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Abstract1

Given a picker-to-part warehouse having a simple rectilinear aisle arrangement with north-2

south storage aisles and east-west travel aisles (or “cross aisles”), this paper investigates the3

optimal placement of the cross aisles as a consequence of the probability density function of the4

order pick locations, as determined by the storage policy. That is, for a given storage policy,5

what placement of the cross aisles will result in a minimal expected path length for the picker?6

An analytical solution procedure is developed for the optimal placement of a single middle7

cross aisle given for a given storage policy. A simplifying assumption is made as regards picker8

routing, but arbitrary non-random storage policies are considered. The solution procedure is9

generalized to a method for multiple cross aisles. Some example problems are solved and a10

simulation study is used to measure the impact of our simplifying assumptions.11

Keywords: Warehousing, aisle design, order-picking, material handling12

1 Introduction13

A significant component in the operating cost of picker-to-part warehouses is picking time, which14

has been estimated to contribute up to 55% of total operating costs (see for example Tompkins15

et al. [2003]). In order to minimize this cost, a number of approaches are possible. Efficient picker16

routing algorithms reduce the distance traveled to pick a given pick list. Class-based storage17

policies reduce travel distance by concentrating most frequently picked items close to the I/O18
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point. These and other factors such as order batching, warehouse shape and so on have been19

studied extensively, both in isolation and in combination with other factors.20

One factor which has been studied less extensively is layout design. The picker uses aisles to21

travel through the warehouse: storage aisles in which parts are picked and cross aisles which are22

used to travel from storage aisle to storage aisle. Once the picker has made all of the picks in a23

given storage aisle, he must continue to travel through the storage aisle until he reaches the cross24

aisle via which he will travel to the next storage aisle. This is wasted travel in the sense that it25

adds no value; the less such travel, the shorter the picker’s expected path will be. If it can be26

reduced, then picker travel will be reduced without losing value. As efficiently placed cross aisles27

are added, the expected distance from a pick point to the closest cross aisle will be reduced, and28

the picker’s total expected travel distance will decrease. However, as the number of cross aisles29

increases, the storage density of the warehouse decreases. Eventually, returns diminish to the point30

where adding cross aisles decreases picking efficiency.31

It should be noted that in practice cross aisle configurations may be changed without incurring32

prohibitive costs. Product is often stored on shelving that consists of a number of modular units33

bolted together. Such shelving may be reconfigured fairly easily so as to add a cross aisle or change34

the position of one. The greatest cost will be the effort of unloading the shelves and then reloading35

them once the shelves have been re-assembled in their new configuration. Therefore the optimum36

cross aisle positions is potentially valuable information, due to the practical possibility of acting37

on it.38

The optimal positioning of aisles is conceptually simple: a cross aisle will provide a greater39

benefit if it is close to those locations where the most picks are made; to add a cross aisle in a40

seldom-visited area of a warehouse would be to trade storage capacity for only a small benefit in41

picking efficiency. If our objective is to locate cross aisles so as to shorten the expected distance42

from a pick point to the nearest cross aisle, we will prefer to locate cross aisles in areas where43

picking concentrations are high. Therefore a proper analysis of optimal aisle placement should44

take into account pick densities (storage policies). This paper therefore presents a solution method45

for the problem of where cross aisles should best be positioned to optimize picker travel distance46

for a given storage policy.47
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2 Literature Review48

Substantial work has been done on picking efficiency in picker-to-part warehouses, considering49

different combinations of factors such as pick list size, routing policies, order batching, storage50

policies and so on. A good survey of the work which has been done in this area may be found in51

de Koster et al. [2007]. A number of simulation studies have considered the efficiency of different52

combinations of factors. Petersen [1999] studies the combined effects of routing policies, pick list53

sizes and storage policies. Petersen and Aase [2004] does a similar analysis for an extensive set54

of combinations of order batching policies, storage policies and routing policies. Petersen [1997]55

considers the effects of pick list size, warehouse shape, routing policy and I/O point location, while56

assuming a random storage policy. Petersen and Schmenner [1999] studies different patterns of57

class-based storage in combination with different routing policies, pick list sizes and I/O point58

locations.59

Some analytical studies also exist. Le-Duc and de Koster [2005], assuming a warehouse with60

a single central cross aisle, a class-based storage policy and a “return” routing policy, computes61

the effect on efficiency of warehouse shape, pick list size and storage policy. Caron et al. [1998],62

assuming the same layout as Le-Duc and de Koster [2005] and class-based storage, calculates the63

efficiency of traversal and return routing policies. Caron et al. [2000], using the same layout, finds64

the optimal number of storage aisles as a consequence of pick list size and the shape of the “ABC65

curve” of a class-based storage policy, assuming a traversal routing strategy. Chew and Tang [1999]66

analyzes the effect of pick list size given class-based storage, assuming a traversal routing policy.67

Jarvis and McDowell [1991] calculates that for a full traversal routing policy the optimal storage68

policy is a “within aisle” storage policy with the fastest-moving items stored in aisles closest to the69

I/O point. Roodbergen and Vis [2006] finds the optimal shape of a single-block warehouse with a70

random storage policy, assuming either an “S-shaped” or “largest gap” routing heuristic.71

Less has been written specifically on the impact of aisle layouts on picker travel distances.72

In fact, de Koster et al. [2007] notes that “literature on layout design for low-level manual order-73

picking systems is not abundant.” Vaughan and Petersen [1999] uses a simulation study to calculate74

the optimal number of evenly-spaced cross aisles in a warehouse, assuming an “aisle-by-aisle”75

routing policy and a uniform (random) storage policy. Roodbergen and de Koster [2001a] extends76

this study by simulating a variety of routing policies in the same setting. Thalayan [2008] uses77
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simulation to compare the effects on travel time of a number of different factors, including the78

number of cross aisles, storage policy and routing policy. Roodbergen and de Koster [2001b]79

investigates the benefit of a middle cross aisle in combination with a random storage policy and80

varying pick list sizes. Roodbergen et al. [2008] develops a model for calculating optimal shape81

and number of evenly-spaced cross aisles for a warehouse with a random storage policy, assuming82

an “S-shaped” routing heuristic.83

There are even fewer studies which consider layouts where the travel aisles are not evenly spaced.84

Gue and Meller [2009] uses an analytical approach to derive an unconventional but efficient aisle85

configuration for a unit-load warehouse assuming a random storage policy. Pohl et al. [2009]86

computes the efficiency of three different aisle configurations for dual-command operation and87

random storage. They also prove that, for this case, the optimal position of a single east-west88

cross aisle in a warehouse with north-south storage aisles must be between the center of the89

warehouse and the top cross aisle.90

This paper focuses on two factors: storage policy (represented here in the form of the distri-91

bution function of pick locations) and facility layout (more specifically the question of cross aisle92

position), and their effect on picker travel distances. An assumption is made that pickers will93

be routed by a simple heuristic that will not always generate the shortest possible route. Given94

this routing policy and an arbitrary storage policy, an optimal cross aisle position is calculated.95

Possible congestion effects are not considered.96

The remainder of this paper is organized as follows. First the warehouse model is described.97

Then a procedure for computing the expected picker path length as a function of the position98

of a single interior cross aisle is presented. This solution is extended to an arbitrary number of99

cross aisles. Some example applications of the procedure are given. Simulations are performed100

to estimate the effect of the simple routing heuristic on picker path lengths and on the resulting101

optimal cross aisle positions.102

3 Model103

Consider a picker-to-part warehouse with M vertical (or “north-south”) storage aisles. Each stor-104

age aisle has B discrete pick locations of uniform size (e.g. one pallet width) on each side of the105

aisle, numbered 1, 2, . . . , B with the 1st location being the “southernmost” and the Bth location106
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being the “northernmost”. We will assume that storage aisles are narrow enough that the lateral107

movement required to pick items on both sides of the aisle may be neglected. Therefore there may108

be more than one item which for our purposes share the same effective pick point (across the aisle109

from each other, or, if multiple level storage is used, above or below one another). Thus a pick list110

may have multiple items at what for our purposes is the same effective pick point. There are three111

lateral (or “east-west”) cross aisles, one at y = 0 (i.e. “south” of all pick locations), one at y = B112

(“north” of all pick locations) and one at y = h, where h is to be determined (h being the number113

of pick locations “south” of the middle cross aisle, where 0 < h < B). There is a single I/O point114

at y = 0, at some x coordinate. The amount of north-south travel will be the same regardless of115

where the I/O point is located, therefore we may disregard the location of the I/O point when116

computing the optimal cross aisle position.117

The picker will have to be routed through the warehouse according to some sort of heuristic,118

or routing policy. Many different routing policies are described in the literature, but only a few of119

these are appropriate for warehouses with multiple cross aisles. Three such policies are “aisle by120

aisle” routing, described in Vaughan and Petersen [1999], the “S-shaped” heuristic and the largest121

gap heuristic (as adapted for multiple cross aisles), both described in Roodbergen and de Koster122

[2001a].123

We will begin by assuming an “aisle by aisle” routing model as used in Vaughan and Petersen124

[1999]: the picker begins at the leftmost storage aisle from which items must be picked and picks all125

items in that aisle, then proceeds to the nearest aisle to the right that has any items to be picked,126

picks all items in that aisle, and so on until all items have been picked. (Pickers are able to turn127

around in storage aisles and to traverse them in either direction, but always move west-to-east in128

travel aisles, except before making the first pick or after making the last.) The shortest path using129

this routing may be calculated by dynamic programming, however the necessary computations are130

still complex, and an analytical solution will be correspondingly difficult to obtain.131

In order to simplify this computation sufficiently and allow us to develop an analytical solution,132

we will make the additional simplifying “näıve routing assumption” that after making the final pick133

in a given storage aisle, the picker then departs via the closest cross aisle to his current location,134

without considering the picking locations to be visited in subsequent aisles. If equidistant from135

two cross aisles, the picker will choose the cross aisle closest to the I/O point. Note that this will136
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not always result in the picker choosing the optimal route (see figure 1). See appendix A for a137

more detailed discussion of the effects of the näıve routing assumption.138

The optimal placement of a single cross aisle will result in minimal expected “north-south”139

travel (that is, travel in storage aisles), given the assumption that pickers will employ our simplified140

routing strategy. Note that use of aisle by aisle routing ensures that for a given storage policy141

the expected amount of lateral or “east-west” travel (that is, travel in the cross aisles) will be142

the same regardless of the value of h. Therefore we may disregard this quantity when computing143

the optimal cross aisle position for a given storage policy. However it will be of interest when we144

compare the efficiency of one storage policy to that of another.145

We will use the following terms (after Vaughan and Petersen [1999]):146

N is the pick list size147

M is the number of vertical (storage) aisles148

Km is the number of pick locations to be visited in storage aisle m149

Xm(t) is the tth pick location in aisle m150

X+
m is the largest (“northernmost”) pick location in aisle m151

X−m is the smallest (“southernmost”) pick location in aisle m152

Assume that pick locations are independent random variables, and that each pick location153

will be distributed among the different storage aisles according to some arbitrary probability mass154

function gM (m), and within each storage aisle m = 1, 2, . . . ,M according to some set of M arbitrary155

probability mass functions fXm
(x). Thus a given pick will be at storage location x in storage aisle156

m with probability gM (m)fXm(x).157

Note that X+
m and X−m are respectively the Kth

m and 1st order statistics for a discrete sample158

of Km items, and will thus have probability mass functions, given by Siotani [1956], of the form:159

fX+
m

(x) = (FXm
(x))Km − (FXm

(x− 1))Km

and160

fX−
m

(x) = (1− FXm
(x− 1))Km − (1− FXm

(x))Km

6



and their joint pmf is161

fX+
m,X−

m
(x, y) = [FXm

(x)− FXm
(y − 1)]Km − [FXm

(x)− FXm
(y)]Km

− [FXm(x− 1)− FXm(y − 1)]Km + [FXm(x− 1)− FXm(y)]Km

As the formulas for these pmfs include the value Km they clearly depend on knowing the162

number of picks made in storage aisle m. There are therefore N ×M instances each of fX+
m

(x),163

fX−
m

(x) and fX+
m,X−

m
(x, y). The algorithm presented below is such that we will always know the164

appropriate values of Km and will therefore know which pmf to use at what time. For the sake of165

simplicity of presentation this detail will be omitted, but we should make clear that the pmf being166

used must in each case be the appropriate one given the number of picks in the storage aisle under167

consideration.168

4 Algorithm169

Define Pm as the north-south travel distance in aisle m, and P as the total north-south travel170

distance. In order to find the value of h which minimizes E[P ], we must find a way to compute171

E[P ] for a given value of h. We do this by conditioning over the ways the picks are distributed172

among the storage aisles. The N picks must be distributed among the M storage aisles in some173

way. That is, we have some ordered set K = {K1, K2, . . . ,KM} such that
∑M

m=1 Km = N . If174

we know all the different possible patterns of picks among our aisles, and the probability of each175

pattern, then we can calculate E[P ] as follows:176

E[P ] =
∑
K∈K∗

Pr(K)× E[P | K]

where K∗ is the set of all possible patterns of picks among our aisles. The enumeration of the177

elements of K∗ and the calculation of their respective probabilities from gM (m) is relatively178

straightforward.179

To calculate E[P | K], we consider the problem as a Markov reward process with three states180

0, h and B, corresponding to the three cross aisles. The process will be considered to be in state181
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i ∈ {0, h,B} when the picker is in cross aisle i (using it to travel from one storage aisle to the182

next). That is, when the picker enters storage aisle m via cross aisle i, makes picks in m and then183

departs m via cross aisle j, we consider the Markov reward process to have transitioned from state184

i to state j, with the reward being the expected north-south travel distance required to make all185

of the picks in m. We note that the initial state of the process will always be 0, and likewise once186

all picks have been made the system will end up in state 0. The expected total reward for a given187

pattern K will equal E[P | K].188

To compute the total expected reward we will need to calculate the relevant transition proba-189

bility matrices, as well as the expected reward for each possible state transition, i.e. the expected190

path length in a particular storage aisle given the cross aisles via which the picker arrived and191

departed. Note that the path length will also depend on both the distribution of picks in m, as192

determined by fXm(x), and Km, the number of picks to be made in m, as determined by the193

pattern K.194

We make the following additional definitions:195

Jm is the 3-vector of probabilities that the picker will enter storage aisle m via the three cross196

aisles. Note that J1 = (1, 0, 0).197

Rk
m is the 3-vector of expected rewards in aisle m given that the picker will enter m via each198

the three cross aisles and will make k picks in the aisle. Note that R0
m = (0, 0, 0)T for all m.199

T k
m is the 3 x 3 transition probability matrix for aisle m given that k picks are made in aisle200

m. Note that T 0
m is the 3 by 3 identity matrix for all m.201

The expected path length in storage aisle m, Rk
m, must be computed for each of the three cases:202

Case 0: storage aisle m is entered at y = 0203

Case h: storage aisle m is entered at y = h204

Case B: storage aisle m is entered at y = B205

The expected path lengths for the different cases are calculated as follows. Cases 0 and B are206

straightforward; the picker will proceed either up (if entering at y = 0) or down (if entering at207

y = B) the storage aisle until all picks have been made and will then exit via the closest cross aisle208

to the final pick location, as shown in figure 2.209
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Case 0: storage aisle m is entered at y = 0. We must travel up the storage aisle far enough210

to make all picks (which amounts to traveling up to X+
m), whereupon we then leave by the closest211

exit point (0, h or B). Therefore the length of the optimal path depends only on the value of X+
m.212

There are four possible sub-cases:213

1. If 0 < X+
m ≤ h

2 , the closest exit point to X+
m is at y = 0. Then the shortest possible path214

length is (2 ∗ x− 1) ∗ wb + wa, where wa is the width of a cross aisle and wb is the width of215

a pick location.216

2. If h
2 < X+

m ≤ h, the closest exit point to X+
m is at y = h, and no picks are made at any217

locations ≥ h. Then the shortest possible path length is h ∗ wb + wa218

3. If h < X+
m ≤ B+h

2 , the closest exit point to X+
m is at y = h, and at least one pick is made at219

some location ≥ h. Then the shortest possible path length is (h + 2 ∗ (x− h)− 1)∗wb+2∗wa220

4. If B+h
2 < X+

m ≤ B, the closest exit point to X+
m is at y = B and the shortest possible path221

length is (B ∗ wb + 2 ∗ wa)222

From this we can derive an expression for the expected path length in case 0:223

Rk
m(1) = E[Pm | K and Case 0] =

∑
1≤x≤h

2

fX+
m

(x) [(2 ∗ x− 1) ∗ wb + wa]

+
∑

h
2 <x≤h

fX+
m

(x) [h ∗ wb + wa]

+
∑

h<x≤ (B+h)
2

fX+
m

(x) [(h + 2 ∗ (x− h)− 1) ∗ wb + 2 ∗ wa]

+
∑

(B+h)
2 <x≤B

fX+
m

(x) [B ∗ wb + 2 ∗ wa]

Case h: storage aisle m is entered at y = h. In this case, the values of both X+
m and X−m are224

relevant, and to find the expected minimum path length we must sum over the domain of the joint225

pmf of X+
m and X−m. Because we may have some picks above h and some below, we must calculate226

the path lengths of the two possible routes (either first making all picks above h and then picks227

all below h, or else the reverse), and take the minimum of the two.228
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For all i, j such that 0 < i ≤ j ≤ B define P ∗m(i, j) as the minimum path length to pick all229

items in aisle m given that aisle m was entered at y = h, X−m = i and X+
m = j. For any given i, j230

P ∗m(i, j) is straightforwardly calculated as follows:231

Let P 1
m(i, j) =

(the distance from the cross aisle at y = h to i)

+ (the distance from i to j)

+ (the distance from j to the closest cross aisle to j)

232

Let P 2
m(i, j) =

(the distance from the cross aisle at y = h to j)

+ (the distance from j to i)

+ (the distance from i to the closest cross aisle to i)

Then P ∗m(i, j) = min{P 1
m(i, j), P 2

m(i, j)} and233

Rk
m(2) = E[Pm | K and Case 3] =

B∑
i=1

B∑
j=i

P ∗m(i, j)fX+
m,X−

m
(i, j)

Note that if points i and j are either both above or both below y = h then the shorter of the234

two paths will always be the one that makes picks in the order of increasing distance from h. This235

may be considered a trivial case, for which the above formula will also compute the correct path236

length.237

Case B: storage aisle m is entered at y = B. Then, analogously to case 0, the length of the238

optimal path depends only on the value of X−m, and is given by239
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Rk
m(3) = E[Pm | K and Case B] =

∑
1≤x≤h

2

fX−
m

(x) [B ∗ wb + 2 ∗ wa]

+
∑

h
2 <x≤h

fX−
m

(x) [((B − x) + (h− x) + 1) ∗ wb + 2 ∗ wa]

+
∑

h<x≤ (B+h)
2

fX−
m

(x) [(B − h) ∗ wb + wa]

+
∑

(B+h)
2 <x≤B

fX−
m

(x) [(2 ∗ (B − x) + 1) ∗ wb + wa]

The transition probability matrices T k
m may be computed by following similar reasoning.240

Define241

I0 = {i | the closest cross aisle to pick point i is at y = 0}

Ih = {i | the closest cross aisle to pick point i is at y = h}

IB = {i | the closest cross aisle to pick point i is at y = B}

Then the first row of T k
m is computed similarly to case 0 above:242

T k
m(1, 1) =

∑
i∈I0

fX+
m

(x)

T k
m(1, 2) =

∑
i∈Ih

fX+
m

(x)

T k
m(1, 3) =

∑
i∈IB

fX+
m

(x)

and the third row of T k
m is computed similarly to case B above:243
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T k
m(3, 1) =

∑
i∈I0

fX−
m

(x)

T k
m(3, 2) =

∑
i∈Ih

fX−
m

(x)

T k
m(3, 3) =

∑
i∈IB

fX−
m

(x)

As above, the only complicated case is the middle one, because we have to consider the shorter244

of two paths for the picker in aisle m. Define245

P̂m(i, j) =

 1 if P 1
m(i, j) > P 2

m(i, j)

0 otherwise

Then we can calculate the middle row of T k
m by246

T k
m(2, 1) =

∑
i∈I0

∑
i<j≤B

fX+
m,X−

m
(i, j)P̂m(i, j) +

∑
j∈I0

∑
0<i<j

fX+
m,X−

m
(i, j)P̂m(j, i) +

∑
i∈I0

fX+
m,X−

m
(i, i)

T k
m(2, 2) =

∑
i∈Ih

∑
i<j≤B

fX+
m,X−

m
(i, j)P̂m(i, j) +

∑
j∈Ih

∑
0<i<j

fX+
m,X−

m
(i, j)P̂m(j, i) +

∑
i∈Ih

fX+
m,X−

m
(i, i)

T k
m(2, 3) =

∑
i∈IB

∑
i<j≤B

fX+
m,X−

m
(i, j)P̂m(i, j) +

∑
j∈IB

∑
0<i<j

fX+
m,X−

m
(i, j)P̂m(j, i) +

∑
i∈IB

fX+
m,X−

m
(i, i)

Once we have computed Rk
m and T k

m for all m = 1, 2, . . . ,M and k = 0, 1, . . . , N we are ready247

to calculate E[Pm | K]. Note that there will have to be an additional calculation of Rk
m made248

for the case of the final (or “easternmost”) aisle with picks, because we will always exit that aisle249

via cross aisle 0 regardless of what picks are made there, and therefore our expected path length250

will be different from the usual case. The logic behind this calculation is similar enough to the251

foregoing that we will omit the details.252

Note that J1 = (1, 0, 0) and for m > 1 we calculate Jm by253

Jm = Jm−1T
Km−1
m−1

Then the expected reward for aisle m is given by254
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E[Pm | K] = JmRKm−1
m

and E[P | K], the expected total north-south path length, is simply the sum of the aisle-by-aisle255

expected path lengths:256

E[P | K] =
M∑

m=1

E[Pm | K] =
M∑

m=1

JmRKm−1
m

Now as noted above we simply compute E[P ] by conditioning over all possible values of K.257

The algorithm will then consist of calculating Rk
m and T k

m for all possible values of m and k,258

and then using Rk
m and T k

m to compute the expected path length for each pick pattern in K∗. Thus259

E[P ] may be computed as follows:260

{ totalPath is the total expected (north-south) path length }261

totalPath← 0262

{ m is the storage aisle }263

for m=1 to M do264

{k is the number of picks in the aisle}265

for k=0 to N do266

compute Rk
m267

compute T k
m268

end for269

end for270

for all K ∈ K∗ do271

{patternPath is the total expected path length given pattern K}272

patternPath← 0273

for m=1 to M do274

if m = 1 then275

Jm ← (1, 0, 0)276

else277

Jm ← Jm−1T
Km−1
m−1278
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end if279

patternPath← patternPath + JmRKm
m280

end for281

totalPath← totalPath + (Pr(K) ∗ patternPath)282

end for283

{totalPath will now be equal to E[P ]}284

The foregoing may be straightforwardly extended to calculating the expected path lengths if285

we have two or more “floating” cross aisles, at y = h1, y = h2, etc. If there are A cross aisles286

(including those at y = 0 and y = B) then the vectors Jm and Rk
m must be increased to size A287

and the matrices T k
m must be increased to size A by A. The procedures for calculating Jm, Rk

m288

and T k
m remain conceptually the same, although the actual calculations are more complex as we289

must consider a larger number of possible cross aisles via which we might exit a given storage aisle.290

Calculations for the fixed aisles at y = 0 and y = B may be computed in a way quite similar to291

cases 0 and B above, whereas calculations involving the movable interior aisles at y = h1, y = h2,292

etc. are done as in case h. Once the Jm and Rk
m values have been computed, the procedure for293

calculating E[P ] will be identical to the case where A = 3.294

5 Examples295

5.1 Computing the optimal position for a single cross aisle296

As we are able to compute the expected path length for each pattern, and we know the probability297

of each pattern, we are thus able to compute E[P ] for a given value of h. Once we know how to298

do this, the next step is to compute that value of h for which the picker’s expected travel distance299

is minimized. We can do this by evaluating E[P ] for various values of h. If we wish to find the300

optimal location of a single floating cross-aisle using the algorithm outlined above, a single objective301

function evaluation remains sufficiently inexpensive that it is still feasible to use full enumeration302

to find the solution. As an example, we do this for an “across-aisle” storage policy, where gM (m)303

is the uniform distribution and for each storage aisle fXm(x) is the “80-20” distribution function,304

so-called because 80% of picks are in the 20% of the aisle closest to the I/O point:305
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fXm(x) =


0.08 1 ≤ x ≤ 10

0.005 11 ≤ x ≤ 50

0 otherwise

Assume 50 pick locations per aisle (B = 50), 20 storage aisles (M = 20) and 5 picks per trip306

(N = 5), wa = 10 and wb = 5. For this case we obtain the results shown in Figure 3: the expected307

path length E[P ] as a function of h, the position of the intermediate cross aisle. The minimal value308

of E[P ] is 448.007, achieved when h = 8, and was found by full enumeration in 155 milliseconds.309

We can also compare the expected north-south path length given optimally positioned cross310

aisles with the expected path length for evenly-spaced cross aisles. Table 1 shows the percentage311

savings achieved by moving the middle cross aisle to its optimal position.312

5.2 An example with dual-command travel313

Dual-command travel is the special case where the pick list size N is equal to 2. A theorem proven314

by Pohl et al. [2009] states that the optimal position of a single movable cross aisle with dual315

command-picking and a random storage policy will be between the center of the warehouse and316

the top cross aisle (their Proposition 1). We calculate the optimal cross-aisle position for random317

storage and N = 2 for a number of warehouse sizes. The results, as shown in table 2, agree with318

the theorem of Pohl et al. [2009] that the optimal cross aisle position will be beyond the midpoint319

of the warehouse.320

5.3 The comparison of three storage policies321

We now compute the optimal cross aisle positions for three different volume-based storage policies,322

and compare the resulting optimal expected path lengths. The storage policies considered are323

diagonal storage, across-aisle storage and within-aisle storage, as shown in figure 4. These storage324

policies were evaluated in Petersen and Schmenner [1999]. That study also considered perimeter325

storage, but we will disregard perimeter storage because it is clearly not suitable for the aisle-by-326

aisle routing policy being used here. The other three storage policies were evaluated with storage327

classes A B and C, occupying 20, 30 and 50 percent of storage locations respectively. The skewness328

of the three classes was either high, medium or low, defined as in table 3. A warehouse with 20329
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storage aisles was assumed, with an I/O point in at bottom center, and approximately twice as330

wide as deep (not including the portion of warehouse depth due to cross aisles).331

The results were that across aisle storage was the most efficient in all cases. (A subset of those332

results, for the medium skewness level, are shown in table 4.) (The north-south distances were333

calculated using the algorithm of section 4, and the east-west distances were calculated using a334

simpler formula given in appendix B.) For the smallest pick list sizes, diagonal storage was superior335

to within aisle storage, for larger pick list sizes within aisle storage was more efficient than diagonal336

storage. It should be observed that this does not imply that across aisle storage is superior in all337

cases. The optimal storage policy is dependent on the routing policy used; according to Jarvis338

and McDowell [1991] a within-aisle storage policy is preferable when traversal routing is used, and339

Le-Duc and de Koster [2005] finds that an across-aisle policy is superior when return routing is340

used. Another factor which should not be ignored is that, as seen in table 4, within-aisle storage341

results in less east-west travel but more north-south travel, when compared to across-aisle storage.342

Thus the relative merits of the two storage policies will be sensitive to factors such as storage aisle343

widths. (Widening storage aisles will increase the path lengths for across-aisle storage more than344

it will those for within-aisle storage.)345

The results for different numbers of cross aisles with across aisle storage and medium skewness346

are shown in table 5. One result which is apparent here (and was observed for other storage policies347

and skewness levels as well) is that the the benefits for additional cross aisles decrease rapidly. The348

first cross-aisle brings a significant benefit, especially for larger pick list sizes. The second aisle349

added never gives as much as a two per cent improvement, and the third either yields a very small350

improvement or else may even cause path lengths to increase. Also note that optimal cross aisle351

positions are fairly insensitive to pick list size. For three cross aisles, the optimal position for the352

middle aisle is always at y = 10. However when an increase in pick list size does cause the optimal353

aisle positions to change, they tend to do so in an abrupt fashion: for A = 4 and 2 ≤ N ≤ 5 the354

optimal aisle positions are (0 10 39 50), and for A = 4 and 5 < N ≤ 10 they are (0 8 23 50).355

Table 6 shows the results for different skewness levels for across aisle storage with four cross356

aisles. As before, we see that optimal cross aisle positions are insensitive to pick list size, and that357

this insensitivity is more pronounced for higher skewness levels. It is also worth noticing that in358

this example the percentage savings resulting from higher skewness levels increases as the pick list359
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size increases.360

6 Conclusions and Further Work361

As noted by many researchers (e.g. Hausman et al. [1976]), volume-based storage policies decrease362

picker travel distances. Up to some point of diminishing returns, the addition of interior cross-aisles363

reduce travel as well. Therefore it is useful to study the use of volume-based storage policies in a364

warehouse with interior cross aisles. As we have seen, in the absence of random storage, the most365

efficient cross aisle positions will not be equally-spaced. Furthermore, as the cost of adjusting cross366

aisle positions is not prohibitive, practitioners will be able to benefit from knowing the maximally367

efficient positions for cross aisles corresponding to storage policies in use, or storage policies under368

consideration. We have presented a method for calculating maximally efficient cross aisle positions369

for a picker-to-part warehouse using arbitrary storage policies, subject to certain assumptions,370

most notably an assumption regarding routing policy.371

This work could be developed into a tool that could be used to calculate optimal cross aisle372

positions, and applied to a larger number of questions. For example, warehouse shape could be373

varied, as so could be the number of storage aisles. Other pick list sizes could also be considered.374

A more difficult task would be to relax our routing assumptions. The simulation results (see375

appendix A) suggest that our predicted optimal cross aisle positions will also be optimal for aisle-376

by-aisle routing in the absence of the näıve routing assumption. However this may not be true for377

all possible routing policies. Other simple routing policies exist for which path lengths could be378

calculated analytically (e.g. traversal routing), but such policies do not as a rule take advantage of379

cross aisles. Optimal routing is therefore the nut we need to crack. For optimal routing however it380

seems unlikely that the expected path length for a given layout could be found except by simulation.381

The computational effort required to find optimal positions for several cross-aisles using simulation382

might, however, prove prohibitively large.383
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A Simulation427

Simulation was used to validate the results of the analytical study in two different ways. An428

estimate was made of the increase in average path length due to the näıve routing assumption.429

The path length resulting from the näıve routing assumption was compared to that resulting from430

the aisle by aisle routing policy used by Vaughan and Petersen [1999], where storage aisles are431

visited in a strict left-to-right sequence, but the shortest possible path subject to that restriction432

was found (using a dynamic programming algorithm). For the sample problem with the “80-20433

distribution” defined in section 5.1, cross aisles at 0, 6, 29, 44 and 50 , fifty pick locations per434

storage aisle (B = 50), 20 storage aisles (M = 20) and a pick list size of five (N = 5), the results435

were that the average penalty of the näıve routing assumption was 8.64%, based on a sample of436

100,000 picking trips. For the three-aisle case, the discrepancy for the optimal configuration (cross437
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aisles at 0, 8 and 50) was 13.49%. It makes intuitive sense that the discrepancy should be larger438

in this case: when the cross aisles are fewer and therefore farther apart, the penalty for using the439

wrong cross aisle will be larger.440

But does this larger discrepancy between the expected path lengths when using the different441

routing assumptions cause us to find the wrong optimal solution? Simulation was used to estimate442

the expected path length using the routing policy of Vaughan and Petersen [1999] for the different443

candidate solutions to the sample problem of the 80-20 distribution, with N = 5 and M = 20,444

B = 50 and three cross aisles, varying the position of the interior cross aisle between 1 and445

49. Figure 5 plots these simulated path lengths against the values calculated analytically using446

the näıve routing assumption. Although the routing assumption of Vaughan and Petersen [1999]447

resulted in significantly shorter path lengths, the two curves are quite similar in shape and have448

the same minimum point (at h = 8).449

B East-West Path Length450

The expected east-west path length (total distance traveled in cross aisles) for a given storage451

policy and pick list size may be calculated as follows. Given the aisle-by-aisle routing policy in use,452

the expected east-west path length depends only on the easternmost and westernmost storage aisle453

being visited (the actual pick points visited does not matter). Also, if we know the easternmost454

and westernmost storage aisle being visited we may calculate the (exact) east-west path length. If455

we define456

Pew is the east-west path length.457

Wi is the event that the westernmost storage aisle visited is aisle i458

Ej is the event that the easternmost storage aisle visited is aisle j.459

pij is the east-west path length given the events Wi and Ej .460

ws is the distance between storage aisles, measured midpoint-to-midpoint.461

I is the location of the I/O point, expressed as a number between 1 and M . That is, I = 10.5462

means that the I/O point is between storage aisles 10 and 11.463

Then the expectation of Pew may be calculated by conditioning over the values of easternmost464
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and westernmost storage aisle visited, given pick list size N , as follows:465

E[Pew | N ] =
M∑
i=1

M∑
j=i

pijPr((Wi ∩ Ej) | N)

Furthermore, pij is easily calculated for each i and j:466

pij = ws ∗ {| I − i | + | i− j | + | I − j |}

And Pr((Wi ∩ Ej) | N) may be calculated as follows. If i = j, then467

Pr((Wi ∩ Ej) | N) = (gM (i))N

otherwise468

Pr((Wi∩Ej) | N) =

[
j∑

m=i

gM (m)

]N
N−1∑
k=1

N−k∑
l=1

(gM (i))k (gM (j))l

(
j−1∑

m=i+1

gM (m)

)N−k−l(
N

k

)(
N − k

l

)

21



Figure 1: In the above example, the “näıve” routing method (shown on the left) results in a longer
path length than the optimal routing (shown on the right).
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Figure 2: In the case where we enter a storage aisle at y = 0 or y = B, we make all picks and then
exit via the closest cross aisle to our last pick location.
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Figure 3: Expected north-south path length E[P ] as a function of cross-aisle location (h) for the
“80-20” distribution, with 50 pick locations per aisle, 20 storage aisles and 5 picks per trip, wa=10
and wb=5.
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north-south north-south
Path length, Path length, percent

N h=8 h=25 difference savings
2 189.24 201.33 12.09 6.01
3 259.21 287.48 28.27 9.83
4 328.42 371.83 43.41 11.67
5 397.31 454.89 57.58 12.66
6 465.11 536.10 70.99 13.24
7 531.75 615.42 83.67 13.60
8 597.70 693.45 95.75 13.81
9 662.80 769.70 106.90 13.89
10 726.66 843.99 117.33 13.90

Table 1: Savings of optimal cross-aisle position compared to centered cross-aisle for an across-aisle
storage policy with two storage classes (the “80-20” distribution), with B=50, M=25, and N=2
thru 10, based on 1,000,000 simulation runs per value of N . The optimal aisle position of h=8
saved between 6 and 13.9 percent as compared to the centered cross aisle at h=25.

N M P ∗ h∗ N M P ∗ h∗

2 2 382.00 30 2 16 404.02 27
2 3 390.45 28 2 17 404.20 27
2 4 394.63 28 2 18 404.37 27
2 5 397.14 28 2 19 404.51 27
2 6 398.81 28 2 20 404.64 27
2 7 400.00 28 2 21 404.76 27
2 8 400.90 28 2 22 404.87 27
2 9 401.59 28 2 23 404.97 27
2 10 402.15 28 2 24 405.06 27
2 11 402.61 28 2 25 405.14 27
2 12 402.99 28 2 26 405.22 27
2 13 403.31 27 2 27 405.29 27
2 14 403.58 27 2 28 405.35 27
2 15 403.82 27 2 29 405.41 27

2 30 405.47 27

Table 2: Optimal cross-aisle position h∗ and minimal expected path length P ∗ for dual-command
operation for the uniform distribution, with B=50 and M between 2 and 30. The value of h∗ is
always greater than 25, which agrees with proposition 1 of Pohl et al. [2009]

percent percent percent
Skewness in class A in class B in class C

Low 40 40 20
Medium 60 30 10

High 80 15 5

Table 3: Three different skewness levels used.
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Figure 4: Diagonal, across aisle and within aisle storage with three storage classes. The I/O point
is at bottom center. After Petersen and Schmenner [1999].
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Figure 5: Simulation results for the 80-20 distribution, with N = 5 and M = 20, 50 pick locations
per aisle and 3 cross-aisles, with the position of the middle aisle varying between 1 and 49. The
higher of the two curves shows the analytical result for E[P ] given the näıve routing assumption,
and lower curve shows the simulation result for the same aisle configurations, given the routing
assumption used by Vaughan and Petersen [1999]. Although the näıve routing assumption results
in a significant penalty (longer trip lengths), the optimal aisle position is the same in both cases
(h = 8).
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Diagonal Storage Across Aisle Storage Within Aisle Storage
Path Length Path Length Path Length

north- east- north- east- north- east-
A N south west total south west total south west total

2

2 199.06 301.62 500.68 134.25 320.63 454.88 228.38 281.23 509.60
3 287.18 333.67 620.85 198.38 362.19 560.57 312.22 303.09 615.30
4 369.83 354.16 724.00 260.53 387.08 647.61 390.37 318.05 708.42
5 448.29 368.87 817.16 320.78 403.65 724.42 463.13 329.56 792.69
6 523.15 380.14 903.28 379.05 415.45 794.49 530.58 338.95 869.54
7 594.70 389.15 983.84 435.84 424.27 860.12 593.09 346.90 939.99
8 663.12 396.56 1059.68 490.80 431.11 921.91 651.18 353.78 1004.96
9 728.57 402.81 1131.38 544.12 436.57 980.68 705.32 359.84 1065.17
10 791.20 408.16 1199.35 595.86 441.01 1036.86 755.94 365.25 1121.19

3

2 161.40 301.62 463.01 124.07 320.63 444.70 210.04 281.23 491.27
3 229.61 333.67 563.28 171.56 362.19 533.75 270.67 303.09 573.76
4 292.50 354.16 646.66 218.60 387.08 605.68 330.45 318.05 648.50
5 351.84 368.87 720.71 264.75 403.65 668.39 388.16 329.56 717.72
6 409.02 380.14 789.15 309.81 415.45 725.25 443.03 338.95 781.98
7 464.54 389.15 853.69 354.07 424.27 778.34 495.09 346.90 841.99
8 518.58 396.56 915.14 397.32 431.11 828.43 544.54 353.78 898.32
9 571.09 402.81 973.90 439.67 436.57 876.23 591.60 359.84 951.44
10 622.11 408.16 1024.91 481.14 441.01 922.15 636.44 365.25 1001.70

4

2 157.08 301.62 458.70 123.26 320.63 443.89 209.57 281.23 490.80
3 221.06 333.67 554.73 169.17 362.19 531.36 267.00 303.09 570.08
4 279.87 354.16 634.03 214.66 387.08 601.75 322.95 318.05 641.00
5 335.56 368.87 704.42 259.28 403.65 662.93 376.92 329.56 706.48
6 389.10 380.14 769.23 302.20 415.45 717.64 428.47 338.95 767.42
7 440.99 389.15 830.13 344.15 424.27 768.42 477.44 346.90 824.34
8 491.48 396.56 888.04 385.12 431.11 816.24 524.08 353.78 877.86
9 540.63 402.81 943.43 425.22 436.57 861.79 568.54 359.84 928.38
10 588.45 408.16 996.61 464.46 441.01 905.47 611.01 365.25 976.27

5

2 157.35 301.62 458.96 123.38 320.63 444.01 210.19 281.23 491.42
3 221.31 333.67 554.98 169.35 362.19 531.54 267.47 303.09 570.56
4 280.05 354.16 634.22 214.90 387.08 601.98 323.22 318.05 641.26
5 335.29 368.87 704.16 258.55 403.65 662.20 377.14 329.56 706.70
6 388.22 380.14 768.36 300.89 415.45 716.33 428.46 338.95 767.41
7 439.49 389.15 828.63 342.47 424.27 766.75 477.29 346.90 824.19
8 489.44 396.56 886.00 383.12 431.11 814.23 523.77 353.78 877.55
9 538.13 402.81 940.94 422.93 436.57 859.49 568.19 359.84 928.03
10 585.59 408.16 993.75 461.92 441.01 902.92 610.71 365.25 975.96

Table 4: Comparison of diagonal, across-aisle and within aisle storage policies with medium skew-
ness level. N is the pick list size and A is the number of cross aisles. Here M = 20, B = 50,
wa = 8, wb = 2.5 and the center-to-center distance between adjacent storage aisles is 12.5.

28



optimal north- east-
aisle south west total percent

A N CPU positions distance distance distance savings

2

2 < 1 0 50 134.25 320.63 454.88 -
3 < 1 0 50 198.38 362.19 560.57 -
4 < 1 0 50 260.53 387.08 647.61 -
5 < 1 0 50 320.78 403.65 724.42 -
6 < 1 0 50 379.05 415.45 794.49 -
7 < 1 0 50 435.84 424.27 860.12 -
8 < 1 0 50 490.80 431.11 921.91 -
9 < 1 0 50 544.12 436.57 980.68 -
10 < 1 0 50 595.86 441.01 1036.86 -

3

2 < 1 0 10 50 124.07 320.63 444.70 2.24
3 < 1 0 10 50 171.56 362.19 533.75 4.78
4 < 1 0 10 50 218.60 387.08 605.68 6.47
5 < 1 0 10 50 264.75 403.65 668.39 7.73
6 < 1 0 10 50 309.81 415.45 725.25 8.72
7 < 1 0 10 50 354.07 424.27 778.34 9.51
8 < 1 0 10 50 397.32 431.11 828.43 10.14
9 < 1 0 10 50 439.67 436.57 876.23 10.65
10 < 1 0 10 50 481.14 441.01 922.15 11.06

4

2 5 0 10 39 50 123.26 320.63 443.89 0.18
3 4 0 10 39 50 169.17 362.19 531.36 0.45
4 6 0 10 39 50 214.66 387.08 601.75 0.65
5 6 0 10 39 50 259.28 403.65 662.93 0.82
6 6 0 8 23 50 302.20 415.45 717.64 1.05
7 7 0 8 23 50 344.15 424.27 768.42 1.27
8 7 0 8 23 50 385.12 431.11 816.24 1.47
9 9 0 8 23 50 425.22 436.57 861.79 1.65
10 9 0 8 23 50 464.46 441.01 905.47 1.81

5

2 102 0 10 39 49 50 123.38 320.63 444.01 -0.03
3 111 0 10 39 49 50 169.35 362.19 531.54 -0.03
4 117 0 10 39 49 50 214.90 387.08 601.98 -0.04
5 128 0 8 21 42 50 258.55 403.65 662.20 0.11
6 138 0 8 21 42 50 300.89 415.45 716.33 0.18
7 146 0 8 21 42 50 342.47 424.27 766.75 0.22
8 156 0 8 21 42 50 383.12 431.11 814.23 0.25
9 166 0 8 21 42 50 422.93 436.57 859.49 0.27
10 186 0 8 21 42 50 461.92 441.01 902.92 0.28

Table 5: Optimal cross aisle positions for an “across-aisle” storage policy with medium skewness
level. N is the pick list size and A is the number of cross aisles. The savings is the percentage
reduction in expected travel distance resulting in the addition of a cross aisle. Here M = 20,
B = 50, wa = 8, wb = 2.5 and the center-to-center distance between adjacent storage aisles is 12.5.
CPU is the number of seconds required to calculate the optimal aisle positions.
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optimal Path Length
aisle north- east- percent

Skew N positions south west total savings

Low

2 0 18 43 50 156.94 320.63 477.56
3 0 16 39 50 212.22 362.19 574.41 -
4 0 14 37 50 266.64 387.08 653.73 -
5 0 14 37 50 319.72 403.65 723.37 -
6 0 14 35 50 371.42 415.45 786.87 -
7 0 14 35 50 422.09 424.27 846.36 -
8 0 14 35 50 471.49 431.11 902.60 -
9 0 8 23 50 519.75 436.57 956.31 -
10 0 8 23 50 566.45 441.01 1007.46 -

Medium

2 0 10 39 50 123.26 320.63 443.89 7.05
3 0 10 39 50 169.17 362.19 531.36 7.49
4 0 10 39 50 214.66 387.08 601.75 7.95
5 0 10 39 50 259.28 403.65 662.93 8.36
6 0 8 23 50 302.20 415.45 717.64 8.80
7 0 8 23 50 344.15 424.27 768.42 9.21
8 0 8 23 50 385.12 431.11 816.24 9.57
9 0 8 23 50 425.22 436.57 861.79 9.88
10 0 8 23 50 464.46 441.01 905.47 10.12

High

2 0 10 41 50 92.45 320.63 413.08 6.94
3 0 8 41 50 127.94 362.19 490.13 7.76
4 0 8 41 50 162.53 387.08 549.61 8.66
5 0 8 41 50 196.48 403.65 600.13 9.47
6 0 8 41 50 229.65 415.45 645.09 10.11
7 0 8 41 50 262.24 424.27 686.52 10.66
8 0 8 41 50 294.11 431.11 725.23 11.15
9 0 8 41 50 325.34 436.57 761.91 11.59
10 0 8 41 50 355.94 441.01 796.95 11.98

Table 6: Comparison of the across-aisle storage policy with four cross aisles and different skewness
levels. N is the pick list size. Here M = 20, B = 50, wa = 8, wb = 2.5 and the center-to-center
distance between adjacent storage aisles is 12.5. For medium skewness, the percent savings is
how much was saved in comparison with low skewness (for the same pick list size), and for high
skewness, the percent savings is how much was saved in comparison with medium skewness (for
the same pick list size).
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