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Abstract17

In this paper, a new logistics model is proposed for the emergency supply of critical items in the aftermath of18

a disaster. The modeling framework considers multi-items, multi-vehicles, multi-periods, soft time windows, and a19

split and prioritized delivery strategy scenario, and is formulated as a multi-objective integer programming model.20

To effectively solve this model we limit the number of available tours for delivery vehicles; towards this end a21

decomposition approach is introduced that aims to decompose the original problem geographically. A computational22

study is conducted to evaluate the proposed approach, and a case study and related analysis are presented to illustrate23

the potential applicability of our model.24

keywords: Vehicle routing problem, disaster relief, prioritized delivery, split delivery, soft time windows25
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INTRODUCTION26

In recent years, much human life has been lost due to natural disasters. At least 1,836 people lost their lives in27

Hurricane Katrina in 2005 (1), and 86,000 died in the Kashmir Earthquake in Pakistan in 2005 (2). The most recent28

earthquake in Haiti caused approximately 230,000 deaths and more than 300,000 injuries (3). To mitigate damage29

and loss in disasters, studies in pre-disaster, during disaster, and post-disaster issues have been widely conducted30

in the past few years (4, 5, 6). A critical challenge in post-disaster is to transport sufficient essential supplies to31

affected areas in order to support basic living needs for those trapped in disaster-affected areas. Supplies that are32

essential for human survival include water, food (e.g., ready-to-eat meals), and prescription medications. In general,33

prescription medication (e.g., diabetic supplies) are needed most urgently, followed by water and food, respectively.34

The requirement for delivering essential supplies that have different priorities to a disaster-affected area provides the35

motivation for this work.36

Logistics problems are often modeled as variants of the vehicle routing problem (VRP). The classical VRP consists37

of determining optimal routes for vehicles that originate and terminate at a single depot, to deliver items to a set of38

nodes geographically scattered while minimizing the total travel distance/time/total delivery cost. The VRP has been39

extended to include the capacitated VRP (CVRP), and the vehicle routing problem with time windows (VRPTW)40

(7, 8). We now summarize related literature that contains similar characteristics to our modeling framework. Three41

particular characteristics, appearing in the vehicle routing problem literature that are related to our new logistics model42

are: soft time windows, multi-period routing, and split delivery strategy.43

A vehicle routing problem with soft time windows (VRPSTW) is a special case of the VRPTW and has been44

discussed in the literature, though not often. Contrary to the general time windows constraints, usually indicating the45

earliest and latest allowable service time of a node, soft time windows denote that both the upper and lower bound46

of the time window can be violated with a suitable penalty. Papers in this type of problems include Taillard et al.47

(9) and Jung and Haghani (10). Multi-period vehicle routing problems are not common in the literature due to their48

difficulties. In this type of VRP, routes are constructed over a period of time. The most recent review of this kind of49

vehicle routing problem is seen in Francis et al. (11). Finally, the split delivery vehicle routing problem (SDVRP) is50

defined as follows: the demand of a node can be satisfied by more than one-time delivery instead of only one-time51

delivery allowed in the general VRPs. A detailed survey of the development of SDVRP can be found in Archetti and52

Speranza (12).53

The main contributions of this paper are as follows:54

• Soft time windows, multi-period routing, split delivery strategy, and prioritized delivery are considered simulta-55

neously in the new model.56

• An approach of tour determination for the model is introduced and analysis of its performance is provided.57

• The consequences of not prioritizing delivery are highlighted with the help of a disaster relief humanitarian58

logistics case study59

The rest of this paper is organized as follows. Section 2 presents a tour-based mathematical formulation for the60

prioritized items delivery problem. The solution methodology of solving the tour-based formulation is discussed61

in Section 3. Computational examples are provided in Section 4 to demonstrate the performance of the proposed62

approach. In Section 5, a case study of a disaster relief logistics effort is conducted to show the benefit of our new63

logistics model. Finally, Section 6 contains conclusions and suggestions for future work.64
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TOUR-BASED FORMULATION65

Description and Assumption66

We assume that there are multiple geographically dispersed nodes that need to be served by a single depot. It is67

assumed that the supplies are unlimited in the depot and that the demand from various nodes over a planning horizon68

is known at the beginning of the planning. For modeling simplicity, demand is assumed unchanged during all planning69

time periods. Different prioritized items are required to be delivered to nodes via the transportation network. Urgency70

levels of items are differentiated based on their importance. For each type of item, a soft time window is predefined to71

specify the nodes’ expected waiting time to receive an item. If an item cannot be delivered within the time window, a72

penalty cost is incurred, although the item still can be delivered later. The longer the delay in delivering an item, the73

more severe the penalty cost.74

Characteristics of the transportation mode and the delivery methods are considered. Multiple but limited numbers75

of identical vehicles are used to transport prioritized items. Vehicles are assumed to have limited weight and volume76

capacities. For each vehicle, tours are assigned in each period to deliver items to one or more nodes. Tours begin at77

the depot, continue to one or multiple nodes, and then return to the depot. The total working hours in a single time78

period for the operation are limited. Therefore, the total travel time of tours assigned to a single vehicle in a single79

time period cannot exceed the constrained working hours. We do not consider the time to load and unload items on or80

off the vehicle. Furthermore, any node can be served multiple times by a single vehicle or multiple vehicles to meet81

its demand, and the demand can also be satisfied fully or partially in a single delivery.82

Multi-Objective Logistics Model83

Based on the above scenarios, the new model considers a multi-item, multi-vehicle, multi-period, soft time windows,84

and split delivery strategy prioritized delivery problem and is constructed by a multi-objective tour-based integer85

programming formulation. In this section, we first summarize notation, parameters and define decision variables,86

followed by a presentation of a mathematical formulation for the model.87

Notation, Parameters, and Decision Variables88

Sets:89

I = {1, 2, . . . , i, . . . , ī}: the set of item types, and ī is the total number of item types;90

J = {1, 2, . . . , j, . . . , j̄}: the set of nodes, and j̄ is the total number of nodes;91

K =
{

1, 2, . . . , k, . . . , k̄
}

: the set of tour, and k̄ is the total number of tours;92

L =
{

1, 2, . . . , l, . . . , l̄
}

: the set of vehicles, and l̄ is the total number of vehicles;93

T = {1, 2, . . . , t, . . . , t̄}: the set of periods, and t̄ is the total number of planning time periods94

Routing parameters:95

Jk: the set of nodes which the vehicle will visit on tour k;96

tk: travel time of tour k;97

[0, toi]: time window for delivering item i without penalty after demand occurs, where toi is the maximum98

acceptable waiting time to receive item i;99

Ck: travel cost of tour k;100
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H: total working time available in a single period;101

W : the maximum load weight of a vehicle;102

V : the maximum volume capacity of a vehicle;103

M : a large number;104

u: the index of the length of delays after the maximum acceptable waiting time since the demand was requested,105

where t̄− toi ≤ u ≤ t̄, ∀i;106

v: the index of time periods when the backorder delivery of item i can be made after demand was requested at107

period t, where t+ 1 ≤ v ≤ t+ t̄− toi;108

Demand parameters:109

dijt: demand of the item i of the node j at time t;110

piu: penalty cost of item i if the severe level of delay is u;111

fpi: penalty cost of item i if there is remaining unsatisfied demand after the operation;112

ai: unit weight of item i;113

bi: unit volume of item i;114

Delivery Decision Variables:115

xijklt: amount of item i delivered to node j on tour k by vehicle l in period t immediately after demand occurs;116

wijklmn: backorder amount of item i delivered to node j on tour k by vehicle l in periodm for demand in period117

n, where m,n ∈ T and n < m;118

S: maximum difference of service level between any two nodes;119

sj : service level of node j.120

Routing Decision Variables:121

yklt: equal to one when tour k is assigned to vehicle l in period t, and 0 otherwise.122

Formulation123

Objective 1:124

min.
∑
i

∑
j

t̄−toi∑
u=1

t̄−toi−u+1∑
t=1

(
dijt −

∑
k

∑
l

(
xijklt +

t+u∑
v=t+1

wijklvt

))
· piu+

∑
i

∑
j

∑
t

dijt −
∑
j

∑
k

∑
l

∑
t

xijklt +
∑

m>t,m∈T

wijklmt

 · fpi
 (1)

Objective 2:

min.
∑
k

∑
l

Ckyklt (2)
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Objective 3:

min. S (3)

Subject to:

S ≥ sp − sq, ∀p, q ∈ J, p 6= q (4)

S ≥ sq − sp, ∀p, q ∈ J, p 6= q (5)

sj =

∑
i

∑
k

∑
l

∑
t

(
xijklt +

∑
m>t,m∈T wijklmt

)
∑
i

∑
t dijt

,∀j ∈ J (6)∑
k

tkyklt ≤ H ∀l,∀t ∈ T (7)

xijklt ≤Myklt ∀i,∀j ∈ Jk,∀k, ∀l,∀t (8)

wijkltn ≤Myklt ∀i,∀j ∈ Jk,∀k, ∀l,∀t, ∀n < t (9)∑
k

∑
l

∑
t

xijklt +
∑
k

∑
l

∑
m>t,m∈T

∑
t

wijklmt ≤
∑
t

dijt ∀i,∀j (10)

∑
i

∑
j

ai

xijklt +
∑

n<t,n,t∈T

wijkltn

 ≤W ∀k, ∀l,∀t (11)

∑
i

∑
j

bi

xijklt +
∑

n<t,n,t∈T

wijkltn

 ≤ V ∀k, ∀l,∀t (12)

xijklt ≥ 0 ∀i,∀j ∈ Jk,∀k, ∀l,∀t (13)

wijklmn ≥ 0 ∀i,∀j ∈ Jk,∀k,∀l,∀m ∈ T,∀n ∈ T (14)

xijklt = 0 ∀i,∀j /∈ Jk,∀k, ∀l,∀t (15)

wijklmn = 0 ∀i, j /∈ Jk,∀k,∀l,∀m ∈ T,∀n ∈ T (16)

yklt ∈ {0, 1} ∀k,∀l,∀t (17)

In this model, the objective function (1) is a penalty function that aims to minimize total unsatisfied demand,125

especially for high priority items. Each item can only be backordered during toi periods after the period t in which it126

is requested. If the initial demand from period t cannot be backordered during the subsequent toi periods, a penalty127

is applied. There are two parts in this objective function. The first part (until piu) indicates the total accrued penalty128

cost during the planning periods. It is noted that
∑t̄−toi

u=1 indicates the summation of the penalty due to various lengths129

of delays, and
∑t̄−toi−u+1
t=1 indicates the summation of the penalty for demand requested at time period t with length130

of delay u. Moreover,
∑t+u
v=t+1 wijklvt determines the total backorder amount of item i to demand requested at time131

period t for avoiding the penalty due to u time periods of delays. The second part (after piu) is the penalty cost accrued132

at the end of the planning periods for demand that cannot be delivered before the end of the operation, and it attempts133

to deliver higher priorities at the end of the operation.134

The objective function (2) aims to minimize the total travel time for all tours and all vehicles. The purpose of this135

objective is to assign as many vehicles as possible consistent with the working hour limitation, in order to deliver the136

largest amount of items (this assumes that the demand in a disaster scenario will be large). Objective function (3) is137

used to minimize the difference in the satisfaction rate between nodes. The satisfaction rate is the ratio between the138

requested demand and the actual delivered amounts. The purpose of this objective is intent on balancing the service139

among nodes. “Fairness” is the term usually used to describe this purpose.140
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In addition to these objectives, equations (4-5) are used to determine the maximum service level between any two141

nodes, and it is obtained by equation (6). Equation (7) indicates that the total travel time of all tours assigned to any142

single vehicle in this period cannot be longer than the available working hours in a single period. Equations (8) and (9)143

show that deliveries can only be made if corresponding tours are selected. Equation (10) shows that the total delivery144

of items cannot exceed the demand during the planning periods. Equations (11) and (12) address the total available145

loading weight and the total volume limit capacity constraints of a vehicle. Equations (13 - 16) are used to ensure that146

vehicles can only stop and deliver to nodes on tours assigned to them. Finally, equation (17) indicates that yklt is a147

binary variable.148

SOLUTION METHODOLOGY149

Overall Solution Process150

To solve the above model, we apply the well-known weighted sum method (13) to aggregate the multi-objective151

formulations to a single objective formulation. The assumption of applying this approach is that preferences of the152

decision maker are known a priori. As a matter of fact, during the disaster relief operation, it is obvious that the153

most important goal is to lower situations of unsatisfied demand (objective 1), followed by balance of service levels154

among different nodes (objective 3), and expenditure of the operation (objective 2). We used the same consideration155

to determine appropriate weights of each objective in the weighted sum method.156

Ideally, the transformed problem can be solved directly using the commercial solver CPLEX in our study. However,157

an important parameter in the aforementioned model that needs to be determined is the number of tours to be included158

in the model (denoted by k̄ in the model). Theoretically, all possible tour combinations should be included in the model159

so that all possible solutions can be explored. For a small-size delivery problem (e.g. only 3 or 5 nodes), it is possible160

to enumerate all tours and include all of them in the model. However, as the problem size increases, enumerating161

all tours is not a viable option, because it makes the size of the resultant problem too large for CPLEX to solve (e.g.162

there are 4,932,055 possible tour combinations for a 10 node problem). Therefore, we propose a decomposition and163

assignment approach as an alternative to overcome this difficulty.164

Decomposition and Assignment Approach165

The proposed approach allows the whole problem to be decomposed into several sub-problems – this allows assign-166

ment of vehicles to each sub-problem. More specifically, for each sub-problem, we only consider a small number167

of nodes that are close to each other geographically such that the number of possible tours in each sub-problem is168

countable and more manageable. A portion of vehicles are assigned to each sub-problem to provide service between169

the depot and included nodes in the sub-problem. Thus, all sub-problems can be simultaneously solved in parallel,170

since the size of each sub-problem is solvable by CPLEX in reasonable time.171

We have named this approach the Decomposition and Assignment Heuristic (DAH). Assume that a set of vehicles172

L =
{

1, . . . , l, . . . , l̄
}

, where l̄ > 1 is used to deliver items to a set of nodes J = {1, . . . , j, . . . , j̄}. We use λ to173

indicate the iteration number of the algorithm, λ̄ the total desired number of iterations in the algorithm, τ the number174

of times that the solution is not improved after an iteration, and τ̄ the maximum consecutive times allowed in a row175

that the solution is not improved. If we set λ = 0 initially, then the DAH procedures can be described as follows:176

DAH algorithm:177

1. Randomly select a node that is not included in any group, and put it in a new group Ĵg .178

2. Find the nearest node (not currently included in any group) to the last assigned node in the group, and repeat the179

process until the predefined number of nodes in a group is met or there is no ungrouped node left.180

3. IF there is a node that does not belong to any group, Go to step 1.181
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4. ELSE Equally assign a number of vehicles L̂g to each group g ∈ G , where G = {1, . . . , g, . . . , ḡ} is the182

collection of groups,
∑
g L̂g = l̄, and ∀p 6= q, Ĵp ∩ Ĵq = φ. The original problem has now been decomposed183

into ḡ subproblems with assigned nodes and vehicles, respectively, and each subproblem is labeled as SPg .184

5. For each subproblem SPg , all feasible tours are enumerated and constructed using the shortest time principle.185

6. For each subproblem SPg , construct the mathematical model based on L̂g , Ĵg , and the corresponding demand186

of nodes in the subproblem; solve SPg by CPLEX, and get the objective values zg and the total objective value187

zall =
∑
g zg . If λ = 0, set the best total objective value z∗all = zall.188

7. IF λ ≤ λ̄, find a pair of groups (p, q) that has the minimum and maximum objective value, respectively.189

8. IF L̂p > 2, then do Steps 9 and 10.190

9. Remove a random number of vehicles ν from L̂p, where 1 ≤ ν ≤ L̂p−1, and assign it to L̂q .191

10. Go to Step 6, update zp, zq , and zall.192

11. IF zλall < z∗all, update z∗all = zλall. Go to Step 8.193

12. ELSE Set τ = τ + 1.194

13. IF τ ≤ τ̄ . Go to Step 8.195

14. ELSE Set λ = λ+ 1. Go to Step 1.196

15. ELSEIF There are more than one group in addition to Ĵp and Ĵq; find the next maximum objective value197

group. Go to Step 8.198

16. ELSE Set λ = λ+ 1. Go to Step 1.199

17. ELSE Stop and Exit.200

Steps 1-3 of the DAH algorithm decompose the original problem into several sub-problems by forming groups201

with a predefined maximum number of nodes allowed in a group. In step 4, we equally assign vehicles to serve each202

sub-problem following the order of groups in G . It is noted that we may have to assign a fewer number of vehicles203

than the average integer number of vehicles to the last formed group. The next two steps are used to construct all tours,204

and to create corresponding mathematical formulations for each sub-problem. The objective values of sub-problems205

and the overall objective value under the current decomposition result are obtained in step 6. Steps 7 - 15 aim to206

improve the solution by adjusting vehicles assignments among groups. If the solution is not improved for τ̄ successive207

iterations, groups are reformed and the procedure is repeated until the maximum number of iterations λ̄ (i.e., times of208

regrouping) is met.209

Using this algorithm, we solve several smaller-scale problems, instead of a single large-scale problem. Tours in210

each sub-problem are countable and manageable, and each sub-problem is also solvable by CPLEX in reasonable211

computational time.212

COMPUTATIONAL EXPERIMENTS213

Two parts are discussed in this section. In the first part, a random instance generator is designed to produce numer-214

ical instances for the following computational experiments. In the second part, a comparison of performance of our215

proposed approach for tour determination and other approaches is provided.216
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Random Instance Generator217

A random instance generator has been coded in C. We assume that the service area of a logistics operation is in a
50 square miles area. The location of the depot and all nodes are randomly located by the instance generator in this
area. Instead of using Euclidean distances between any two nodes, we transform Euclidean distances to estimated
road distances to obtain much more realistic estimations of travel times. This can be achieved by using the following
equation (14):

d (q, r; k, p, s) = k

[
2∑
i=1

|qi − ri|p
]1/s

(18)

where q and r are coordinate points on the plane in the service area, and k, p, s are parameters. Suggested ranges218

of these parameters are k ∈ {0.80, 2.29}, p, s ∈ {0.90, 2.29}, respectively. In our instance generator, parameter219

values are randomly generated from their corresponding ranges. It is noted that only distances between the depot and220

each node are estimated according to equation (18), and distances among nodes are generated randomly based on the221

triangular inequality (i.e., road distances are estimated on linkOA andOB, ifO is the depot andA,B are two demand222

nodes, but the distance AB is generated randomly between
(
OA+OB

)
and

(
OA−OB

)
to ensure that the triangule223

inequality holds).224

Three sets of problems are generated by the instance generator: small size, medium size, and large size. Each size225

of problem involves 5 random instances, respectively, where each instance has a distinct network structure, problem226

size and number of vehicles. Specifically, the set of small size problems consists of 3 nodes and 6-9 tours. Problems227

with 4 nodes and 20-30 tours are denoted as medium size. The large size problems have 5 nodes and 30-40 tours228

included in each instance. Regardless of problem size, 10-20 vehicles are used in each instance, selected randomly.229

Other outputs from the instance generator include the demand of three types of critical items in each node, and230

structures of tours for each instance.231

Performance Comparison232

The performance of the proposed approach for tour determination is evaluated on three sets of problems. The heuristic233

approach proposed in this paper has been coded in C, which interfaces with the callable library in ILOG CPLEX234

version 11.2, which is used to solve sub-problems after the tours have been determined in each sub-problem. Each235

instance with different tour determination approaches has been run on a computer with 2.00 GB RAM,and an Intel236

Pentium D 3.40 GHz processor.237

We consider two other tour determination approaches to compare our proposed approach. The first approach is238

to enumerate all possible tours of problems and to include all of them in the model. Under this approach, we aim to239

find the exact optimal solutions of these problems. The second approach, proposed by Lin (15), is based on a Genetic240

Algorithm (named GA-based approach), a popular meta-heuristic method that has been applied in various applications241

(16, 17). This approach uses a Genetic Algorithm to generate a small number of tours in each iteration, and the model242

with these manageable number of tours is solved by CPLEX. The idea is to improve the solution at each iteration by243

only retaining a reasonable number of good tours in the model until the end of the search process.244

To compare the performance among different tour determination approaches, we assume that the weights for245

objectives 1, 2, and 3 are 0.6, 0.1, and 0.3, respectively; these selections conform to general preferences of dealing246

with disaster relief, where the first goal of the operation is to satisfy as many demand requests as possible, followed247

by the fairness issue among different demand nodes; the shipment cost of items is typically of the least concern. We248

use two criteria to stop the iterative process: either the running time exceeds 3,600 seconds or the MIP gap is smaller249

than 0.01%. In order to obtain a more accurate evaluation, each instance was solved 10 times with different randomly250

generated demand requests, and the average results of 10 replications for each instance is presented in the TABLE 1.251

TABLE 1 summarizes the logistics performance of using three different tour determination approaches in the252

solution process. The first column identifies the IDs of each instance. For each approach, percentages of demand253
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delivered and running times (seconds) of the corresponding approach are presented. For some instances, there is no254

feasible solution available within 3,600 seconds, so we designate them as n/a. Furthermore, under the GA-based255

approach column, the number of tours that remain in the model for small-size, medium-size, and large-size instances256

are 6, 7, and 8, respectively.257

The average performance of the three tour determination approaches is summarized as follows. The GA-Based258

approach reduces the average running time by about 22.3%, compared to instances with all tours included. The average259

percentage of complete delivery is 99.8%, which is almost the same as instances in which all tours are included.260

However, the variance of running times in the GA-based approach is still high (range is from 17.81 to 3,600 seconds),261

because CPLEX spends a long time in proving optimality in some cases. On the other hand, the DAH approach finds a262

desirable solution in a very short running time with a 4.3% reduction of solution quality (i.e., only can achieve 95.5%263

of complete delivery percentage) compared to the GA-based approach. Based on these results it is evident that the264

DAH approach is both fast and sufficient method and we therefore use this for large-scale problems.265

TABLE 1 Performance Comparison of Different Tour Determination Approaches
Instance Enumeration GA-based Approach DAH
ID % of Time % of Time % of Time

delivered (seconds) delivered (seconds) delivered (seconds)
S1 99.98 178.11 99.96 0.99 99.86 17
S2 99.97 44.54 99.93 0.97 99.82 52
S3 98.73 312.16 98.73 271.69 96.97 18
S4 96.31 260.15 96.31 241.16 95.00 14
S5 94.74 17.81 94.74 17.94 87.10 5

M1 96.96 3,600 96.98 192.96 95.16 79
M2 n/a n/a 98.74 1,794.91 98.05 42
M3 96.54 3,287.17 96.54 58.57 94.87 42
M4 n/a n/a 92.95 3,600 92.60 39
M5 95.34 2277.21 95.14 3,340.12 93.33 15

L1 n/a n/a 96.45 301.91 88.89 15
L2 n/a n/a 97.70 3,473.27 94.57 22
L3 90.94 3,600 91.00 1278.63 77.48 45
L4 n/a n/a 84.89 291.52 91.00 66
L5 79.09 3,600 73.06 120.37 63.34 14

CASE STUDY266

To illustrate the capability of our model in the context of delivering prioritized items, we applied the logistics model267

to the disaster relief operation in Northridge, CA, where a 6.7 magnitude earthquake occurred on Jan. 17, 1994.268

The study region selected is Los Angeles County, CA, with a geographical size of 4,086.9 square miles, and a total269

population of 9,519,338 (18).270

Data271

Federal Emergency Management Agency (FEMA) has developed a software named HAZUS-MH which can be used272

to simulate nature disasters (19). We used HAZUS-MH to simulate the Northridge earthquake scenario. Three types of273

simulation output are of particular interest for us: the number of displaced households, the number of severity level 1274

injuries, and the number of households without water service. These output are used to generate and estimate demand275

for food, prescription medication, and water, respectively. It is noted that severity level 1 injuries are those which276

require medical attention, but hospitalization is not needed. We now justify this method.277

First of all, the number of households without water service is used to generate demand of water. Since the278

geographic distribution of households without water service is not provided in the simulation output, we assumed that279

the number of households without water service in each census tract was proportional to the number of households280
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affected by the earthquake in the track. Second, the number of displaced households is used to estimate the demand281

of food. This is because these families suffered damage to their houses, require a temporary shelter, and are thus282

incapable of preparing food by themselves. The estimated number of households displaced is 25,469 according to283

the simulation. Finally, the number of casualties of severity level 1 is used to estimate the demand for prescription284

medication. Based on the simulation, the total number of injuries at this level is 1,654 in this earthquake. It is noted285

that we only extracted casualty data for level 1 in the residential families because the earthquake occurred at 4 AM,286

and we assumed that the majority of people were at home during the earthquake.287

In a disaster relief operation, it is common to transport supplies first from a central depot to several local distribution288

centers by trucks; then, supplies are distributed to individuals from local distribution centers. Therefore, we actually289

formed 9 clusters in Los Angeles County, as shown in FIGURE 1, simply by geographic relationships, and identified290

a node in each cluster as the local distribution center to receive deliveries from the central depot. The demand data in291

each node is obtained by aggregating each type of demand from all census tracts located inside the cluster. However, in292

the simulation output, only “one-time” demand is available for us to derive from data, except the number of households293

without water service data that consists of different numbers in discrete time points (e.g. day 1 to day 90). Therefore,294

we assumed that the time series data in this dataset represents the recovery speed from the earthquake, and all supplies295

would follow the same pattern to recover as well. Demand data of all kinds of items over 7 days can be estimated,296

respectively, based on the initial “one-time” data from the simulation and the trend of the recovery speed, that is297

represented by an exponential fitting function, obtained by fitting data of the number of households without water298

service. As a result, a demand matrix containing 3 items, 9 nodes and 7 time periods was obtained. Based on the299

catalogue published in a relief organization (20), we defined that the truck used in the study has 11,590 kg and 56 m3
300

of maximum loading and volume limits, respectively. The shipping weights and volumes of each unit of medication,301

water and food are 86.5 kg and 0.22 m3, 400 kg and 4.3 m3, and 700 kg and 2.3 m3, respectively. We determined the302

time windows for medication, water, and food for delivery without penalty cost as 0-1 days, 0-2 days, and 0-3 days,303

respectively. Finally, the maximum working hours in each day was constrained as 15 hours.304

FIGURE 1 Clustering Result in Los Angeles County

Results305

Since this case study has nine demand nodes and one depot, the total number of tours is too large to be included in306

the model, as discussed earlier. We therefore applied the DAH algorithm to decompose the original network into three307
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subnetworks that are depicted by different type of lines in FIGURE 2, which shows the transportation network among308

the central depot and nine nodes in Los Angeles County, CA. The route between any two nodes was first determined by309

the online map provider, and consisted of detoured partial segments if the best route involves some damaged roadways310

due to the earthquake. The detours were established according to a government report (21). Then the travel time311

between any two nodes or between a node and the depot was estimated by taking the average of the travel time in the312

traffic and in congested traffic, because it is reasonable to assume that congestion usually occurs around the area after313

the earthquake. In addition, we again assume the weights for objectives 1, 2, and 3 are 0.6, 0.1, and 0.3, respectively.314
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FIGURE 2 Transportation Network and Sub-networks

It is common to involve resources from a variety of organizations in a disaster relief operation. The total number315

of vehicles was assumed to be 400 from 20 different organizations (e.g. American Red Cross, military units, etc.).316

Each organization is responsible for servicing the delivery tasks assigned from the disaster operations manager, and317

each organization is also responsible for managing its own fleet to accomplish the relief effort. As a result, during318

seven days of operations based on the data described above and the proposed new model, a total of 621 assignments319

of delivery tasks had been made to different organizations, and this was equivalent to 12,420 deliveries by trucks.320

Indeed, among the three types of items, an average of 90.1% of prescription medication was delivered in all nine321

nodes, while only about 70% and 16.4% of water and food, respectively, were delivered on average. In fact, these322

numbers reveal the compromise among objectives, compared with 100.0% delivery of medication, 78.9% delivery of323

water, and 42.6% delivery of food in the best scenario, which is best performance we can achieve if all resources are324

used to deliver one type of items. We note that only 30.8%, 32.5%, and 7.5% of demand of prescription medication,325

water, and food, respectively, were satisfied during the time period when the demand arose — these low numbers are326

due to the soft time window feature in the model which allowed delayed satisfaction of demand. In addition, it is327

interesting to see that the full truck load of a single type item is a preferred method of delivery in our application,328

when the overall vehicle capacity is not capable of satisfying all demand; therefore, if extra capacity is available on329

vehicles to the same demand locations, more of the same type of items are carried on vehicles.330

Discussion331

A major feature of our proposed model is its ability to prioritize delivery. To test this feature of our model, we332

attempted a comparison with a similar model in the literature. Balcik et al. (22) proposed a model to deliver relief333

supplies in disasters. Although our model and theirs have the same purpose, they are different for two reasons. The first334

difference is that Balcik et al.(22) consider two types of supplies. The first type are critical items for which demand335
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occurs once at the beginning of the planning horizon (e.g. shelters, blankets) and has to be fully satisfied during the336

planning horizon (i.e., a hard constraint in the model). The second type of items are those that are consumed regularly337

and whose demand occurs periodically over the planning horizon (e.g. food, prescription medication, and water), and338

cannot be backordered if it is not satisfied on time. In our model, we are only interested in the second type of items and339

backorders are permitted. The second difference is that Balcik et al. (22) do not consider soft time windows, which340

means that demand must be served immediately when it occurs.341

To facilitate the comparison of our model with that of Balcik et al. (22) we assumed that the demand of shelters342

after the earthquake is zero since our interest is not in this type of item. Therefore, the total available capacity of343

vehicles would not be affected because of shipment of this type of item. To conform to the Balcik et al. model,344

we collapsed our model to one in which backorder is not permitted and soft time windows are not considered. In345

addition, we adjusted the weights of the three objectives from the original (0.6,0.1,0.3) to (0.5,0.5,0) since they only346

considered the penalty cost due to unsatisfied demand and travel cost in their model. We first applied their model347

to obtain the solution, and then used their travel cost as the budget limit in our model in order to get comparable348

results. The comparison is shown in TABLE 2, in two parts. Part A in TABLE 2 indicates the percentage of demand349

being delivered in each time period and Part B indicates the number of injuries or households suffering a shortage of350

items. It shows that though their model reveals a prioritized delivery pattern similar to ours, their model was unable to351

concentrate on delivering the item with the highest priority (e.g. prescription medication). In contrast, our collapsed352

model showed a significant ability to deliver the highest priority item. The improved performance of our model is due353

to the penalty cost function structure as shown in Equation 1. Furthermore, it is apparent that our collapsed model354

provides superior results to that of Balcik et al. under the same budget.355

TABLE 2 Comparison of Logistics Performance between Models

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

A. Percentage of Satisfied Demand Average

Medication:
Balcik’s model 85.4% 84.3% 86.7% 91.9% 87.4% 91.9% 76.8% 86.4%
Proposed model (collapsed) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 95.3% 99.4%
Water:
Balcik’s model 54.2% 58.1% 59.1% 61.7% 56.2% 61.6% 58.1% 58.3%
Proposed model (collapsed) 76.0% 77.8% 78.4% 78.9% 79.5% 38.5% 12.8% 64.6%
Food:
Balcik’s model 12.2% 12.7% 13.8% 10.9% 12.2% 12.8% 10.1% 15.6%
Proposed model (collapsed) 12.1% 12.2% 13.0% 14.0% 15.0% 8.6% 8.7% 12.0%

B. Number of Injuries or Households without Sufficient Supply Total

Medication:
Balcik’s model 0 216 223 181 106 159 98 982
Proposed model (collapsed) 0 0 0 0 0 0 0 0
Water:
Balcik’s model 0 0 14,282 12,081 11,356 10,230 11,252 59,201
Proposed model (collapsed) 0 0 7,482 6,405 5,998 5,625 5,261 30,771
Food:
Balcik’s model 0 0 0 23,263 21,411 20,328 20,227 85,230
Proposed model (collapsed) 0 0 0 23,285 21,546 20,529 19,524 84,885

Conclusions and Future Work356

This paper proposes a new logistics model for the emergency supply of critical items in the aftermath of a disaster.357

Our model considers multi-items, multi-vehicles, multi-periods, soft time windows, and a split delivery strategy, and358

is formulated as a multi-objective integer programming model. The distinguishing feature of our work is the consider-359

ation of delivery priorities of different items. In addition, a heuristic approach is developed, named the Decomposition360
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and Assignment heuristic (DAH), to overcome the computational challenge of enumerating all possible tours. The per-361

formance of the approach is analyzed and its efficiency is investigated. We found that, in general, the DAH approach362

provides solutions in reasonable computational time while it has about a 4.3% reduction in solution quality compared363

to the other two tour determination approaches.364

To verify the importance of the new model for delivery tasks containing prioritized delivery requests, we conducted365

a case study of an earthquake scenario in Los Angeles County. For this case study, our model is capable of satisfying366

90.1% of prescription medication demand, 70% of water demand, and 16.4% of food demand, under the limited367

delivery capacity of vehicles and limited working time in each time period. The results from the case study showed368

that the model performed well in this disaster relief operation. Further analysis showed that our model performed369

better than a model in the literature by Balcik et al. (22) which has a similar purpose to ours.370

We suggest three directions for future work. The first is to investigate the robustness of our model with respect to371

uncertainty in demand values, congestion levels, network accessibility, and correlations of node locations with respect372

to the highway systems. The second is to develop more efficient multi-objective optimization methodologies for this373

type of problem and to perform a trade-off analysis to understand the compromises among different goals. The third is374

to consider a distributed scenario in which several temporary depots are required to be located and serve as “bridges”375

between the major depot and nodes.376
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[3] Holguı́n-Veras, J., N. Pérez, S. Ukkusuri, T. Wachtendorf and B. Brown. Emergency logistics issues affecting the response to387

katrina: A synthesis and preliminary suggestions for improvement. In Transportation Research Record: Journal of the Trans-388

portation Research Board, No. 2022, pages 76–82. Transportation Research Board of the National Academies, Washington,389

D.C., 2007.390

[4] Ukkusuri, S. and W. Yushimito. Location routing approach for the humanitarian prepositioning problem. In Transportation391

Research Record: Journal of the Transportation Research Board, No. 2089, pages 18–25. Transportation Research Board of392

the National Academies, Washington, D.C., 2008.393

[5] Horner, M. W. and J. A. Downs. Testing a flexible geographic information system-based network flow model for routing394

hurricane disaster relief goods. In Transportation Research Record: Journal of the Transportation Research Board, No. 2022,395

pages 47–54. Transportation Research Board of the National Academies, Washington, D.C., 2007.396

[6] Ozbay, K. and E. E. Ozguven. Stochastic humanitarian inventory control model for disaster planning. In Transportation397

Research Record: Journal of the Transportation Research Board, No. 2022, pages 63–75. Transportation Research Board of398

the National Academies, Washington, D.C., 2007.399

[7] Chang, M.-S., Y.-C. Lin and C.-F. Hsueh. Vehicle routing and scheduling problem with time windows and stochastic demand.400

In Transportation Research Record: Journal of the Transportation Research Board, No. 1882, pages 79–87. Transportation401

Research Board of the National Academies, Washington, D.C., 2004.402

[8] Ting, C.-J. and C.-H. Chen. Combination of multiple ant colony system and simulated annealing for the multidepot vehicle-403

routing problem with time windows. In Transportation Research Record: Journal of the Transportation Research Board, No.404

2089, pages 85–92. Transportation Research Board of the National Academies, Washington, D.C., 2008.405



Lin, Y-H, Batta, R., Rogerson, P.A., Blatt, A., Flanigan, M., and Lee, K. 14

[9] Taillard, E., P. Badeau, M. Gendreau, F. Guertin and J.-Y. Potvin. A tabu search heuristic for the vehicle routing problem with406

soft time windows. Transportation Science, 31(2):170–186, 1997.407

[10] Jung, S. and A. Haghani. Genetic algorithm for the time-dependent vehicle routing problem. In Transportation Research408

Record: Journal of the Transportation Research Board, No. 1771, pages 164–171. Transportation Research Board of the409

National Academies, Washington, D.C., 2001.410

[11] Francis, P. M., K. R. Smilowitz and M. Tzur. The period vehicle routing problem and extensions. In The Vehicle Routing411

Problem: Latest Advances and New Challenges, pages 73–102. Springer, New York, 2008.412

[12] Archetti, C. and M. G. Speranza. The split delivery vehicle routing problem: a survey. In The Vehicle Routing Problem:413

Latest Advances and New Challenges, pages 103–122. Springer, New York, 2008.414

[13] Zadeh, L. Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, AC-8(1):59,415

1963.416

[14] Love, R. F. and J. G. Morris. Mathematical models of road travel distances. Management Science, 25(2):130–139, 1979.417

[15] Lin, Y.-H. Delivery of Critical Items in a Disaster Relief Operation: Centralized and Distributed Supply Strategies. PhD418

thesis, University at Buffalo, SUNY, 2010.419

[16] Cevallos, F. and F. Zhao. Minimizing transfer times in public transit network with genetic algorithm. In Transportation420

Research Record: Journal of the Transportation Research Board, No. 1971, pages 74–79. Transportation Research Board of421

the National Academies, Washington, D.C., 2006.422

[17] Lee, D.-H. and Z. Cao and J. H. Chen and J. X. Cao. Simultaneous load scheduling of quay crane and yard crane in port423

container terminals. In Transportation Research Record: Journal of the Transportation Research Board, No. 2097, pages424

62–69. Transportation Research Board of the National Academies, Washington, D.C., 2009.425

[18] U.S. Census Bureau. United States Census 2000 Data. Available at: http://www.census.gov/main/www/cen2000.html, 2000.426

[19] Federal Emergency Management Agency. Multi-hazard Loss Estimation Methodology Earthquake Model User Manual.427

Department of Homeland Security, FEMA, Mitigation Division, Washington, D.C., 2006.428

[20] International Federation of Red Cross and Red Crescent Societies. Emergency items catalogue. Available at429

http://procurement.ifrc.org/catalogue/, 2009.430

[21] DeBlasio, A.J., A. Zamora, F. Mottley, R. Brodesky, M. E. Zirker and M. Crowder. Effects of Catastrophic Events on431

Transportation System Management and Operations, Northridge Earthquake - January 17, 1994. U.S. Department of Trans-432

portation, Washington, DC., 2002.433

[22] Balcik, B., B. M. Beamon and K. Smilowitz. Last mile distribution in humanitarian relief. Journal of Intelligent Transportation434

Systems: Technology, Planning, and Operations, 12(2):51–63, 2008.435


