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Abstract

This paper develops and analyzes two basic models for hospital location and capac-
ity allocation. The focus is on an area prone to natural disasters. The first model seeks
to locate hospitals and allocate capacities so that the mean travel distance for patients
to hospitals is minimized over a variety of disaster scenarios. The second model seeks
to reallocate capacity among hospitals so as to maximize the system’s effectivenss to
the upcoming disaster event. Heuristic solution methods of the two models are investi-
gated, so as to make the approach computationally viable and to gain insight into the
location and capacity allocation strategies. A regional planner can use these models
in various ways. For earthquake prone areas (where there is little forewarning) the
first model’s results can be compared to the current hospital locations and capacity
allocations. A plan can then be developed to shift capacity between hospitals or in an
extreme case to relocate hospitals so as to be better prepared for a disaster event. For
hurricane prone areas (where there is considerable forewarning) the second model can
be used to develop a plan for reallocation of capacities between hospitals in anticipation
of the event. Furthermore the first model can be used to better locate hospitals and
select capacities for an area that is being rebuilt after a large magnitude hurricane has
largely destroyed the area (as Hurricane KATRINA did to New Orleans in 2005). The
results are illustrated with the help of case studies–one based on earthquake scenario
in Northridge, California, and another based on a hurricane scenario in New Orleans.
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1 Introduction

Hospitals or health care centers play a pivotal role in mitigating serious injuries that occur in

a natural disaster. Examples of this include the events that followed KATRINA, TSUNAMI

etc. KATRINA, a category 4 hurricane which struck New Orleans, on August 29, 2005,

left around 710 dead and 10,000 or more injured as per news reports [1]. A 9.0 magnitude

earthquake which struck the Indonesian coast on December 26th, 2004 left 11700 dead and

hundreds of thousands of injured as per news reports [2].

Previous work in the planning of hospitals and/or health centers in a region has been

done without considering the effects of damage to the hospitals and the transportation

infrastructure in the event of a natural or manmade disaster. The focus of this extensive

body of research is on optimizing a number of objectives, e.g. minimizing distance traveled

by the patients and maximizing coverage of patients (percentage of patients who recevive

care within a threshold time interval) [3]. A disaster can create hospital capacity reductions.

The modeling of capacity reductions is itself a research endeavour and has recently received

attention [4] in the context of natural disasters. Given the availability of capacity reduction

data for a natural disaster prone region it is possible to improve the locations of hospitals

and their capacities so as to minimize the impact of a disaster. This is the focus of our work.

Natural disasters are of two types, differentiated by the ability to predict the occurrence

before it actually strikes a region. In case of a land earthquake, there is limited forewarning

and hence little or no time available for capacity reallocation between hospitals. In case of a

hurricane, reasonably accurate forecasting models are available and there is substantial time

to plan for disaster mitigation. From the map displayed in Figure 1, the uncertainty with

respect to Katrina’s landfall can be seen. It can also be noted that after the initial tropical

storm warning, three days time was available for capacity reallocation before it struck New

Orleans.
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Figure 1: Katrina prediction uncertainty map, source: NHC archives

This work focusses on developing and analyzing two models for hospital location and

capacity allocation for regions subject to natural disasters. A model for hospital location

and capacity allocation is developed. A second model for capacity reallocation to an existing

set of hospitals is also developed. Heuristics to solve realistic size problems are suggested.

The use of these models towards strategic and tactical decision making in a natural disaster

environment are illustrated through the aid of case studies.

The remainder of this paper is organized as follows. Section 2 contains a literature review.

Section 3 presents Model I, its formulation, solution strategies and computational results.

Section 4 presents Model II, its formulation and solution strategies. Section 5 demonstrates

results of the models using case studies for an earthquake disaster. Section 5.1 focusses on

a clean-slate design using scenario based modeling in Northridge, California and Section 5.2

uses results from section 5.1 for capacity reallocation by applying a variant of Model II.

Section 6 focusses on a hurricane scenario in New Orleans. Section 6.1 focusses on capacity
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reallocation between existing hospitals. Section 6.2 demonstrates the use of Model I for clean-

slate design towareds a rebuilt of the region. Section 7 presents our empirical observations

in the case studies. Finally Section 8 contains our conclusions and suggests some directions

for future work.

2 Literature Review

We consider various elements of the literature. We start by discussing on hospital location

models, that consider objectives like distance minimization and priority queueing. The next

part focusses on location models with a slant towards unreliable facilities. Due to absence

of literature in hospital location in a disaster prone area we dedicate the third part of our

literaure review on interdiction, i.e. when facilities are subject to manmade attack. The

fourth part discusses methods for capacity allocation available in the literature. Since the

disasters we model deal with inherently uncertain events we focus the final part of our

literature review on decision making under uncertainty.

2.1 Objective based facility location models

Church [5] proposed that one way to measure the effectiveness of a facility location is de-

termined by the average distance traveled by those who use it–the p-median problem does

exactly this [6]. Another way to model the effect of distance is to assume that facilities

become less reliable when the distance to a customer increases. Berman et al. [7] use this

paradigm to locate service facilities.

Patients have different severity level injuries with their respective survivability times

(time within which the patient should receive medical attention to have a viable chance of

surviving). The assignment of patients to a hospital location should be prioritized based

on the survivability times. Some work has been done in this regard by using principles of
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priority queueing [8, 9].

This basic work on facility location serves as a starting point for our models. Specifically,

the objective function we use is akin to that of the p-median problem.

2.2 Locating unreliable facilities

Inherent in the vast majority of the location literature is the assumption that the facilities

function normally and at full capacity when their services are needed. This assumption is

reasonable for many applications, but not for a natural disaster setting. There has been

some recent work in the area of unreliable facility location. The facility location problem

with unreliable nodes or links has been studied extensively [10, 11]. Lee et al. [12]have

developed heuristic solution methods for two location problems with unreliable facilities.

Berman et al. [13] analyze a facility location problem in which some facilities might fail,

causing customers to seek service from the remaining facilities and thereby increasing the

cost of travel. Their major finding is that as the probability of failure or disruption grows

the facilities tend to become more centralized and ultimately co-located.

The work on unreliable facilities is not directly used in our models but can be viewed as

an alternative way of modeling facilities with reduced capacities (i.e., unreliable).

2.3 Models based on interdiction

A complementary way of modeling facility unreliability is to model the attack by an enemy

on some of the facility sites. This is referred to in the literature by the term ‘interdiction’.

Whiteman [14] models both partial and complete interdiction at nodes of a network. Church

et al. [15]have developed r-interdiction median covering problems to identify the set of

r facilities whose loss would affect the service delivery the most. Hanley et al. [16]have

developed a location-interdiction covering model that maximizes a combination of initial
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coverage level given p facilities and minimum coverage level after the loss of any subset of r

facilities [16]. The work on interdiction is not directly used in our models, but can be viewed

as a method to identify critical facilities (i.e., those whose capacity is most valuable).

2.4 Methods for capacity allocation

Choice of capacities of the service facilities are as important as are the choice of their loca-

tions. In maximal covering problems the capacities are allocated to sites based on the size of

demand at the node [17, 18], which in case of a disaster is the number of casualties. Averbakh

et al. [19] studied plant location with demand dependent capacity allocation. Previous work

has dealt with capacity allocation based on demand, however in case of regional planning

for hospitals, there exists constraints with respect to the available budget which influences

the total capacity available to be allocated.

The term capacity in a hospital setting takes on several meanings, e.g., number of beds,

number of operating rooms, and surgical efficiency. Thus categorization in addition to ca-

pacity allocation needs to be considered when dealing with hospitals. Categorization deals

with the distribution of critical care service facilities among hospitals. Thomas et al. [20]

have also studied categorization in hospital emergency planning. A higher capacity hospital

has a greater chance of having more number of operating rooms and beds. This is because

capacity has been postulated to be an empirical function of the number of beds, number of

operating rooms, patient mix, and surgical efficiency [21, 22]. We use the empirically derived

formulae in these papers to estimate capacity available at existing hospital sites in our case

studies.
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2.5 Decision making under uncertainty

Locating hospitals and allocating hospital capacity in a natural disaster prone area is a classic

example of decision making under uncertainty. This is becuase the precise damage produced

by a natural disaster is a function of many uncertain parameters (e.g., in a hurricane setting

the parameters wind speed, width and shape of the cone, and mean height above sea level

are relevant). One way to approach these types of problems is through the technique of

robust optimization, wherein an effort is made to optimize the worst-case performance of

the system [23]. The minimax regret approach is a good example of this technique. Similarly

a risk based approach could be used to find a solution that works well over all the scenarios.

Decision makers could apply regret approach in the following ways [24]:

1. Risk neutral decision-making: Decision is based on the expected value of the regret. Re-

gret is defined as the additional cost incurred if an optimal solution for a particular scenario

was used to solve the location allocation problem due to another scenario.

2. Risk averse decision-making: A very conservative strategy is that which yields mini-

mum risk. In this case the maxmin of the expected payoffs is taken.

3. Risk prone decision-making: A risky strategy in which the solution with minimum regret

is chosen. This is also called the optimistic approach in which the solution having the lowest

cost is selected [25]. This is usually not a reasonable approach when human lives are at stake.

4. La Place Approach: This approach seeks a solution that yields the lowest average cost

when all scenarios are equally likely to occur.

We use these four approaches in our case studies.
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3 Model I: Hospital Location and Capacity Allocation

The output of this model is a set of hospital locations and capacity allocations. These

are determined with the objective of providing services to the casualties in a manner that

minimizes the average transport distance of a casualty to its closet hospital while meeting

hospital capacity constraints. Since hospitals have a limited capacity it is possible that not

all patients receive service. To accomodate these patients we create a fictitious site–which

has a larger travel distance than the maximum travel distance that any serviced casualty

may incur. We present the formulation for a specific damage scenario, i.e., when the capacity

reductions due to disaster damage are assumed to be known.

Before we present the model we elaborate on the issue of hospital capacity. The least

capacity that any real life hospital should have is equal to the Minimum base volume (smallest

volume that the smallest sized hospital should be able to take) [21, 22]. At the same time

there is an upper limit on the maximum capacity that any real life hospital could have, which

is equal to Maximum critical volume (maximum volume that the biggest sized hospital would

be able to take) [21, 22]. These minimum and maximum values are used when we decide

hospital capacities in our model.

We introduce the following notation:

ymk→ Proportion of casualties from cluster m allocated to site k

xkl=

{

1 if a hospital of capacity l is built at site k
0 otherwise

dmk → Distance from cluster m to site k

dms=max{dmk} + 1 ∀m ∈ M ∀k ∈ K

n→ Number of hospitals to be built

Min B.V.→ Minimum Base Volume

Max C.V.→ Maximum Critical Volume

fk→ Fraction of full capacity available at site k
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K→ Set of potential sites

M→ Set of clusters(demand nodes)

cm→ Estimate of casualties at cluster m

C→ Total capacity available to be allocated

Using this notation the model formulation is as follows:

(P1)

Minimize
∑

m∈M

∑

k∈K∪{s}

cmymkdmk

Subject to:

∑

m∈M

cmymk ≤

MaxC.V.
∑

l=MinB.V.

fklxkl, ∀k ∈ K (1)

∑

k∈K∪{s}

ymk = 1, ∀m ∈ M (2)

∑

k∈K

MaxC.V.
∑

l=MinB.V.

xkl = n, (3)

∑

k∈K

MaxC.V.
∑

l=MinB.V.

lxkl = C, (4)

MaxC.V.
∑

l=MinB.V.

xkl ≤ 1, ∀k ∈ K, (5)

xkl∈ {0, 1} , ∀k ∈ K, ∀l = MinB.V., ...,MaxC.V. (6)

0 ≤ ymk ≤ 1, ∀m ∈ M, ∀k ∈ K ∪ {s} . (7)

An explanation of the formulation is as follows: constraint 1 ensures that the number of

casualties allocated from a cluster m to any facility k are less than or equal to the capacities

available at the facility k. To see this we note that the term lxkl represents the capacity of the

hospital prior to the disaster striking, and when this is multiplied by the damage factor fk

we get the hospital capacity after the disaster. Constraint 2 requires that casualties from all

m clusters are allocated to some facility. Constraint 3 makes sure that a total of n facilities

are located. Constraint 4 ensures that the total capacity allocated to the k facilities is equal
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to C, i.e. the total available capacity. Constraint 5 makes sure that a site has at most one

facility/capacity combination.

3.1 Solution strategies

We have tried solving numerous problem instances for (P1) using the MIP solver in CPLEX.

The solution times are reasonable for cases when the number of potential sites, K = 100.

However for larger problem sizes wherein K consists of 300 or 500 sites, CPLEX is unable

to deliver a feasible solution within an hour of computation time. To handle such instances

we developed a heuristic procedure.

The heuristic procedure is based on a location allocation method [26]. The basic idea is

to start off with an intelligent initial choice of facility locations for the hospitals and use this

to dramatically reduce the size of the problem (P1). The reduced problem is readily solved

using CPLEX, which yields the hospital capacities. Then we use Simulated Annealing (SA)

to attempt an improvement in the facility location choices. The details are as follows:

Initial choice of facility locations:

The sites are ranked based on their scores using the function
∑

m∈M

f 2

k/dmk. The reason that

the fk term is squared is to give a greater weightage to facility damage. After the scores are

computed for all the |K| sites, the highest n ranked sites are chosen. This is used as the

initial set of hospital locations for capacity allocation.

Reduced Problem:

This problem has a very small size compared to (P1) because here we deal with N set of sites

with |N | = n whereas in (P1) we had to deal with |K| potential sites. Since the number of

sites is equal to the number of hospitals, constraint 3 is not needed and constraint 5 is now

on equality constraint. We arrive at the following reduced problem that is effciently solved

via CPLEX.

9



(Q1)

Minimize
∑

m∈M

∑

k∈N∪{s}

cmymkdmk

Subject to:

∑

m∈M

cmymk ≤

MaxC.V.
∑

l=MinB.V.

fklxkl, ∀k ∈ N (8)

∑

k∈N∪{s}

ymk = 1, ∀m ∈ M (9)

∑

k∈N

MaxC.V.
∑

l=MinB.V.

lxkl = C, (10)

MaxC.V.
∑

l=MinB.V.

xkl = 1, ∀k ∈ N (11)

xkl∈ {0, 1} , ∀k ∈ N, ∀l = MinB.V., ...,MaxC.V. (12)

0 ≤ ymk ≤ 1, ∀m ∈ M, ∀k ∈ N ∪ {s} . (13)

An iteration of SA method:

An explanation of the SA procedure used in our work is as follows: For all our implemen-

tations, we start with a temperature of 5000K and cool it by a factor of 0.8 at the end of

a fixed number of iterations. The algorithm proceeds until the temperature drops to 1K.

Each of the n sites in the current solution is replaced by its neighbor and the problem is

solved again. This new solution is accepted if it is better. If the solution is worse then it is

accepted with a probability p = exp− δf

t
, where δf is the increase in objective function value

and t is a temperature control parameter. The best solution is reported. The neighbors of

a given site are selected first from the cluster to which the given site belongs; subsequently

sites from the remaining clusters are chosen. An additional selection criteria is that the site

should have a ranking less than or equal to the site under consideration. This is because all
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sites with better ranking would already be present in the set of N sites.

The clusters are developed using the K-Means clustering algorithm [27]. In this method

the number of clusters is prespecified and the algorithm assigns the sites to the requisite

number of clusters. We chose 10 clusters for our analysis as this gave approximately 10 sites

per cluster.

3.2 Computational experiments

In this section, we present our computational results. We classify the problems into three

categories- small, medium and large, based on their complexity. The choice of model para-

meters is based on the earthquake and hurricane case studies presented in Sections 5 and 6

respectively. For each category we solved one instance for all the different severity classes

of earthquake and hurricane disasters. All problems were run on a Pentium IV, 1.4 GHz

processor and 512 MB RAM. The numbers reported in the results table are the objective

function values (total average weighted distance (miles) that the casualties have to travel to

reach the hospital sites to get the required care) obtained after solving the instances of (P1)

using CPLEX and the SA heuristic.

Small-size problems

A set of 100 potential sites were considered for the facility location and capacity allocation

for both earthquake and hurricane problems. 14 and 20 Clusters (demand nodes) were con-

sidered, respectively, for earthquake and hurricane disasters. We assumed that 30 sites were

to be built. The capacity to be allocated was assumed to be 5000. The regions of study

were Northridge, California and New Orleans. Earthquake and hurricanes belonging to five

categories were simulated using [28]. CPLEX 9.0 was used as a benchmark. The heuristic

was run for half an hour to obtain the best possible results. CPLEX successfully gave us the

optimal solution for small size problems in a shorter period of time and hence is the preferred

solution method for such instances. We note, however, that the heuristic solution for such
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problem sizes is of very good quality–this is important since it turns out that the heuristic

is the only viable solution method for medium and large size problems (next sub-section).

Medium and Large size problems

A set of 300 (medium) and 500 (large) sites was chosen for these problems. The number of

demand nodes, sites to be built, and capacity to be allocated was unchanged. As stated ear-

lier, CPLEX was not able to generate a feasible solution for these problems within an hour of

computation times. Thus we only report results of the heuristic after it ran for 30 minutes.

We note here that, as expected, the total casualty travel distance increases dramatically as

the earthquake and hurricane categories become more severe.

Table 1: Computational results: heuristic (earthquake)

Earthquake Small size problem Medium size problem Large size problem
category (100 Sites) (300 Sites) (500 Sites)

Heuristic CPLEX Heuristic CPLEX Heuristic CPLEX
Small 282 273 363 Not solvable 334 Not solvable
Moderate 335 324 357 NS 348 NS
Strong 1083 1012 1143 NS 1128 NS
Major 2138 2012 2038 NS 2020 NS
Great 5398 5299 5355 NS 5343 NS

Table 2: Computational results: heuristic (hurricane)

Hurricane Small size problem Medium size problem Large size problem
category (100 Sites) (300 Sites) (500 Sites)

Heuristic CPLEX Heuristic CPLEX Heuristic CPLEX
1 493 483 329 Not solvable 320 Not solvable
2 577 567 387 NS 375 NS
3 1837 1827 1242 NS 1184 NS
4 3643 3637 2456 NS 2341 NS
5 10576 7609 5967 NS 5563 NS
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4 Model II: Capacity Reallocation

The objective of this model is to try to readjust hospital capacities so that the resultant

capacity configuration minimizes a weighted sum of the average distance traveled by a casu-

alty to its closest hospital (while meeting hospital capacity constraints) and the cost of the

capacity readjustment itself. We note here that the capacities of the hospital are based on

empirical formulae developed in the work [21]. Also, we note that casualties that are not

served by the existing set of facilities are sent to a fictitious site, as in Model I.

We use the same notation as in the formulation of (P1) with the understanding that now

K signifies the set of existing hospitals (as opposed to the set of potential sites), and with

the following additions:

Capk→ Current capacity of hospital k

C=
∑

k∈K

Capk

θ→ Cost of moving one unit of capacity

The formulation is as follows:

(P2)

Minimize
∑

m∈M

∑

k∈K∪{s}

cmymkdmk +
∑

k∈K

MaxC.V.
∑

l=MinB.V.

θ |Capk − lxkl|

Subject to: (1), (2), (4), (6), (7), and

MaxC.V.
∑

l=MinB.V.

xkl = 1,∀k ∈ K. (14)

We note that constraint 14 ensures that exactly one capacity combination is used for each

current hospital site.

Our numerical experience has shown that even large instances of P2 can be solved effec-

tively using CPLEX, making the development of a heuristic unnecessary.
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5 Earthquake Case Studies

A regional planner could make use of the two models in various ways. Model I could be used

to perform a clean-slate design for an earthquake prone region. In such a design we assume

that no hospitals have been built and the design tells us where to build hospitals and what

capacity each hospital should be. However, a more likely situation is one in which hospitals

already have been built in an earthquake prone region and a decision has to be made on

capacity reallocation between these sites so as to best prepare for an earthquake. To do this

we first close down hospitals that are likely to be severely damaged. Then we reallocate

capacities among the remaining hospitals using a variant of Model II.

Since hospital location and capacity allocation for a region prone to earthquake is an

example of decision making under uncertainty, a scenario based modeling is appropriate.

The different size earthquakes would act as the scenarios to be considered. Magnitude is

a measure of the size of the earthquake source and is the same number no matter where

a person is or what the shaking feels like. The earthquakes are categorized as great for

magnitudes greater than or equal to 8, major - between 7 and 7.9, strong - between 6 and

6.9, moderate - between 5 and 5.9, light - between 4 and 4.9, minor - between 3 and 3.9

and micro for those less than 3.

5.1 Clean-slate design

Earthquake scenarios for the Northridge region in California were generated using HAZUS

MH software. The epicenter for the earthquakes was set as latitude 34.41000, longitude -

118.40002. The casualties due to this earthquake were obtained from the results of scenarios

simulated using the HAZUS software. Casualty clusters were formed based on the casualty

distribution using the K Means clustering algorithm. The clusters were developed based

on a 8.5 magnitude earthquake. We considered the situation with 14 clusters as this gave
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approximately 2 hospitals per cluster. The peak ground acceleration distribution of an

earthquake with moment magnitude equal to 8.5 and the corresponding casualty distribution

is shown in Figure 2(a) and 2(b) respectively. We have considered 100 potential sites for

(a) Peak ground acceleration (b) Casualty clusters

Figure 2: Peak ground acceleration and casualty clusters - Northridge, CA

hospitals, with an attempt of distributing them uniformly throughout the region and at the

same time making them easily accessible to highways. These sites are shown in Figure 2(b).

The number of hospitals to be built, is taken as 30. The total capacity available to be

allocated has been considered as 5000. HAZUS was used to generate the following scenarios:

magnitude 5, 5.5, 5.9, 6.0, 6.5, 6.9, 7, 7.5, 7.9, 8 and 8.5. CPLEX 9.0 was used to generate

solutions for the scenarios using Model I. The risk neutral, risk averse, risk prone and La

place approaches are used to judge solution quality and in making a recommendation. The

results are shown in the Table 3 . It turns out that in this case the solution for scenario 8 is

the suggested solution for the risk averse, risk neutral, risk prone and La place approaches.

Hence this solution is recommended and is shown in Figure 3.
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Table 3: Solution for clean-slate design(earthquake)

Solution

5 5.5 5.9 6 6.5 6.9 7 7.5 7.9 8 8.5

Scenario

5 optimal 0 0 0 0 0 13 0 0 28 163

5.5 0 optimal 0 0 0 2 32 0 0 39 347

5.9 0 0 optimal 0 0 3 41 0 0 58 604

6 29.85 27.6 27.6 optimal 0 3 47 0 0 166 1195.6

6.5 14.82 45.16 45 0 optimal 5 59 0 0 88 1113.6

6.9 1050 1297 1435 266 868 optimal 257 10 15 1394 9592

7 1243 1613 1816 382 1078 41.4 optimal 13.8 22.8 1911 11439

7.5 5390 5632 6146 5659 5032 3753 4492 optimal 0 9343 27122.1

7.9 9356 10691 11583 12026 14495 10134 12077 3804 optimal 15317 42941

8 57736.6 44846 53389 46017 67553.6 36992 58925 51324 85879 optimal 29382

8.5 97569 84951 92733 79148 104783 76922 98121 97167 130813 39221 optimal

Avg(Payoff) 42029 39912 41555 39402.72 43976 37979 42181 40201 46056 324996 37620

Min(E(Payoff)) 12 12 12 12 12 4 25 12 12 40 175

Max regret 97569 84951 92733 79148 104783 76922 98121 97167 130813 39221 42941

Avg regret 17239.05 14910 16717 14350.01 19381 12785 17406 15231 216734 6756 12390

Stdev(regret) 31623 26748 29719 25494 34675 24015 31994 31256 44486 11871 14607

Minmax(regret) 39221

Min(Avg regret) 6756

Min(Stdev(regret)) 11871

MaxMin(E(Payoff)) 175

La Place 32499

Recommended Scenario 8

solution
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Figure 3: Solution for clean-slate design (earthquake)

5.2 Capacity reallocation

Some hospitals are so severely damaged due to an earthquake that they are not usable

for any disaster mitigation purposes. Therefore when reallocating capacities we first need

to close down these hospital sites and only consider the remaining sites. These hospital

buildings are the ones which get red tagged by inspection teams evaluating the building

status following the event of a severe earthquake. More precisely, the buildings damaged

due to earthquake are given tags based on their damage state after the mainshock (the first

earthquake). These are green, yellow and red in increasing order of damage. There typically

are a series of earthquakes called aftershocks following the mainshock. Their effect needs

to be considered to have reliable estimates of total damage possible over a period of time

after the mainshock strikes. However, Paul et al. [4] have shown that there is no need

for consideration of aftershock effects for green or yellow tagged buildings. This is because

aftershocks resulting from an earhthquake causing damage equivalent to green or yellow tags
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are generally associated with a low magnitude mainshock. However red tagged buildings

typically suffer additional damage due to aftershocks. Thus only red tagged buildings should

be closed down and be not considered for any capacity reallocation.

Capacity reallocation among the existing set of hospitals is done using Model II with zero

cost for moving one unit of capacity, i.e. θ = 0. The existing set of hospitals, considered

with their capacities, is shown in Table 5. We plan the capacity reallocation for Scenario 8.

The set of hospitals with their existing and reallocated capacities is shown in Table 4.

Table 4: Reallocation of capacity among non-red tagged hospitals in Northridge, CA

ID Hospitals in LA BED OR EFF Existing Capacity After
Capacity Reallocation

1 VALUEMARK PINE GROVE HEALTH 80 3 400 64 510
2 ENCINO-TARZANA REG MEDICAL CTR 387 7 900 213 74
3 COLUMBIA WEST HILLS MED CTR 300 5 600 137 315
4 ENCINO-TARZANA REG MED CTR 286 11 1121 322 510
5 GRANADA HILLS COMM HOSPITAL 139 5 600 106 31
6 PROVIDENCE HOLY CROSS MED CTR 254 8 845 201 31
7 MISSION COMMUNITY HOSPITAL 158 3 540 91 66
8 SHERMAN OAKS HOSP HLTH CTR 153 3 420 80 31
9 PACIFICA HOSP OF THE VALLEY 217 5 285 77 31
10 KAISER FOUNDATION HOSPITAL 192 8 992 209 31
13 NORTHRIDGE HOSPITAL MED CTR 371 14 421 193 510
14 VALLEY PRESBYTERIAN HOSPITAL 290 7 566 151 31

The results from this reallocation can also be used to identify potential sites for any future

expansion. From Table 4 we can see that Valuemark Pine Grove Health, Encino-Tarzana

Regional Medical Center(Tarzana) and Northridge Hospital Medical Center are the hospital

sites where future capacity expansion is recommended.

The results from Model I could also be used for hospital relocation and capacity allocation

by setting the parameter C to be equal to the net capacity available from the existing set

18



of hospitals. The solution obtained from the clean-slate design was significantly better than

that obtained using the current hospital locations, which indicates that the initial planning

of hospital locations was not good.

6 Hurricane Case Studies

For natural disasters like hurricanes, which have time available to plan, Model II could be

used to reallocate capacities to an existing set of hospitals using scenario based modeling.

Furthermore, Model I could be used for hospital location and capacity allocation for a rebuilt

region devastated by a severe hurricane. Hurricanes are of different severities or categories.

This categorization is based on the wind speeds. A wind speed is the most common measure

of a hurricane’s size. The Saffir/Simpson scale is often used to categorize hurricanes based

on wind speed and damage potential. Wind speeds between 74 and 95, are classified as a

hurricane of cateogry 1. Similarly wind speeds between 96 and 110, wind speeds between

111 and 130 , those between 131 and 155 and those greater than 155 miles per hour are

classified as categories 2, 3, 4 and 5 respectively.

6.1 Capacity reallocation

HAZUS-MH was used to generate the following scenarios: category 1, 2, 3, 4 and 5 hurricanes.

The region of study was chosen as New Orleans. The wind speed distribution and the damage

caused by a category 4 hurricane are shown in Figures 4(a) and 4(b) respectively. A set of

20 casualty clusters were chosen to yield a one-to-one cluster to hospital ratio. They were

developed using K Means clustering algorithm. The net capacity available at the existing

set of hospitals was calculated using the empirical formulae developed in [21].

For the case of zero cost of moving capacity, the results after using Model II yield the

numbers shown in Table 5. We note, by comparing the last two columns of Table 5, that a
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(a) Wind speed-category 4 (b) Damage category 4

Figure 4: Wind speed and damage distribution for category 4

very significant reallocation occurs to prepare for the ensuing hurricane. If a cost is attached

to capacity reallocation, this results in less capacity being reallocated and consequently in

a larger total distance traveled by casualties. This increased travel distances (in percentage

terms) is shown in Table 6. As expected, the distance increases as cost of reallocation

increases, but the effect is concave and is more significant for hurricanes of higher category.

It can also be noted that the travel distances increases with increase in severity of hurricane

upto category 4 but it decreases for category 5. This is because number of casualties for

hurricanes upto category 4 in this case study is less than the capacity available. However,

for hurricane of category 5, the number of casualties is more than the capacity available.

6.2 Clean-slate design

The following factors need to be considered when chosing potential sites for facility location

and capacity allocation for a region being rebuilt after being devastated by a severe hurricane

(e.g., New Orleans after KATRINA):
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Table 5: Capacity reallocation: hospitals in New Orleans

ID Hospitals in New Orleans BED OR EFF Existing Capacity
Capacity After Reallocation

1 West Jefferson Medical Center 448 15 1200 507 31
2 Veterans Affairs Medical Center 203 5 600 119 510
3 Tulane University Hospital and Clinic 75 2 400 64 510
4 Touro Infirmary 175 5 900 140 510
5 St.Tammany Parish Hospital 203 5 1087 151 31
6 St.James Parish Hospital 566 9 1200 322 31
7 St.Charles Parish Hospital 476 15 895 425 31
8 Sidell Memorial Hospital 144 6 717 131 31

and Medical Center
9 Ochsner Clinic Foundation 56 4 265 36 31
10 Medical Center of Louisiana 15 2 225 35 510

at New Orleans
11 Meadowcrest Hospital 203 10 800 211 31
12 Lakeview Regional Medical Center 465 5 1200 166 120
13 Lakeside Hospital 341 9 1000 263 31
14 Kenner Regional Medical Center 144 5 1100 146 31
15 East Jefferson General Hospital 317 85 1000 234 510

Percentage Increase in Distance
Hurricane Unit Capacity Moving Cost
Category 50 100 150 200 250 300
1 2.93 2.93 2.93 2.93 2.93 2.93
2 5.56 5.56 5.56 5.56 5.56 5.56
3 25.39 25.39 25.39 25.39 25.39 25.39
4 86.5 86.5 86.5 86.5 86.5 86.5
5 21.1 26.42 26.61 26.71 26.85 26.92

Table 6: Percentage increase in distance traveled by casualties
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1. Wind speeds: Wind speeds severely affect the damage caused due to hurricanes. Cat-

egory 1 causes minimal damage. The remaining categories cause moderate, extensive,

extreme and catastrophic damage in increasing order of severity.

2. Elevation: Elevation of a region is very important. Flooding of a region when sub-

jected to hurricanes is very significant concern if the height of the region is at or well

below sea level. On August 30, 2005, one day after KATRINA made landfall, 80 per-

cent of the city of New Orleans was flooded, with some parts of the city under 20 feet

(6 m) of water. Many of the hospitals in New Orleans were well below the sea level, as

shown in Table 7. The mean elevation of the fifteen hospitals is in fact 1.3 feet below

sea level.

3. Distance from nearest water source: The heavy wind forces generated during

severe hurricanes can push water from the surrounding lakes, seas and rivers into the

city and cause lot of damage due to flooding. This situation is further aggravated if

the height of the region under consideration is below sea level. For example, the severe

damage due to KATRINA in New Orleans was largely because it is surrounded by the

Mississippi river to the south, lake Pontchartrain to the north, and the Gulf of Mexico

to the east.

Potential sites which were very near to these water sources were not considered as they

incurred severe damage. Similarly we did not consider sites which have an elevation that

was below a user specified limit. Risk neutral, risk prone, risk averse and La place approaches

are used to judge the solution quality and make the final recommendation. CPLEX 9.0 was

used to generate solutions for the scenarios. The results obtained are reported in Table 8.

It turns out that in this case the solution for category 2 is the suggested solution for most

of the approaches. Hence this solution (shown in Figure 5) is recommended.
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Table 7: Elevation above sea level: hospitals in New Orleans

ID Hospitals in LA Height above
sea level(feet)

1 West Jefferson Medical Center -1.6
2 Veterans Affairs Medical Center -3.1
3 Tulane University Hospital and Clinic 0.0
4 Touro Infirmary 0.0
5 St.Tammany Parish Hospital 0.0
6 St.James Parish Hospital -6.3
7 St.Charles Parish Hospital -1.3
8 Sidell Memorial Hospital and Medical Center 0.0
9 Ochsner Clinic Foundation 0.0
10 Medical Center of Louisiana at New Orleans 0.0
11 Meadowcrest Hospital 0.0
12 Lakeview Regional Medical Center -0.2
13 Lakeside Hospital -3.4
14 Kenner Regional Medical Center -4.2
15 East Jefferson General Hospital 0.0

Figure 5: Solution - New Orleans
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Table 8: Solution for Clean-slate design(hurricane)

Solution
cat1 cat2 cat3 cat4 cat5

Scenario
cat1 optimal 8.00 55.30 55.30 123.20
cat2 817.10 optimal 1.80 5.80 30.60
cat3 961.60 13.30 optimal 0.10 7.60
cat4 1803.80 12.40 10.00 optimal 4.20
cat5 2451.70 29.10 2.50 2.50 optimal
Max Regret 2451.70 29.10 55.30 55.30 123.20
Average Regret 1206.84 12.56 13.92 12.74 33.12
Stddev Regret 945.32 10.64 23.45 23.91 51.73
E(Payoff) 2398.00 2406.00 2453.30 2453.30 2521.20
Average(Payoff) 4822.1 3627.82 3629.18 3628 3648.38
MinMax 29.10
Minaverage 12.56
Minstddev 10.64
MaxMin(E(Payoff)) 2521.20
La Place 3627.82
Recommended Sol-Scenario 2
Solution
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Figure 6: Observation 1

7 Empirical Observations

In this section we present a set of empirical observations based on our case study runs.

Observation 1: The set of facilities serving a cluster form a cluster themselves.

An example of this observation is seen in the solution presented in Table 5 for the case of a

magnitude 8.5 earthquake, with n =30, C=5000 and K=100 has been shown in Figure 6.

Observation 2: The number of facilities that need to be located n varies with the magnitude

of the disaster, with a minimum value of n = (C/Max(CriticalV olume)).

An example of this observation is that the objective function value when n = 30 is 2.62

x 105 while for n = 10, the objective function was 2.49 x 105. This example is based on an

earthquake simulation for a 8.5 magnitude earthquake. For a Max(CriticalV olume) = 600

and C = 5000, we get a minimum value of n = 9.
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Observation 3: The number of facilities which have reduced capacity is larger in a natural

disaster than in a manmade disaster. This is because in a manmade disaster (e.g., a ter-

rorist attack) the facilities will be targeted for maximum damage which may result in some

facilities being totally damaged and others being unscathed, whereas in a natural disaster

the damage to facilities is likely to be more widespread.

Observation 4: For the case when the total capacity is more than the number of casual-

ties, reallocation of capacities is not desirable since the current solution is usually acceptable.

For the dual case, i.e. when the total capacity is less than the number of casualties, real-

location is desirable and the extent of it depends on the cost of reallocating a unit of capacity.

Observation 5: There are two cases: In case 1 for low magnitude situations with two

clusters (m1,m2) served totally by two hospital locations (k1,k2) respectively, an alternate

solution can be obtained only if the two hospital locations are at approximately equal dis-

tance from the two clusters. In case 2 for higher magnitude disasters, the additional condition

that needs to be satisfied is that the percentage capacity reduction should be approximately

equal. See Figure 7.

Observation 6: For the case when the total capacity is greater than the number of ca-

sualties, the optimal number of facilities could be less than n, the prespecified number of

hospitals to be built. However for the case when total capacity is less than or equal to

the number of casualties, the optimal number of facilities could be greater than n, the pre-

specified number of hospitals to be built. This observation is of considerable significance to

planners in deciding the number of hospitals to be built. This is because in low magnitude

regions there could be some facilities which actually do not serve any casualties. The ca-

26



C 1

C 2

2 0 0

1 0 0

1 5 0

1 5 0 1 5 0

1 5 0
D is ta n c e

C a su a lt ie s

(a) Case 1

C1

C2

350

190

128

128 128

128
Distance

Casualties

(80) (80)

Percentage of

Total Capacity

Avaialble

(b) Case 2

Figure 7: Observation 5 - cases 1 and 2

pacities of these hospitals could be reallocated to other facilities and the disaster mitigation

can be made better. Similarly in a high magnitude disaster prone region, it is possible that

disaster relief efforts would have been better if there were a larger number of hospitals.

8 Conclusions and Future Research

The hospital locations and capacity allocations obtained using Model I are much better than

the original hospital sites in terms of disaster mitigation efforts. Also capacity reallocation to

existing set of hospitals using Model II shows that there is significant amount of reallocation

required to be done to maximize the benefit from the relief efforts. These models could be

used to enhance hospital planning efforts for a natural disaster prone region.

In the current research, all the casualties are considered to have the same severity. How-

ever, the routing of the casualties needs to take into account this severity so as to maximize

the number of lives saved. Capacity allocation too needs to take into account this factor.

Similarly survivability time needs to be considered. This study has taken into account only

natural disasters, however, similar models can also be developed for manmade disasters, e.g.,
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terrorist attacks.
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