A logistics model for delivery of critical items in a disaster relief operation: heuristic approaches†

Yen-Hung Lina,b, Rajan Battaa,b,*, Peter A. Rogersona,c, Alan Blatta, Marie Flanigana

aCenter for Transportation Injury Research, CUBRC, Buffalo, NY 14225, United States
bDepartment of Industrial and Systems Engineering, University at Buffalo (SUNY), Buffalo, NY 14260, United States
cDepartment of Geography, University at Buffalo (SUNY), Buffalo, NY 14260, United States

Abstract

In this paper, a tour-based multi-objective logistics model for optimized scheduling of the delivery of critical items in a disaster relief operation is proposed. Our model considers multi-items, multi-vehicles, multi-periods, and a split delivery scenario in a disaster. Two heuristic approaches are introduced to solve the logistics problem. In the first approach, a genetic algorithm is applied as the tour generator to filter out tours, to reduce the size of the problem. In the second approach, a vehicle assignment heuristic is proposed by decomposing the original multi-vehicle, multi-location problem into several subproblems consisting of only a partial number of clusters in the main problem. Some randomly generated computational experiments are conducted to evaluate the performance of our approaches.

Key words: disaster relief, genetic algorithm, heuristics, split delivery

†This material is based upon work supported by the Federal Highway Administration under Cooperative Agreement No. DTFH61-07-H-00023, awarded to the Center for Transportation Injury Research, CUBRC, Inc., Buffalo, NY. Any opinions, findings, and conclusions are those of the Author(s) and do not necessarily reflect the view of the Federal Highway Administration

*Corresponding author. Address: Department of Industrial and Systems Engineering, University at Buffalo (SUNY), Buffalo, NY 14260, United States. Tel.: +1 716 6452357; fax: +1 716 6453302. E-mail address: batta@eng.buffalo.edu (R. Batta)
1. Introduction

In recent years, much human life has been lost due to natural disasters. For example, at least 1,836 people lost their lives in Hurricane Katrina in 2005, and 73,276 died in the Kashmir Earthquake in Pakistan in 2005. To mitigate damage and loss in disasters, studies in pre-disaster, during disaster, and after-disaster issues have been widely explored in the past few years. One of the critical challenges is to transport sufficient critically needed supplies to affected areas in order to support basic living needs to those who are isolated in disaster-affected areas. Normally, daily living needs include water, food (e.g., ready-to-eat meals), medicine, and other equipment (e.g., blankets, tents, etc.). Usually, disaster relief operations are initiated immediately after the occurrence of the disaster and continue until all stranded people are completely rescued and the basic living infrastructure (e.g., communications, power supplies, water supplies, or transportation system) is renewed. Since the demand required during and after a disaster is usually large and unexpected, and resources, e.g., supplies or transportation vehicles, are normally limited, a good logistics plan is absolutely necessary to transport supplies from distribution centers to targeted locations. Therefore, it becomes a critical, but difficult task for authorities to make fast and correct logistics decisions.

A disaster relief operation is usually executed by mixing different types of transportation mediums (e.g., vehicles, boats, or helicopters) and assigning them to deliver supplies to meet demands requested in different locations. We note that for our study we restrict attention to just vehicles as the transport mode. If vehicles are used, the existing surface transportation network (e.g., highway systems, roads, etc.) is used. All vehicles depart from a distribution center or depot with fully loaded supplies and
travel to one or more locations to deliver those supplies, and then come back to the
distribution center to reload supplies and wait for the next assignment. Specifically,
a tour is the unit used in this study to describe the movement of a vehicle in an
assignment. Two decisions have to be made in a tour assigned to a vehicle: 1) how
many locations will be visited, and the order of the visiting, and 2) what supplies will
be carried by the vehicle. Equivalently, two types of information should be addressed
in a disaster relief operation, where the demand requests come from, and what types
of supplies are required.

In our study, a distinguishing feature is to consider different types of critical items
in a disaster relief operation. Based on human survival needs, medicine, water, and
food are the three most critical items, and these are included in our study. Since
critical items are not all needed equally, differentiation of urgent levels for these
three items should be considered. In other words, the most urgent item should
always be given the highest delivery priority, even though it may cause delays for
other items. To implement this idea, a penalty cost is employed for each item if it
cannot be delivered on time. Delivery on time means that the requested amount
of an item is delivered within the allowable time period, which is predefined based
on the characteristic of items. For example, people cannot survive without drinking
water for 48-72 hours; thus, the requested demand of water in a location cannot be
delayed more than 48-72 hours. A penalty cost is given if it takes longer than 72
hours to satisfy the demand. A similar idea is applied to the two other items.

The delivery of critical items in a disaster relief operation is similar to the con-
tventional vehicle routing problem (VRP), however, the characteristic of a disaster
relief operation doesn’t completely conform to the VRP, since demand in a location
is not likely to be satisfied by a single vehicle in a single delivery. Fortunately, one of the special cases in the VRP, the Split Delivery Vehicle Routing Problem (SDVRP), is suitable to describe our scenario. The key is that in the SDVRP, the demand from a customer can be fulfilled by more than one vehicle. In a disaster relief situation with different priority items, split delivery becomes a good strategy not only it is inevitable to deal with a large demand in a short time period, but it is also useful to allow decision makers to focus on those high priority items.

In addition to considerations of item characteristics, multiple objectives are taken into account in the study. Minimizing total travel cost is a typical objective which is used in transportation-related problems, e.g. the vehicle routing problem. However, in the emergency scenario, minimizing unsatisfied demand is important. A conflict exists between these two objectives. For example, the best way to reduce unsatisfied demand is to sent more vehicles to deliver supplies to demand locations; however, it is usually not allowed due to limitations of the number of vehicles and the budget for transportation of relief supplies. Consequently, the trade-off among different objectives becomes a critical challenge for decision makers, especially when they are making complicated decisions such as disaster relief operations, because any decision will have an immense impact on numerous victims in a disaster.

Based on the above analysis, we propose a multi-objective integer programming model to solve the delivery problem in the disaster relief scenario. The characteristics of our problem include a limited number of vehicles in a multi-period, multi-item environment. Since real disaster relief operations are usually complicated, large-scale integer programming problems, it is a NP-hard problem from the perspective of optimization. Therefore, two heuristic approaches are introduced in this study.
The first approach is to generate some useful tours based on genetic algorithms; then, in the second approach, a vehicle assignment heuristic approach is designed to appropriately divide vehicles to serve different clusters. Furthermore, since our problem is represented by a multi-objective integer programming model, methods of multi-objective optimization are adopted to help decision makers make more reliable decisions among different objectives.

The rest of this paper is organized as follows. Section 2 provides a review of the literature related to our research. Section 3 presents the mathematical formulation of the multi-objective integer programming model for the critical items delivery problem in disaster relief. Two heuristic approaches are introduced in Section 4 to solve this problem. In Section 5, the methods of multi-objective optimization in our study are described. Then, some computational experiments and results are provided and discussed in Section 6. Finally, Section 7 contains conclusions and suggestions for future work.

2. Literature Review

In the first subsection, literature on disaster relief operations is reviewed, especially that related to logistics planning. An overview of research in the Split Delivery Vehicle Routing Problem (SDVRP) is provided in the second subsection because it is much more similar to the disaster relief scenario.

2.1. Disaster Relief Operations

In the past few years, more and more studies of disaster relief operations have drawn attention and appeared in the literature. Two general types of topics are
usually explored in the research on disaster relief. The first type of research is related to rescue and transport casualties after the disaster, while the second type is focused on logistics problems to deliver supplies into the disaster-affected areas, intending to mitigate the potential casualties due to lack of supplies (i.e., food, water, medicine).

Gong and Batta (2007) considered ambulance allocation and reallocation models for a disaster relief operation. The initial problem is focused on allocating the correct number of ambulances to each cluster at the beginning of the rescue operation. Then, the second problem considers ambulance allocation to serve new clusters and fully utilize ambulances. Jotshi et al. (2009) developed a methodology for the dispatching and routing of emergency vehicles in a disaster environment. They modeled the problem including dispatch and routing of emergency vehicles to casualty pickup locations, and followed by delivery to appropriate hospitals.

In addition to the first type of research in disaster relief operations, more research focuses on the logistics problem in a disaster scenario. Fiedrich et al. (2000) proposed a dynamic optimization model to find the best assignment of available resources to operational areas after earthquake disasters. The objective is to minimize the total number of fatalities during the initial search-and-rescue period after strong earthquakes. Barbarosoglu et al. (2002) developed a mathematical model for assigning helicopters tasks during a disaster relief operation. They decomposed the decision problem into two sub-problems. The top level sub-problem was used to make tactical decisions, i.e. assigning helicopters from the air force bases to the operation base, while the base level sub-problem was used to decide operational routing and loading decisions.

Ozdamar et al. (2004) proposed an emergency logistics planning model for nat-
ural disasters. The model they proposed addressed the dynamic, time-dependent transportation problem, and this problem is solved repetitively at given time periods. In addition, another approach to emergency logistics distribution in a disaster relief operation was introduced by Sheu (2007). The approach he proposed was based on a hybrid method, including fuzzy clustering and multi-objective dynamic programming models.

Furthermore, there is some research considering both casualty pickup and supply delivery problems. Yi and Odamar (2007) proposed a dynamic logistics coordination model for both evacuation and support in disaster relief operations. A two stage methodology was employed: the first stage was used to minimize the delay in the arrival of commodities and in the healthcare for injuries, and the second stage detailed vehicle instructions to assign a loading and unloading schedule to each itinerary. Yi and Kumar (2007) proposed the ant colony optimization approach for disaster relief operations. The operations they were considering included dispatching commodities to distribution centers around the affected areas and evacuating the injuries to medical centers. In their approach, they decomposed the original problem into two subproblems and solved them in an iterative manner.

A study comparable to ours is found in Balcik et al. (2008); they considered a tour-based last mile distribution system. The “last mile” means the final stage of a humanitarian relief chain. Their study focused on allocating relief supplies among demand locations and determining delivery schedules for each vehicle in the planning horizon. However, in their study, the tour they determined was based on solving a Traveling Salesperson Problem (TSP). In contrast, there is no limitation on the number of locations where a vehicle has to visit in our study because, from a practical
viewpoint, it is usually difficult to assign vehicles to travel to too many locations, because vehicle capacity is relatively smaller than the demand in any single location. Another consideration different from theirs is that backorders of regularly consumed items (i.e., food) were not allowed, and unsatisfied demand was lost, while, in ours, we consider the backorder scenario, and unsatisfied demand will not only accrue a penalty cost, but also be accumulated to the next period until it has been satisfied. In fact, a challenging task in our study is to handle the fact that all unsatisfied demands of various items are continuously monitored during the entire planning period. A detailed explanation of this will be given in the next section.

2.2. Split Delivery Vehicle Routing Problem

The split delivery vehicle routing problem (SDVRP) was first proposed by Dror and Trudeau (1989). They showed that benefits could be expected through split deliveries both on total travel distance and the number of vehicles required. Furthermore, Dror et al. (1994) proposed an integer programming formulation and introduced several valid inequalities. A branch and bound algorithm was proposed in their research to solve the SDVRP. Frizzell and Giffin (1992, 1995) developed the extension of the SDVRP with time windows and grid network distances. Two improved heuristics approaches had been proposed in their studies, where one was to move customers between routes, and another was to exchange customers between routes.

Although not many studies have been published in the literature since the SDVRP was introduced, the SDVRP has drawn a lot of attention since 2000. Some theoretical research has appeared in the literature to investigate the characteristics of the split
deliveries. Belenguer et al. (2000) proposed a lower bound for the SDVRP according to a polyhedral study of the problem. They used a cutting-plane algorithm for small size instances. Bompadre et al. (2006) presented the lower bound for the VRP with and without split deliveries. Based on the lower bound they presented, they developed the quadratic iterated tour partitioning and the quadratic unequal iterated tour partitioning heuristics for the SDVRP. Archetti et al. (2006a) performed a worst-case performance analysis of the SDVRP. They concluded that the maximum cost savings that can be realized is at most 50%. Recently, Archetti et al. (2008) used an empirical study and again showed that the largest benefits are obtained when average customer demand is just over 50% of the vehicle capacity and when the variance of customer demand is relatively small.

In addition to theoretical research, solution approaches and applications have been studied. Ho and Haugland (2004) have developed a tabu search algorithm to solve the SDVRP, with a time window. Three steps were included in their approach. In the first step, they computed a feasible solution simply based on the traveling and waiting times; then, they improved the solution by using the tabu search algorithm with some move operators; finally, they excluded the splitting option in the third step to see if an improved solution could be found. The tabu search algorithm was also employed in Archetti et al. (2006b) for the SDVRP. Their approach was based on neighbor search in each iteration by removing a customer from a set of routes, and by inserting it either to a new route, or into an existing route with extra capacity. Jin et al. (2007) proposed a two-stage algorithm with valid inequalities to solve the SDVRP. The first stage created clusters to cover all demand and established a lower bound. In the second stage, the minimal distance traveled for each cluster was computed by solving the traveling salesman problem. Later, Jin et al. (2008) applied
column generation to solve the same problem with large demands. For some other application-oriented studies, interested readers can refer to Archetti et al. (2005); Chuah and Jon (2005); Nowak et al. (2008); and Ohlmann et al. (2008).

3. Disaster Relief Logistics Model

3.1. Assumption

The problem considered in this study is to deliver relief supplies to disaster-affected areas immediately after a disaster occurs, and to do so for a specific number of time periods. Multiple locations scattered around the disaster area are required to be served by a single distribution center (depot). The demand locations are clusters which are used to receive supplies from the distribution center and they then distribute them house by house in their neighborhood. It is presumed that the supplies are unlimited in the distribution center and that the demand requests from various clusters can be correctly estimated before the beginning of the planning horizon in a relief operation. The total demands are usually estimated according to the number of people who are affected in the neighborhood of each cluster, and are not required to be transported to hospitals or medical centers to get further medical treatment. For modeling simplicity, demand is assumed unchanged during all planning time periods. Three types of supplies (medicine, water, and food) are identified as basic items, and are required to be delivered to clusters via the transportation network. Urgency levels of items are differentiated based on their importance. We assume that the delivery of medicine is the highest priority, followed by delivery of water and then food.
In addition, characteristics of the transportation mode and the delivery methods are considered. Multiple but limited numbers of identical vehicles are used to transport critical items. Vehicle capacities are limited, both on weight and volume, according to manufacturers’ specifications. For each vehicle, tours are assigned in each period to deliver items to one or more clusters. Tours begin at the depot, continue to one or multiple clusters, and then return to the depot. For this study we assume the total working hours for the operation are limited to 12 hours a day. Therefore, the total travel time required to travel all predetermined clusters in any tour cannot exceed the constrained number of working hours. The analyses do not consider the time to load and unload items on or off the vehicle. Furthermore, any cluster can be served multiple times by a single vehicle or multiple vehicles, and demand can also be satisfied fully or partially in a single delivery. In other words, multiple deliveries of any type of item in a single cluster are allowed in our problem. Therefore, it can be regarded as a split delivery vehicle routing problem in our application.

3.2. Multi-Objective Logistics Model

Based on the above assumptions and general descriptions of the scenario, the relief delivery problem can be constructed by an integer programming model. In particular, three objectives are taken into account in this problem. Before introducing the mathematical formulation, notation, parameters and decision variables are defined below.
3.2.1. Notation, Parameters, and Decision Variables

Notation and Parameters:

i: the index of the supplies in the set of \(I = \{\text{medicine, water, food}\} \);

j: the index of the cluster in the set \(J = \{1, 2, 3, \ldots, j\} \);

k: the index of tours in the set \(K = \{1, 2, 3, \ldots, k\} \);

l: the index of vehicles in the set \(L = \{1, 2, 3, \ldots, l\} \);

\(t, n, m\): the index of time period in the planning horizon;

\(T\): the total planning periods;

\(v\): the index of periods when the backorder amount of demand is delivered;

\(u\): the index of severe level of delay;

\(J_k\): the set of locations which the vehicle will visit on tour \(k\);

\(d_{ijt}\): demand of the supply \(i\) at cluster \(j\) in time \(t\);

\(p_{iu}\): penalty of item \(i\) if the severe level of delay is \(u\);

\(t_k\): travel time required for the tour \(k\);

\(t_{oi}\): tolerated delay time of item \(i\);

\(a_i\): unit weight of item \(i\);

\(b_i\): unit volume of supply \(i\);

\(C_k\): total travel cost in tour \(k\);

\(H\): total working time available in a single period;

\(W\): the maximum load weight of a vehicle;

\(V\): the maximum volume capacity of a vehicle;

\(M\): a big number; and

\(S\): difference of satisfaction rate between any two clusters;

\(s_j\): satisfaction rate in cluster \(j\).
Decision Variables:

- \(x_{ijkl} \): amount of item \(i \) delivered at cluster \(j \) on tour \(k \) by vehicle \(l \) in period \(t \);
- \(w_{ijklmn} \): amount of item \(i \) delivered at cluster \(j \) on tour \(k \) by vehicle \(l \) in period \(m \) to satisfied demand in period \(n \), where \(m, n \in T \);

and

- \(y_{klt} \): equal of one when tour \(k \) is assigned to vehicle \(l \) in period \(t \), and 0 otherwise.

3.2.2. Formulation

Objective 1:

\[
\begin{align*}
\min \ Z_1 &= \sum_i \sum_j \sum_{u=1}^{T-t_0} \left(\sum_{t=1}^{T-t_0-T_0-1} \left(d_{ijt} - \sum_k \sum_l \left(x_{ijkl} + \sum_{v=t+1}^{t+u} w_{ijklv} \right) \right) \right) \cdot p_{iu} + \\
& \sum_i \left(\left(\sum_j \sum_t d_{ijt} - \sum_j \sum_k \sum_l \sum_t \left(x_{ijklt} + \sum_{m>t,m \in T} w_{ijklm} \right) \right) \right) \cdot p_{i1}
\end{align*}
\]

(1)

Objective 2:

\[
\min \ Z_2 = \sum_k \sum_l C_k y_{klt}
\]

(2)

Objective 3:

\[
\min \ Z_3 = S
\]

(3)

where

\[
S = \max \left\{ |s_p - s_q| \right\}, \quad \forall p, q \in j, p \neq q
\]

\[
s_j = \frac{\sum_i \sum_k \sum_t \sum_t \left(x_{ijklt} + \sum_{m>t,m \in T} w_{ijklm} \right)}{\sum_i \sum_t d_{ijt}}
\]

(4)
Subject to:

\[
\sum_k t_k y_{klt} \leq H \quad \forall l, \forall t \tag{5}
\]

\[
x_{ijkl} \leq M y_{klt} \quad \forall i, \forall j \in J_k, \forall k, \forall l, \forall t \tag{6}
\]

\[
w_{ijkltn} \leq M y_{klt} \quad \forall i, \forall j \in J_k, \forall k, \forall l, \forall t, \forall n < t \tag{7}
\]

\[
\sum_k \sum_l \sum_t x_{ijkl} + \sum_k \sum_l \sum_{m > t, m \in T} \sum_t w_{ijklmt} \leq \sum_t d_{ijt} \quad \forall i, \forall j \tag{8}
\]

\[
\sum_i \sum_j a_i \left(x_{ijkl} + \sum_{n < t, n \in T} w_{ijkltn} \right) \leq W \quad \forall k, \forall l, \forall t \tag{9}
\]

\[
\sum_i \sum_j b_i \left(x_{ijkl} + \sum_{n < t, n \in T} w_{ijkltn} \right) \leq V \quad \forall k, \forall l, \forall t \tag{10}
\]

\[
x_{ijkl} \geq 0 \quad \forall i, \forall j \in J_k, \forall k, \forall l, \forall t \tag{11}
\]

\[
w_{ijklmn} \geq 0 \quad \forall i, \forall j \in J_k, \forall k, \forall l, \forall m \in T, \forall n \in T \tag{12}
\]

\[
x_{ijkl} = 0 \quad \forall i, \forall j \notin J_k, \forall k, \forall l, \forall t \tag{13}
\]

\[
w_{ijklmn} = 0 \quad \forall i, \notin J_k, \forall k, \forall l, \forall m \in T, \forall n \in T \tag{14}
\]

\[
y_{klt} \in \{0, 1\} \quad \forall k, l, t \tag{15}
\]

In this model, the objective function (1) is a penalty function that aims to minimize unsatisfied demand after the relief operation in this period. There are two parts in this objective function. The first part (before the plus sign) indicates the total accrued penalty cost, which is the sum of penalty cost for various severe delay levels during the planning periods, and the second part is the penalty cost accrued
at the end of the planning periods. This objective function attempts to minimize total unsatisfied demand, especially for high priority items. The objective function (2) aims to minimize the total travel time for all tours and all vehicles. The purpose of this objective is to assign as many vehicles as possible during the working hour limitation in order to deliver the largest amount of items (this assumes that the demand in a disaster scenario will be large). Objective function (3) is used to minimize the difference in the satisfaction rate between clusters. The satisfaction rate is the ratio between the requested demand and the actual delivered amounts. The purpose of this objective is intent on balancing the service among clusters. “fairness” is the term usually used to describe this purpose. In addition to these objectives, equation (4) is the constraint used to calculate the difference in the satisfaction rate between any pair of clusters. Equation (5) indicates that the total travel time of all tours assigned to any single vehicle in this period cannot be longer than the available working hours in a single period. Equation (6) shows that delivery units of items only can exist if corresponding tours are selected to deliver supplies. Equation (8) shows that the total delivery amount of items cannot exceed the demand during the planning periods. Equations (9) and (10) are capacity constraints of a vehicle which are the total available loading weight limit and the total volume limit, respectively. Equations (11) - (14) are used to ensure that vehicles can only stop and deliver to clusters on tours assigned to them. Finally, equation (15) indicates that y_{klt} is a binary variable.

3.3. Properties of the Model

Since our problem is a variant of the split delivery vehicle routing problem, it is anticipated that our model can also benefit from properties of the SDVRP (Dror and
Trudeau 1989, 1990, Dror et al. 1994). In this section, we will prove these properties are valid in our multi-objective logistics model.

First of all, if the travel cost \(\{c_{pq}\} \), \(p, q \in J \) satisfies the triangular inequality, then the following theorem holds:

Theorem 1. In any optimal tour collection, no two tours can have more than one split demand cluster in common.

Proof. (by contradiction) Suppose that the theorem does not hold. Then in any optimal tour collection \(Y^* \), there exists two tours that have more than one split demand cluster in common. Consider such a solution \(Y^{**} \), in which tours \(r_1 \) and \(r_2 \) are visited by the same vehicle to two split delivery clusters \(p \) and \(q, p \neq q \). In tour \(r_1 \), we deliver \(\delta_{1p} \) to cluster \(p \) and \(\delta_{1q} \) to cluster \(q \). In tour \(r_2 \) we deliver \(\delta_{2p} \) to cluster \(p \) and \(\delta_{2q} \) to cluster \(q \).

Because these deliveries must satisfy the weight and volume constraints for the vehicle, we have \(\sum_i \sum_{j=p,q} a_i \delta_{ij}^k \leq W \), and \(\sum_i \sum_{j=p,q} b_i \delta_{ij}^k \leq V, k = 1, 2 \). Without loss of generality, suppose \(\delta_{1p} = \min \{\delta_{1p}, \delta_{1q}, \delta_{2p}, \delta_{2q}\} \), \(\forall i \), we now show that the same delivery amount of items in these two tours can be achieved by visiting only cluster \(q \) in tour \(r_2 \). For this new setup,

\[
\begin{align*}
\hat{\delta}_{1p}^1 &= 0, \forall i \\
\hat{\delta}_{1q}^1 &= \delta_{1q}^1 + \delta_{1p}^1, \forall i \\
\hat{\delta}_{1p}^2 &= \delta_{1p}^2 + \delta_{1p}^1, \forall i \\
\hat{\delta}_{1q}^2 &= \delta_{1q}^2 - \delta_{1p}^1, \forall i.
\end{align*}
\]
We can verify the continued satisfaction of the weight and volume constraints by noting that:

\[
\sum_i \sum_{j=p,q} a_i \hat{\delta}_{ij} = \sum_i a_i \hat{\delta}_{ip} + \sum_i a_i \hat{\delta}_{iq} = 0 + \sum_i a_i \delta_{ip} + \sum_i a_i \delta_{iq} = \sum_i a_i \delta_{ij} \leq W,
\]

and

\[
\sum_i \sum_{j=p,q} b_i \hat{\delta}_{ij} = \sum_i b_i \hat{\delta}_{ip} + \sum_i b_i \hat{\delta}_{iq} = 0 + \sum_i b_i \delta_{ip} + \sum_i b_i \delta_{iq} = \sum_i b_i \delta_{ij} \leq V,
\]

and

\[
\sum_i \sum_{j=p,q} a_i \hat{\delta}_{ij}^2 = \sum_i a_i \hat{\delta}_{ip}^2 + \sum_i a_i \hat{\delta}_{iq}^2 = \sum_i a_i \delta_{ip}^2 + \sum_i a_i \delta_{iq}^2 + \sum_i a_i \delta_{ij}^2 - \sum_i a_i \delta_{ip} = \sum_i \sum_{j=p,q} a_i \delta_{ij}^2 \leq W,
\]
and

\[
\sum_i \sum_{j=p,q} b_i \delta_{ij}^2 = \sum_i b_i \delta_{ip}^2 + \sum_i b_i \delta_{iq}^2 \\
= \sum_i b_i \delta_{ip}^2 + \sum_i b_i \delta_{ip}^1 + \sum_i b_i \delta_{iq}^2 - \sum_i b_i \delta_{ip}^1 \\
= \sum_i \sum_{j=p,q} b_i \delta_{ij}^2 \leq V.
\]

Suppose \(S^1 \) and \(S^2 \) are solutions of the original delivery strategy and the new delivery strategy, and \(Z^1 = \{z_1^1, z_2^1, z_3^1\} \) and \(Z^2 = \{z_1^2, z_2^2, z_3^2\} \) are corresponding objective values of three objectives as (1) - (3). Since the delivery quantities of various items to the two clusters remain the same, the penalty cost due to unsatisfied demand and the satisfactory rates in each cluster are unchanged. Therefore, \(z_1^1 = z_2^2 \) and \(z_3^1 = z_3^2 \).

However, the total travel cost is reduced because the new tour has fewer clusters to visit and due to the triangular inequality assumption. We can conclude that \(Z^1 \) is dominated by \(Z^2 \), contradicting the optimality of \(Y^* \). The theorem follows. \(\square \)

Definition 1. Suppose there exist \(k \) distinct clusters \(l_1, \ldots, l_k \) and \(k \) tours in the optimal tour collection \(Y^* \). \(r_1 \) includes cluster \(l_1 \) and \(l_2 \), \(r_2 \) includes cluster \(l_2 \) and \(l_3 \), \ldots, and \(r_k \) includes cluster \(l_k \) and \(l_1 \). The collection of clusters \(\{l_i\}_{i=1}^k \) is called a \(k \)-split cycle.

Theorem 2. In the multi-objective logistics problem, there is no \(k \)-split cycle tours in the optimal tour collection \(Y^* \), for any \(k \geq 2 \)

Proof. Omitted for the sake of brevity, as its proof follows a very similar argument to that used in the proof of Theorem 1. \(\square \)
The benefit of Theorems 1 and 2 is significant when we propose one of our approaches. The explanation will be provided in section 4.2.5.

4. Heuristic Approaches

4.1. Challenge and Strategy of Optimization

As shown in the model above, two important parameters are the set of tours and the number of vehicles. For a small relief logistics problem (e.g., only 3 or 5 clusters), enumerations of all possible tours are still practicable. However, as the number of clusters increases, the number of possible tours increases exponentially. Although the limitation on working time is helpful in eliminating some infeasible tours that require too much travel time, the number of remaining tours is still very large.

The number of vehicles is another issue to consider. More vehicles used in disaster relief operations means more assignment decisions have to be made. Therefore, the following two questions emerge when facing a large scale problem: 1) How can we make sure all feasible tours are included in the mathematical model?, and 2) can the optimization software (e.g., CPLEX) solve the problem with so many tours and vehicles included? Unfortunately, both questions have negative answers. To overcome these deficiencies, two heuristic approaches are introduced here; they are based on reducing the number of vehicles, or reducing the number of tours in the model, or both.

In the first approach, we try to reduce the number of tours required in the mathematical model. A tour generator is employed to generate a set of tours as parameters in the mathematical model. For practical purpose, the number of tours in the set
is usually limited to a small number (e.g., 10). The approach we used in the tour generator is based on the genetic algorithm. The results from the tour generator are a set of “good” tours that is believed will produce an approximately optimal solution. In the second approach, a vehicle assignment heuristic approach is developed to assign vehicles to different clusters appropriately, in order to reduce the number of vehicles used in the model. The assignment will be performed geographically, in order to shorten the distance that vehicles travel. In other words, geographical areas will be divided into small geographical blocks, and a partial number of vehicles will be assigned to one of these blocks. The details of our approaches are illustrated in the following subsections.

4.2. Tour Generation Approach

As described above, enumerating all tours becomes impractical and also increases the difficulty of solving problems when the number of clusters becomes large. Therefore, a “tour generator” is proposed to rectify this deficiency as our first approach. The tour generator is used to generate a set of a small number of tours each time as parameters in the mathematical programming model. It will iteratively generate a set of tours and interact with the mathematical model to evaluate the performance of various combinations of tours. To generate a set of “good” tours efficiently, a meta-heuristic approach is employed. Among meta-heuristic approaches that have been developed and applied in the literature, genetic algorithms (GA) are one of the popular and powerful meta-heuristic methods. In the past, some studies have appeared in the literature to propose how to apply genetic algorithms to vehicle routing problems (Baker and Ayechew 2003, Ho et al. 2008, Prins 2004, Silva et al. 2008). The nature of Genetic Algorithms is a good fit for our purpose, because it is
an effective method to explore the solution space globally and converge on a group of good solutions (or tours) in our application.

GA starts with an initial group of randomly selected solutions corresponding to the problem, called the population, and each solution in the population is called a chromosome. In the tour generator, a chromosome is a set of a limited number of tours that is used to feed into the mathematical model shown in the previous section. Chromosomes evolve iteratively, and each evolution is called a generation. As shown in Figure 1, in each generation, chromosomes in the population, called parents, are evaluated to determine the quality of each chromosome. All of them are going through selection, crossover, and mutation processes to produce children. The feasibility test and enforced mutation are performed to make all children valid. Then, these children are evaluated and compared with their parents in order to eliminate some less effective children. The identical number of chromosomes as the previous population is selected among parents and children to constitute the population in the next generation. The procedure is repeated until a predefined number of iterations has run. The measure of evaluation of a chromosome is usually called the fitness value, and this is defined according to various applications. Further discussions of individual operations in this procedure are now provided.

4.2.1. Initialization

The chromosome representation is used to represent the tours used in the mathematical model. Each chromosome consists of a set of tours, the number of which is defined arbitrarily. The tradeoff is that if more tours are generated, more computational effort is expected to optimize the problem, while if only a few tours are used,
it is unlikely to produce the optimal tour combination. The visited clusters in each tour are also defined according to different purposes. In our case, we assume that the demand in each single cluster is usually very large as compared to the assumed vehicle capacities; therefore, it is improbable for vehicles to visit many clusters in a single tour. Based on our experiments, 1 to 3 clusters in a single tour is reasonable. It should be clarified that this number is greatly influenced by different factors, i.e., demand, the capacity of vehicle, the network, etc. The representation of the chromosome in our study is shown in Figure 2. This chromosome is designed for five clusters. The first row is the reference row, and is used to indicate the number of
clusters in the corresponding tour (i.e., the first tour is only required to visit one cluster, and the cluster assigned to this tour is “2”). It is noted that this row will not be included in the genetic operations during the procedure. Therefore, suppose “0” indicates the depot; there is a total of six tours in this chromosome, (0-2-0), (0-1-0), (0-5-0), (0-3-4-0), (0-3-2-0), and (0-1-4-5-0).

In the initial step of the GA, a set of chromosomes is generated to form a population that usually consists of 20-50 chromosomes. Suppose there are k tours included in each chromosome for a j cluster problem, and the number of clusters visited in each tour is $c_i, i = 1, \ldots, k$, respectively. Then there is a $N \times \sum_i c_i$ matrix as the initial population in the GA, where N is the size of the population. We applied the nearest neighborhood principle to generate the initial population. Initially, a cluster is randomly selected; then the closest cluster is selected to be the next following cluster in the chromosome from those unselected clusters until all clusters are selected. The procedure is repeated until all positions in a chromosome are filled. Following the same method, N chromosomes can be generated, and the initial population is obtained.
4.2.2. Evaluation

Once the initial population is available, evaluation of each chromosome takes place to explore the quality of corresponding optimal solutions. The fitness function in our study is the objective function in the mathematical model. However, due to the computational effort expected to solve the whole problem (denoted by ψ_w), instead of solving that, the partial problem (denoted by ψ_p) replaces that and is solved in the evaluation step. The partial problem only includes one vehicle, and this vehicle has only to serve the equally divided demand in each cluster. The definition of equally divided demand is described as follows. If the demand in each cluster is d_i, and total number of vehicles is l, then each vehicle will take responsibility for only d_i/l in each cluster. The reason for using the partial problem as the measure to evaluate the quality of chromosomes is based on the following theorem.

Theorem 3. If a set of tours $\lambda = [k_1, k_2, \cdots, k_l]$ results in the best solution in ψ_p, the same set of tours can also result in the best solution in ψ_w with the same setting (e.g. demand, travel time, etc.).

Proof. (by contradiction) Assume λ^* is the best set of tours in ψ_p, and the corresponding unsatisfied demand obtained by using these tours in the model is \bar{d}^*. Because all demand is equally divided and assigned to each vehicle, if every vehicle uses the same set of tours λ^*, the unsatisfied demand resulting from solving ψ_p for each vehicle is identical, and the total unsatisfied demand will equal $\sum_t \bar{d}^*$. If λ is claimed the best set of tours in ψ_w, where $\lambda \neq \lambda^*$, then the total unsatisfied demand from using λ in each vehicle is $\sum_t \bar{d}$, and the unsatisfied demand from each vehicle, because they all have identical settings, is \bar{d}. Because $\sum_t \bar{d} < \sum_t \bar{d}^*$, thus $\bar{d} < \bar{d}^*$. This contradicts the assumption. Therefore, λ^* is also the best set of tours in ψ_w. \[\square\]
4.2.3. Selection

The purpose of the selection step is to pair chromosomes in the population for the following operations in the GA. The usual method employed for selection is called the roulette wheel selection operation (Goldberg 1989). This method can be imagined as a roulette wheel that has sections for all chromosomes in the population, and the size of each section is proportional to the fitness value of the corresponding chromosome. Thus, fitter chromosomes will have higher probabilities of being chosen. It is noteworthy that there is no guarantee that the chromosome with the highest fitness will be selected because the selection criterion is decided by a cumulative probability value that is generated randomly between 0 and 1. Assume the population size is \(N \); then the selection procedure is described as follows:

Step 1: Calculate the total fitness of the population:
Let \(Obj(n) \) be the fitness value of chromosome \(n \), then

\[
f = \sum_{n=1}^{N} Obj(n)
\]

(16)

Step 2: Calculate the proportional probability \(p_n \) for each chromosome:

\[
p_n = \frac{f - Obj(n)}{f \times (n - 1)}, \quad n = 1, 2, \ldots, n
\]

(17)

Step 3: Calculate the cumulative probability \(F_n \) for each chromosome:

\[
F_n = \sum_{j=1}^{n} p_j, \quad n = 1, 2, \ldots, N
\]

(18)
Step 4: Generate a random number \(r \in (0, 1] \).

Step 5: If \(F_{n-1} < r < F_n \), then chromosome \(n \) is selected.

4.2.4. Genetic Operations

There are two main genetic operations in GA: crossover and mutation. The crossover operator exploits a better solution around the current searching area in the solution space, while the mutation operator explores other areas in the solution space to increase the diversity of solutions, and it is the main reason why GA can achieve a global optimal solution instead of a local optimal one.

The crossover operation used in our GA is inspired by and modified from Cicirello’s Non-Wrapping Order Crossover (NWOX) (Cicirello 2006), and we modify it based on our characteristics of the chromosome’s representation. The advantage of NWOX is that it strongly preserves relative order, but also respects the absolute positions within the parent. Our modified NWOX starts by copying parents \(P_1, P_2 \) as two children \(C_1, C_2 \). One position \(a \) is selected randomly from the interval \([1, L-1]\), where \(L \) is the length of the chromosome, and \(b = \lfloor L/n_c \rfloor - 1 \) is the number of positions after \(a \), where \(n_c \) is the number of clusters in the problem. Suppose \(v_1(i) \) and \(v_2(i) \) represent the values of position \(i \) in the parent \(P_1 \) and \(P_2 \) respectively, hence the values \(v_2(a), v_2(a+1), \ldots, v_2(a+b) \) are searched in \(C_1 \) from the leftmost side to the rightmost side separately, and only the “first found” position which has the value we are looking for is replaced by “holes” as shown in Figure 3(b). The same procedure is repeated in \(C_2 \) to replace the holes in those first found places of corresponding values \(v_1(a) \) to \(v_1(a+b) \). Then, a sliding motion is performed to move holes into \(a \) to \((a+b) \) positions. The non-hole values are slid leftward until
all of them are grouped together contiguously. All remaining non-holes in the region are slid rightward while leaving holes in the region (see Figure 3(c)). Then, values $v_2(a), v_2(a+1), \ldots, v_2(a+b)$ of parent P_2 are placed in position $a, a+1, \ldots, a+b$ in child C_1, and, similarly, values $v_1(a), v_1(a+1), \ldots, v_1(a+b)$ of parent P_1 are placed in position $a, a+1, \ldots, a+b$ in child C_2 as Figure 3(d).

On the other hand, the mutation operator is performed based on “Insert mutation”. The Insert mutation removes a value in the chromosome randomly, and re-inserts that value into a randomly selected position. The mutation operation for each child is executed based on a threshold probability value.

4.2.5. Feasibility Test and Enforced Mutation

In the GA employed in this study, one important mechanism is the feasibility test which is used to test whether a child generated from genetic operations is feasible or not. A child is considered to be feasible if all tours contained in this chromosome are valid. In our case, a valid tour is one where any location will not be visited more than once in a tour. In addition, based on Theorems 1 and 2, we can delete those
tours that have more than one cluster in common, or are \(k \)-split cycle tours. The benefit of doing this is that we will not waste time testing some tours that are not able to become the dominating solutions in the multi-objective optimization process due to Theorems 1 and 2.

If one of the tours in the chromosome is invalid, enforced mutation is applied to modify invalid tours. The idea of enforced mutation is to remove the location that is visited multiple times or causes the violation of Theorems 1 and 2, and to switch it with any other location in other tours without resulting in any invalidity. The location to be switched with is chosen randomly. This operation is performed repeatedly until all tours are valid.

4.2.6. Population Update

After the genetic operations, \(2N \) chromosomes, including \(N \) parents and \(N \) children respectively, are available. Because the size of the population is fixed, half of these chromosomes will be eliminated due to their poor quality. For this purpose, all children are evaluated to obtain fitness values and compared with parents. Then, the best \(N \) chromosomes are chosen to be the population in the next generation.

Through the procedure described above, the final output of the tour generator is a set of tours. Thus, the number of tours actually used in the mathematical model is limited to an acceptable number, based on the preference of users. Meanwhile, the model proposed above is expected to be more solvable than before.
4.3. Vehicle Assignment Heuristic

We also use a Vehicle Assignment Heuristic (VAH). The purpose of this approach is to reduce the number of vehicles and also to reduce the number of tours used in the model at the same time. The idea is to decompose the original problem into several smaller subproblems in which each subproblem only contains a partial number of vehicles in order to obtain solutions faster. After solving these subproblems, the final solution for our problem will be constituted by combining all solutions from them.

We first define some notation. Assume a set of vehicles $V = 1, \ldots, l$ is used to deliver relief supplies to a set of clusters $C = (c_k, k = 1, \ldots, j)$, and $d_i(c_k)$ represents the demand of item i in cluster c_k. If we use “it” to indicate the iteration of the algorithm have been executed, I as the total desired number of iteration in the algorithm, τ as the number of times that the solution is not improved after an iteration, and TH as the maximum times allowed in a row that the solution is not improved, then the VAH procedures can be described as follows.

VAH algorithm:

1. Randomly assign a partial number of vehicles $v(g_n)$ to serve only partial clusters $c(g_n)$ (≤ 3 preferably), g_n is the collection of n groups of vehicles and their corresponding serving clusters, where $\sum_n v(g_n) = l$, and $\forall p, q \in n, c(g_p) \cap c(g_q) = \phi$.

2. For each g_n, all feasible shortest travel time tours are determined.

3. For each g_n, construct the mathematical model based on $v(g_n)$, $c(g_n)$, and the corresponding demand $d_i(c_k)$, $\forall i, \forall c_k \in c(g_n)$; solve n problems by CPLEX, and get the objective values z_n and the total objective value $z_{all} = \sum_n z_n$. If
it is in the initial step, set the best total objective value $z^*_{\text{all}} = z^0_{\text{all}}$, and $it = 1$.

4. Find a pair of groups (p, q) that has the minimum and maximum objective value, respectively.

5. **If** $v(g_p) > 1$, **then** do steps 6 and 7:

6. Remove one vehicle from $v(g_p)$, and assign it to $v(g_q)$.

7. Update z_p, z_q, and z_{all}.

8. **If** $z^t_{\text{all}} < z^*_{\text{all}}$, update $z^*_{\text{all}} = z^t_{\text{all}}$. Go to step 13.

9. **Else** $z^*_{\text{all}} = z^*_{\text{all}}$, and $\tau = \tau + 1$.

10. **If** $\tau < TH$, go to step 5.

11. **Else** Stop the algorithm.

12. **Else** Find the next minimum objective value group, go to step 5.

13. **If** $it < I$, go to step 2.

14. **Else** Stop the algorithm.

5. Multi-Objective Optimization Methods

Several methods developed for multi-objective optimization in vehicle routing problems have been proposed in the literature. They can be divided into three categories: scalar methods, Pareto methods, and others (Jozefowiez et al. 2008). Scalar methods use mathematical transformations to integrate multiple objectives. Pareto methods are used often in evolutionary algorithms by applying the notion of Pareto dominance to evaluate or compare objectives. The third category is methods considering various objectives separately. Among them, scalar methods are still frequently applied in multi-objective optimization problems. In general, the weighted sum method and the ϵ-constraint method (Chankong and Haimes 1983) are two
major methods in scalar methods. In this paper, an up-to-date scalar method called the elastic constraints method (Ehrgott 2006) is applied to present optimum results of multi-objective optimization in our problem. In this section, we provide a brief introduction to this method.

Suppose a multi-objective integer programming model is expressed as follows:

\[
\begin{align*}
\text{min} & \quad Cx \\
\text{s.t.} & \quad x \in X
\end{align*}
\]

where \(C \) is a \(p \times n \) objective function matrix with integer coefficients \(c_{ki}, k = 1, \ldots, p; i = 1, \ldots, n \), and \(X = \{ x \in \mathbb{Z}^n : Ax = b, x \geq 0 \} \). We also denote that \(c_k \) as the \(k^{th} \) row of \(C \) and \(y_k = c_k x \) as the \(k^{th} \) objective value. Then, a feasible solution \(x^* \) is efficient if there is no \(x \in X \) such that \(Cx \leq Cx^* \), and \(y^* = Cx^* \) is non-dominated if \(x^* \) is efficient. For solving a multi-objective programming problem, we are looking for the set of all efficient solutions \(x^* \) and the set of non-dominated points \(y^* \).

In the \(\epsilon \)-constraint method, one of the \(p \) objectives is retained in the objective, and the other \(p - 1 \) objectives become constraints. Therefore, the multiple objectives become one as shown in equation (19) and \(p - 1 \) new constraints are added in addition to the original constraints \(x \in X \) in the problem. The formulation of the new objective and the \(\epsilon \)-constraints are:

\[
\begin{align*}
\text{min} & \quad c_jx \\
\text{s.t.} & \quad c_kx \leq \epsilon_k, k \neq j \\
& \quad x \in X
\end{align*}
\]
All efficient solutions can be found by specifying the ϵ_k values. A nice property exists: x^* is efficient if and only if it is an optimal solution of (19) for all $j = 1, \ldots, p$, where $\epsilon_k = c_k x, k \neq j$ (Ehrgott 2006). However, due to the fact that the upper bound constraints $c_k x \leq \epsilon_k, k \neq j$ are knapsack-type constraints, the above property is usually compromised due to the difficulty of solving (19).

Therefore, based on the ϵ-constraint method, the elastic constraints method was proposed (Ehrgott 2006) aiming to combine the advantages of the weighted sum method and the ϵ-constraint method but avoiding their disadvantages. In other words, this method tries to solve a single objective version of the multi-objective programming problem as the weighted sum method and is also able to generate all efficient solutions as the ϵ-constraint method. As shown in equation (20), multiple objective functions are converted to a single objective function with penalty terms, and the elastic constraints are added as constraints.

$$\begin{align*}
\text{min} & \quad c_j x + \sum_{k \neq j} \mu_k s_k \\
\text{s.t.} & \quad c_k x + I_k - s_k = \epsilon_k, k \neq j \\
& \quad s_k, I_k \geq 0, k \neq j \\
& \quad x \in X
\end{align*}$$

(20)

where μ_k as the penalty coefficients, and ϵ_k is a specified value. Two additional variables are used, slack variables I_k and surplus variables s_k, to make the upper bounds on constraints in (19) into equality constraints. In the above formulation, two parameters are required to be determined, the penalty coefficients μ_k, and the right-hand side values ϵ_k, which are usually decided by users.
6. Computational Results

In this section, the computational results are presented. Three parts are included in the computational experiments. In the first part, a random instance generator is designed to produce numerical instances for the following computational experiments. In the second part, a comparison of performance among different approaches is provided to evaluate their advantages and disadvantages. In the last part, the tradeoff analysis among three objective functions is conducted to present the dilemma of decision making when facing a multiple objective scenario.

6.1. Random Instance Generator

The random instance generator has been coded in C. We assume the working area of the disaster relief operation is in a 50 square mile area. The location of the depot and all demand clusters are randomly located by the instance generator in this area with the outputs of coordinate points. To transform Euclidean distances to road distances, the following equation is adopted from the literature (Love and Morris 1979):

\[
d(q, r; k, p, s) = k \left[\sum_{i=1}^{2} |q_i - r_i|^p \right]^{1/s}
\]

(21)

where \(q \) and \(r \) are coordinate points on the plane in the disaster area, and \(k, p, s \) are parameters. Suggested ranges of these parameters are \(k \in \{0.80, 2.29\} \), \(p, s \in \{0.90, 2.29\} \), respectively. In our instance generator, parameters are randomly generated from corresponding ranges of each parameter. It is noted that only distances between the depot and each cluster are estimated according to (21), and distances among clusters are generated randomly based on the triangular inequality (i.e., road
distances are estimated on link \overline{OA} and \overline{OB}, if O is the depot and A, B are two demand clusters, but the distance \overline{AB} is generated randomly between $(\overline{OA} + \overline{OB})$ and $(\overline{OA} - \overline{OB})$ to ensure that the triangular inequality holds. After road distances of all links are obtained, the speed limit and the congestion status are given in each link randomly to represent the true scenario on roads. For simplicity, we only use three different speed limits (i.e., 30 mi/h, 45 mi/h, and 60 mi/h), and three type of congestion (i.e., 0%, 50%, and 100%). The percentage of the congestion indicates the additional travel time required to use that link (i.e., 50% congestion means an extra 50% of travel time compared with uncongested travel time).

Three sets of problems are generated by the instance generator: small, medium, and large. The corresponding characteristics of each set of problems are provided in Table 1. Other outputs from the instance generator include the demand in each cluster, the number of vehicles used in each set of problems, tours in the network of each problem, and models for each problems. Particularly, the number of vehicles is the same in three problem sets but it varies within the same set of the problem.

6.2. Performance Comparison

We test the performance of our approaches on three sets of problems. Parameters used in our experiments are summarized in Table 2. The heuristic approaches proposed in this paper have been coded in C, which interfaces with the callable library in the ILOG CPLEX 11.2 version, and each instance with different approaches has been run on a computer with 2.00 GB RAM, and Intel Pentium D 3.40 GHz processor. The maximum running time for any problem is limited to 3,600 seconds.

To compare the performance among various approaches, we first use the single
Table 1: Characteristics of Problem Sets

<table>
<thead>
<tr>
<th>Set</th>
<th>Problem</th>
<th>No. of clusters</th>
<th>No. of tours</th>
<th>No. of vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>22</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>22</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>3</td>
<td>4</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>21</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>22</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>31</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>33</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td>3</td>
<td>5</td>
<td>31</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>39</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>41</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary of Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle:</td>
<td>capacity: 11580 kg</td>
</tr>
<tr>
<td></td>
<td>volume: 56 m³</td>
</tr>
<tr>
<td>Items:</td>
<td></td>
</tr>
<tr>
<td>medicine</td>
<td>ship. weight: 86.5 kg; ship. volume: 0.22 m³</td>
</tr>
<tr>
<td>water purifications</td>
<td></td>
</tr>
<tr>
<td>equipment</td>
<td>ship. weight: 400 kg; ship. volume: 4.3 m³</td>
</tr>
<tr>
<td>canned food</td>
<td>ship. weight: 700 kg; ship. volume: 1.3 m³</td>
</tr>
<tr>
<td>Working hours</td>
<td>12 hours</td>
</tr>
<tr>
<td>Planning periods</td>
<td>4</td>
</tr>
</tbody>
</table>
objective problem to evaluate the performance. In our study, due to the scenario of
disaster relief operations, equation (1) is regarded as the most important objective
function that it aims to minimize unsatisfied demand. Table 3 summarizes results
from various approaches by solving the single objective problem with equation (1).
The first two columns identify the problem IDs and the number of tours used in
each problem. Under the CPLEX MIP column, the optimal objective value, the
running time (seconds), and the MIP gap is shown. For some problems, there is no
feasible solution available within 3,600 seconds, so we designate this as infeasible.
In addition, based on our preliminary experiments, our model is very difficult to
prove optimality by using the default setting (MIP gap = 0.001%) of CPLEX, so we
modify this parameter to 0.01% to reduce the required time of proving optimality.
Under the tour generation column, the same data is provided as under the CPLEX
MIP column. It is noted that the number of tours used in M1-M5 and L1-L5 is
10 respectively, which is the result from the tour generation approach described in
section 4.2. Under the VAH approach, the solution is presented as a percentage of
the optimal value, and the running time is also reported in the last column.

Table 4 summarizes the average performance of both the Tour Generation ap-
proach and VAH approach. The Tour Generation approach fixes the infeasible situ-
ation in CPLEX MIP, and the average running time is also reduced by about 22.3%.
The average percentage of optimality is 99.8% which is almost the same as CPLEX
MIP. However, the variance of running times in the Tour Generation approach is
still high (i.e., from 17.81 to 3,600 seconds), because CPLEX spends a long time
in proving optimality. Figure 4 reveals this situation by showing the relationship
of the running time and corresponding solutions for some instances (i.e, for these
four instances, they all reach or almost reach the final optimal solution in about 600
<table>
<thead>
<tr>
<th>ID</th>
<th>Prob.</th>
<th>CPLEX MIP</th>
<th>Tour Generation</th>
<th>VAH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Obj. value</td>
<td>Obj. value</td>
<td>% optimality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time (seconds)</td>
<td>Time (seconds)</td>
<td>(%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIP gap (%)</td>
<td>MIP gap (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td>232</td>
<td>178.11</td>
<td>0.02</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>344</td>
<td>44.54</td>
<td>0.03</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>11,792</td>
<td>312.16</td>
<td>0.07</td>
</tr>
<tr>
<td>S4</td>
<td></td>
<td>49,424</td>
<td>260.15</td>
<td>0.10</td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td>35,884</td>
<td>17.81</td>
<td>0.07</td>
</tr>
<tr>
<td>M1</td>
<td></td>
<td>48,384</td>
<td>3,600</td>
<td>0.12</td>
</tr>
<tr>
<td>M2</td>
<td></td>
<td>infeasible</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>M3</td>
<td></td>
<td>41,500</td>
<td>3,287.17</td>
<td>0.07</td>
</tr>
<tr>
<td>M4</td>
<td></td>
<td>infeasible</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>M5</td>
<td></td>
<td>36,368</td>
<td>2277.21</td>
<td>0.10</td>
</tr>
<tr>
<td>L1</td>
<td></td>
<td>infeasible</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>infeasible</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>164,449</td>
<td>3,600</td>
<td>1.43</td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>infeasible</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>422,855</td>
<td>3,600</td>
<td>1.53</td>
</tr>
</tbody>
</table>
seconds). On the other hand, the VAH approach finds a solution in a very short running time with a 4.5% optimality gap. Although the solution is less optimal than the other two approaches, we concluded that VAH can be an efficient approach in a disaster relief operation due to the special requirement of quick responses.

![Figure 4: Instances showing relationship between % optimality gap and running time](image)

Table 4: Average Performance Results

<table>
<thead>
<tr>
<th></th>
<th>CPLEX MIP</th>
<th>Tour Generation</th>
<th>VAH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average time</td>
<td>2.345.14</td>
<td>1.821.54</td>
<td>32.33</td>
</tr>
<tr>
<td>(seconds)</td>
<td></td>
<td></td>
<td>95.5</td>
</tr>
<tr>
<td>Average % optimality</td>
<td>99.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(second)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

38
6.3. Tradeoff Analysis among Objectives

In this section, we present the tradeoff analysis among three objectives in our logistic model. We use problem M2 to present the analysis in this section. The relationship between objective functions 1, 2, and 3 is shown in Figures 5 and 6, where objective 1 aims to minimize unsatisfied demand, objective 2 intends to minimize total travel time for all tours and vehicles and objective 3 means to minimize the difference in satisfaction rate between clusters which have the highest and the lowest ones. They are obtained by using the elastic constraint method. For both figures, the x-axis represents ϵ_1, which is the tolerable increment of the penalty cost due to unsatisfied demand, and the y-axis represents the travel cost and maximum satisfaction rate, respectively. In our experiment, the tolerable increments are defined from 1% to 9%, and therefore, ϵ_1 is computed by the equation $\epsilon_1 = Z^*_1(1 + \delta)$, where $\delta = 0.01, \ldots, 0.09$. For both figures, the line represents the approximate Pareto front of the two objectives when we fix the other third objective (i.e., the objective 3 is fixed in Figure 5). As the penalty cost increases, both the travel cost and the maximum satisfaction rate is reduced respectively. Therefore, it is obvious that there are tradeoff situations for users to determine what increments of the penalty cost are desired. In particular, the impact of increasing the allowable penalty cost for the objective 3 is more sensitive to that for the objective 2 since the objective value of the objective 3 almost reaches zero when we increase the penalty cost by 4%.

Moreover, if all three objectives are considered at the same time, Figure 7 shows the approximate Pareto front surface by the elastic constraint method with parameters u_2 and u_3 equal 100 for the problem M1. We use values of objectives 2 and 3 from Figures 5 and 6 to investigate the impact of both objectives to the penalty
Figure 5: Pareto front of objective 1 and 2

Figure 6: Pareto front of objective 1 and 3
cost. From the figure, the maximum difference of satisfaction rates does not affect too much penalty cost under the same level of travel costs, while the penalty cost is significant influenced by the travel cost. The travel cost between 780.3 to 816.3 is the ideal targeted range to pursue since it results in a near-optimal penalty cost but at the same time significantly reduces the travel cost.

7. Conclusions and Future Work

This paper proposes a logistics model in a disaster relief operation for delivery of critical items. Our model considers a multi-objective, multi-period, multi-commodity, and multi-vehicle scenario. The distinguishing feature of our work is to consider the delivery priorities of different items and to encompass this idea in
one of our objectives. In addition, we also determine two main factors that increase difficulties of solving this problem: the number of tours and the number of vehicles. Two heuristic approaches are developed, the Tour Generation heuristic and the Vehicle Assignment heuristic (VAH), to overcome these two factors. The performance of these two approaches is analyzed and their efficiency is investigated. We found that, in general, the Tour Generation heuristic can resolve infeasible situations effectively, and provide good solutions. On the other hand, the VAH approach provides solutions in a short computational time while they have about 5% optimality gap compared to solutions from the Tour Generation heuristic. Furthermore, the tradeoff analysis of a multi-objective optimization is provided. We investigate relationships among the three objectives, and determine the targeted range of the travel cost that is worth pursuing without significantly increasing the penalty cost.

We suggest three directions for future work. The first is to investigate the robustness of our model with respect to uncertainty in demand values, congestion levels, network accessibility, and cluster correlations with respect to the highway roadways. The second is to develop more efficient multi-objective optimization methodologies for our problem. The third is to consider a distributed scenario in which several temporary depots are required to be located and serve as “bridges” between the distribution center and demand locations.

References

Jin, M. Z., Liu, K., Bowden, R. O., 2007. A two-stage algorithm with valid inequalities

