , the 

one that renders the action 
P

C
I  in (22) stationary, corresponds 

to the solution of the time harmonic boundary value problem.  
Thus, the stationary trajectory satisfies the balance laws of 
linear momentum (25a) and mass flow (25c), along with the 
linear elastic effective stress-strain constitutive relationship 
(25b) and the extended Darcy law (25d) in the domain   at 
frequency  .  In addition, the traction (26a), velocity (26b), 

mass flux (26c) and pressure (26d) specified conditions are 
satisfied on the appropriate portions of the bounding surface.  
During the variational process, the possible trajectories under 
consideration are constrained only by their need to satisfy the 
specified boundary conditions of the problem, as defined in 
(27a-d). 
 
FINITE ELEMENT FORMULATIONS 

While the focus of the present work is to define new 
variational formulations based upon the concept of mixed 
convolved action, a few words can be said concerning the 
development of corresponding finite element methods for 
dissipative dynamic continua.  Beyond the theoretical 
significance of defining the Principle of Mixed Convolved 
Action for dynamic poroelastic media, the weak form of (13) 
enables formulation of a space-time finite element approach, 
because unlike Lagrangian inner product formulations there is 
no restriction on the variations at the end of the time interval.  
This is one key result of the mixed convolved action 
methodology. 



In order to create an initial finite element formulation, 
simple spatial and temporal representations can be adopted, for 
example, by selecting three-node elements for planar 
poroelastic problems, having a linear variation of displacement 

iu  and pore pressure impulse   over the element with 0C  

continuity across elements.  On the other hand, stress impulse 

ijJ  and relative fluid displacement iw  can be assumed constant 

within each element and thus discontinuous (or 1C  

continuous) across elements. 
For the temporal variations of all four field variables, only 

0C  continuity is needed and thus linear temporal shape 

functions are fully appropriate.  Interestingly, despite the 
presence of fractional derivatives, all temporal functions 
appearing in the weak form (13) can be evaluated in closed form 
and ultimately have very simple form, as defined previously in 
References [1-3]. 

Additionally, the weak form in (23) can be used as a 
starting point for a frequency domain finite element method for 
dynamic poroelasticity.  After performing spatial discretization, 
this weak form may be written: 
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   (28) 

where the individual matrices can be developed from the 
corresponding terms in (23) using standard finite element 
technologies.  For arbitrary variations, this provides a set of 
complex linear algebraic equations of the form: 
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(29) 
which after applying a set of well-defined prescribed boundary 
conditions can be solved  the response at frequency  .  Note 

that the variables J  and w  only require 1C   continuity.  If 

interpolation is element-by-element, then these variables may 
be eliminated at the element level and do not need to be 
assembled.  This then provides in essence a u - π  hybrid finite 

element methodology for frequency domain poroelasticity. 
 

CONCLUSIONS 
Starting with the idea first proposed by Gurtin and Tonti of 

substituting convolution for inner product operators as the basis 
for variational formulations for dynamical systems, we present 
a mixed convolved action approach for Biot poroelasticity.  The 
action functional involves a mixed set of impulsive variables, 
including skeleton displacement, relative pore fluid 
displacement, stress impulse and pore pressure impulse, which 
are selected to provide a well-defined and balanced structure to 
the formulation.  As a result, the mixed convolved action 
functional, although algebraically complicated, encapsulates all 
of the governing partial differential equations, boundary 
conditions and initial conditions of the poroelastic problem.  
Furthermore, new time and space finite element methods can be 
developed systematically from this framework that will inherit 
key characteristics of the underlying problem, such as energy 
conservation for cases without viscous dissipation.  A frequency 
domain variational formulation also is developed that has a 
convenient structure in the sense that the time domain 
convolution transforms to a simple product.  For future work, it 
will be interesting to explore the development of new 
computational algorithms and to seek a fundamental 
understanding of the physical meaning of the convolved action. 
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