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Abstract

In this paper, we present a forecast-driven dynamic model for prepositioning
relief items in preparation for a foreseen hurricane. Our model uses fore-
cast advisories issued by the National Hurricane Center (NHC), which are
issued every six hours. Every time a new advisory is issued with updated
information, our model determines the amount and location of units to be
prepositioned and it also re-prepositions already prepositioned units. The
model also determines the best time for starting the prepositioning activities.
Our approach uses a combination of Decision Theory and stochastic program-
ming. The outcomes of our model are presented in a way that could be easily
understood by humanitarian practitioners who are ultimately the ones who

would use and apply our model.
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1 Introduction

Hurricanes are one of the most frequently observed types of natural disasters. Accord-
ing to the National Oceanic and Atmospheric Administration (NOAA), a total of 55
hurricanes struck the USA between 1961 and 2000, among which 20 were major hurri-
canes (Blake et al., 2005). Hurricanes are not only frequent but potentially devastating.
One of the costliest hurricane seasons on record in the USA occurred in 2004, in which
four major hurricanes hit US territory. During that year, landfalling hurricanes caused
approximately $45 million in economic losses and 168 deaths (Graumann et al., 2005).
Given the potential impact and high frequency of hurricanes, it is important to perform
activities to reduce the magnitude of their consequences.

Unlike unpredictable disasters such as earthquakes and terrorist attacks, hurricanes
can be detected a few days prior to their occurrence. The National Hurricane Center
(NHC) issues a forecast advisory approximately five days prior to a hurricane’s landfall.
Such an advisory contains predictions about the hurricane’s location, intensity and time
of landfall. Moreover, as the hurricane evolves, subsequent forecast advisory updates are
issued every six hours. It is expected that the forecast’s accuracy regarding hurricane’s
landfalling characteristics improves as we get closer to the time of landfall. This infor-
mation can be used by humanitarian and governmental agencies to strategically deploy
resources in the early stages of the hurricane, in order to improve the post-disaster re-
lief effort. Therefore, even though hurricanes are continuously challenging our ability
to respond to catastrophic situations, at the same time they provide us with time and
forecasted information that we can use for performing preparedness activities that can
help to ameliorate their potential impact.

In this paper we present an enhanced version of a previous model given in Galindo
and Batta (2012) for prepositioning supplies in preparation for a foreseen hurricane.
The setting of our problem is similar to that described in Galindo and Batta (2012).
According to such a setting, there is a transportation network where we have a node with a
permanent and given source of relief items, namely the Main Distribution Center (MDC).

From there, units can be delivered to a set of candidate supply points (SPs) where it is



possible to preposition items that are likely to be requested upon the hurricane’s landfall.
In our model, we represent SPs as nodes, but in practice, SPs can be tents, prefabricated
units or existing facilities such as old buildings, schools, churches, etc. (Balcik et al.,
2008). Prepositioned units would be later used to serve demand arising as consequence
of the hit of the hurricane. It is assumed that demand would be concentrated at some
specific nodes denominated as Demand Points (DPs), which represent the locations that
are affected by the hurricane (analogous to the Affected Area defined in Bozorgi-Amiri
et al. (2013)). In other words, DPs are consequence of where and how hard the hurricane
strikes, i.e. they are input data for our model. SPs are considered to be located close
to the potential affected area and therefore they would be useful for serving demand in
an efficient way. However, by having SPs close to the potential affected area, they are
vulnerable to the impact of the hurricane. Consequently, our problem needs to consider
the tradeoff between efficiency and risk.

Prepositioning of supplies can be applied by either private, humanitarian or govern-
mental organizations. According to Salmerén and Apte (2010), after hurricane Katrina,
the Federal Emergency Management Agency (FEMA) has warehoused supplies, and has
planned routes and designations for temporary shelters in hurricane-prone regions. Af-
shar and Haghani (2012) offers a detailed description about FEMA’s logistic network,
which is composed of seven main components. These components can be classified into
three types of facilities: (1) permanent facilities that store and ship commodities and are
considered as “sources”; (2) temporary facilities where items are prepositioned for their
later deployment; and (3) demand points where commodities are directly distributed to
disaster victims. We could say that our problem setting is analogous to FEMA’s ap-
proach, since our MDC can be seen as a type-1 facility, whereas our SPs would be of
type-2 and our DPs could be classified as type-3. Horner and Downs (2010) also con-
siders a humanitarian logistic network with facilities of similar types to those defined
by FEMA, which are used by the Division of Emergency Management of the State of
Florida.



The novelty of the model presented in this paper is that it is forecast-driven since
it incorporates the use of forecast information updates. An important characteristic of
forecast information is that it is not 100% accurate and its uncertainty is greater during
the earlier stages of the hurricane. Therefore, if we develop our plan for relief efforts
too many days before the hurricane strikes, we will likely face great uncertainty about
the actual intensity, location and time of the hurricane’s landfall. On the other hand,
waiting too long for initiating the prepositioning can also be undesirable and it could even
leave us without enough time for applying the prepositioning plan. Moreover, logistic
costs are likely to increase as the hurricane approaches due to potential inefficiencies and
complications (Lodree and Taskin, 2009). For instance, it is conceivable that we need to
make use of overtime hours or more expensive transportation modes in order to promptly
locate the supplies where required. The tradeoff between forecast accuracy and logistic
costs is one of the issues addressed by the model presented in this paper, by determining
an appropriate time to start the prepositioning activities.

Also, unlike the static model discussed in Galindo and Batta (2012) in which the
prepositioning decisions were made and executed only once, in our forecast-driven model
we use a dynamic approach. Such an approach uses the periodic forecast updates issued
by the NHC in order to consider three possible actions: (1) to preposition additional
supplies, i.e. to send additional units from the MDC to selected SPs, (2) to re-preposition
items, i.e. to relocate those units that had been already prepositioned among the SPs,
and (3)to do nothing, i.e. wait and see. In order to clarify these two actions, let us
consider a case in which we are at time period ¢, and we decide to send 100 units from
the MDC to SP;. This would be a prepositioning action since the units are delivered
from the MDC to a SP. Now, let us assume that in time period t;, the new forecast
indicates that it is better to preposition in SP, and SP3;. Then, our model would allow
us to re-preposition those 100 units that are currently in SP; into either SP, or SPs.
Notice that both actions occur prior to the occurrence of the hurricane.

The purpose of our model is to determine the optimal amount of supplies to be located

at each SP at every time period of our planning horizon. The outcomes of our model



are thought to be presented in a way that could be easily understood by humanitarian
practitioners who are ultimately the ones who would use and apply our model.

The remainder of this paper is organized as follows: In Section 2 we offer a literature
review. In Section 3 we present our problem description. In Section 4 we discuss our dy-
namic model and Decision Theory approach for selecting the best prepositioning strategy
in any given time period. In Section 4.3 we present our approach for deciding whether
or not to start the prepositioning in any given time period. Section 5 shows our compu-
tational experience, where we discuss the data input generation for our model, and our
results. Section 6 presents some important considerations to improve the performance
and evaluation of the forecast-driven model. Finally, Section 8 presents our remarks and

conclusions.

2 Literature Review

Galindo and Batta (2012) contains a literature review about prepositioning supplies in
preparation for a disaster that also relates to our forecast-driven model. Among the
papers discussed in Galindo and Batta (2012), the ones that are most closely related
to the model presented in this paper are the ones given by Lodree and Taskin (2009),
and Taskin and Lodree (2011). In Lodree and Taskin (2009), the authors consider the
problem of prepositioning supplies in preparation for a hurricane from the perspective of
a single private sector supplier that experiences demand peaks from a single retailer upon
the occurrence of a hurricane. In their problem, the supplier uses a hurricane’s forecast in
order to design an inventory policy for its products. A hurricane’s forecast is composed of
sequential advisories issued every six hours that predict the hurricane’s wind speed at the
time of landfall. Tt is assumed that earlier advisories have a greater uncertainty, whereas
logistic costs are assumed to be lower during the earlier stages of the hurricane. The
problem is composed of two decisions: (1) when to stop taking observations and perform
the prepositioning activities, and (2) how much to preposition. The authors approach

the problem as an optimal stopping problem with Bayesian updates. The paper given by



Taskin and Lodree (2011) extends their prior work by considering a multi-retailer supply
chain, and by incorporating official forecasts from the NHC.

A major drawback from the papers given by Lodree and Taskin (2009), and Taskin
and Lodree (2011) is that they assume statistical independence of sequential forecast
advisories. This assumption seems unrealistic and would need to be verified in order to
guarantee the applicability of their study under real-life settings.

Additional to the papers discussed in Galindo and Batta (2012), two interesting papers
that study the prepositioning of supplies in preparation for disasters are those given
by Lodree (2011), and Lodree et al. (2012). In both papers, the authors examine the
problem of prepositioning supplies from the point of view of a private sector supplier
that experiences demand surge as a consequence of a severe storm. In the first paper,
the author uses a minimax-decision-criteria approach to explore reactive and proactive
inventory strategies. In Lodree et al. (2012), the authors focus on a proactive approach
by means of a two-stage stochastic programming model for determining the inventory
levels to be prepositioned throughout a set of retailers.

Some additional related work is given by Davis et al. (2013), who propose a stochastic
programming model for the prepositioning of commodities within a given network, and
for the posterior distribution of supplies. In Davis et al. (2013), the authors use short-
term hurricane forecast information related to the storm intensity and location in order
to estimate the possible affected area. In their case, they consider that there is available
a certain level of supplies throughout the network, instead of using an approach where
supplies are purchased. Another related paper is that given by Ozguven and Ozbay
(2011), in which the authors study the problem of determining the inventory levels in
preparation for a disaster with the objective of preventing disruptions, while minimizing
the expected costs. The novelty of this latter paper is that it incorporates Intelligent
Transportation Systems (ITS) technologies that allow an online inventory framework for
minimizing the impact of unforeseen disruptions during the actual disaster relief stage.

A fundamental contribution of our work is that it uses a dynamic approach in which

the prepositioning decisions can be modified before the hurricane makes landfall, as new



forecast information updates become available. To our knowledge, this approach has not
been considered yet in previous related research. Also, unlike Lodree and Taskin (2009)
and Taskin and Lodree (2011) we do not assume statistical independence of successive
advisories. Instead, we use an alternative approach based on a working paper given
by Czajkowski and Woodward (2010). In their paper, the authors develop a model
for establishing the optimal evacuation time for a given household when a hurricane is
approaching. Asin Lodree and Taskin (2009) and Taskin and Lodree (2011), the objective
is to determine when to stop taking observations, and then start the evacuation process.
In Czajkowski and Woodward (2010), the authors model the hurricane forecasts as a
Markovian process that assumes that the forecast in the next time period depends only
on the current forecast and not on the previous. We use the approach from Czajkowski

and Woodward (2010) for modeling the forecasting process, as discussed in Section 5.1.

3 Problem Description

Let us assume that a hurricane has been predicted to make landfall within a few days.
From the possible locations of the hurricane at landfall, we define an affected potential
area (APA) that is at risk of being affected by the hurricane. Within the APA there is
a set of DPs that represents the locations from which we can expect requests of relief
items upon the occurrence of the hurricane. Our purpose is to preposition relief supplies
in order to improve the post-disaster relief efforts.

We consider a distribution network that is identical to that defined in Galindo and
Batta (2012). Basically, such a distribution network is composed of the MDC, a set
of candidate SPs, and the set of DPs. All units of supply are first gathered at the
MDC. From there, they would be delivered to selected SPs before the occurrence of the
hurricane. Then, after the hurricane has occurred, supplies would be delivered to the
DPs from those selected SPs that have not been affected by the hurricane. Our model

also allows for supplies to be directly delivered from the MDC to DPs. The objective of



our model is to determine the level of storage at selected SPs and the planned flow of
units from surviving SPs to DPs.

We consider the following set of assumptions:

1. The MDC has unlimited capacity, whereas the capacity of SPs is fixed and given.

2. In order to improve the post-disaster relief efficiency, SPs are located close to DPs,
within an area that might be hit by the hurricane. This implies that SPs can be
affected by the hurricane. On the other hand, the MDC is placed in a safe given
location where it cannot get affected by the hurricane. Location of DPs is given

depending on the hurricane’s characteristics.

3. Any given SP that gets affected by the hurricane becomes inoperative. This means

that it cannot serve demand during the relief process.

4. There is a fixed set up cost for each candidate SP, and there is available a given
budget for setting up SPs. This budget allows us to handle setup and distribution
costs separately. The purpose is to pool resources for uncertain logistic costs, by

limiting the budget for setting up SPs (Richardson et al., 2010).

5. The forecast accuracy increases as the hurricane approaches mainland, whereas

transportation costs are non-decreasing from one forecast period to the next.

6. There is a lead-time which is defined as the remaining time until the hurricane’s

landfall.

7. We assume that the set of DPs is given depending on the strength and geographic
location of the hurricane’s landfall, i.e. we do not make decisions regarding selection

of DPs.

8. We only focus on transporting goods to the affected areas. We do not consider the
last-mile distribution of relief items, which includes the final delivery of goods to
each of the affected individuals. For this type of problems we refer the reader to

Balcik et al. (2008).



For further details regarding the characteristics of the distribution network considered
in our problem, we refer the reader to Galindo and Batta (2012).

We consider a planning horizon which is composed of discrete time periods correspond-
ing to the delivery of updated forecasts. In the first time period, we need to determine if
it is desirable to start prepositioning immediately, or if it would be better to wait for the
next forecast to arrive in order to reduce the uncertainty about the hurricane’s conditions
at time of landfall. If we decided to wait, then in the following time period we would
face the same dilemma of either starting prepositioning immediately or waiting for the
following forecast. Once we have made the decision for starting the prepositioning activ-
ities, we need to make a decision about the location and quantities of the units that we
want to preposition. Then, at every subsequent time period we have three alternatives:
(1) to preposition additional units, (2) to re-preposition already prepositioned units, or
(3) to do nothing and to wait for the next forecast advisory. In cases in which we opt
for alternative (1) or (2) we also need to define the flows of relief units, i.e. their origin,
destination and quantity.

In summary, we can decompose the system into three states:

1. Initial State: This is the original state of the system. When in this state, no
prepositioning has been performed yet. For any given time period, there are two
possible actions: wait for the next advisory or start prepositioning items. We
remain in this state as long as we keep waiting for a next advisory to start the first

prepositioning activities.

2. Active State: We enter this state upon the performance of the first prepositioning
activity. For every time period within this state, there are three possible actions:
to preposition more items, to re-preposition already prepositioned units, or to do
nothing and wait for the next advisory. We abandon this state to enter the Final

State.
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Figure 1: Tropical Cyclone Discussion Advisory
Source: NHC Products Description User’s Guide. Retrieved from http: //www. nhe. noaa.
gouv/ aboutnhcprod. shtml# TCR
3. Final State: We enter this state when the estimated time until the occurrence of the
hurricane is not enough to perform additional prepositioning or re-prepositioning

activities.

As mentioned before, we allow for supplies to be re-prepositioned several times prior
to landfall as updated information becomes available. This is especially helpful in cases
in which the hurricane changes its direction and, therefore, its APA. In those cases it
is possible that supplies that have been already prepositioned become either too far or
too close to the updated APA. Then, the model considers the economic viability of re-

prepositioning those items taking into consideration updated logistic costs and risks.

3.1 Description of the Forecast Advisories and Definition of Sce-

narios

As mentioned in Section 1, the NHC delivers a series of forecasts advisories every six
hours (at 0300, 0900, 1500, 2100 UTC) and each advisory offers predictions about the
hurricane’s location and intensity valid 12, 24, 36, 48, 72, 96 and 120 h after the hurri-
cane’s nominal initial time (nominal initial time refers to the beginning of the forecast
process, c.f. Cangialosi and Franklin 2011). Figure 1 offers a portion of a forecast advi-
sory, from which it is possible also to estimate the period at which a hurricane will make
landfall.

Based on the information collected from the forecast advisories, it is possible to define

a set of possible scenarios that characterize the hurricane conditions at the time of landfall.
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In this respect, let us define a scenario as the event characterized by three attributes of
the hurricane at the moment of landfall: location, intensity and time of landfall. We
will have a set of scenarios determined by the possible combinations among these three
characteristics. A reasonable assumption is that the values of some parameters such
as demand and destruction of SPs would be scenario-dependent. At the moment of
performing the prepositioning activities, i.e. before the hurricane makes landfall, we
cannot know which scenario will occur. However, we can estimate the set of possible
scenarios and their probabilities using the information from the forecast advisories. In
Section 5.1, we illustrate a possible methodology for defining scenarios and determining
their probabilities as part of our computational example.

In the next sections we present our methodology for solving our problem. We first
discuss how to determine the pre- and re-prepositioning flows once the prepositioning
activities have already been started, and then in Section 4.3 we offer a discussion on how

to define a convenient time for starting the prepositioning.

4 Dynamic Stochastic Model with Decision Theory

Recall that in Section 3 we have described our system by defining three different states:
(1) Initial State, (2) Active State, and (3) Final State. As mentioned in that section,
the characteristic of the Initial State is that we do not perform any prepositioning or
re-prepositioning activities, but we just observe the forecasts, waiting for the right time
to start the first prepositioning action. Such right time would arrive when we consider
that waiting for a higher accuracy of an additional time period, does not compensate the
estimated increment in logistic costs. Then the two main problems that we must address
are: (1) establishing the moment to start the first prepositioning activity, and (2) defining
subsequent prepositioning and re-prepositioning measures. In this section, we propose a
dynamic stochastic model that focuses on giving answer to these two problems. In terms
of the states defined in section 3, the problems are to decide when to abandon the Initial

State, and what actions to perform while in the Active State. We seek a decision model
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that can be easily understood by humanitarian practitioners without a strong background
in OR.

Our approach uses forecasts information updates regarding hurricane’s location, inten-
sity and time of landfall in order to update the whole prepositioning scheme. Naturally,
the forecasts are not totally accurate. In order to model the forecast’s uncertainty, we
consider multiple scenarios (where scenarios are defined as described in Section 3.1) about
the actual conditions of the hurricane at landfall, whose probabilities are computed based
on the available forecasts. More specifically, once we obtain a forecast at the current time
t., we identify the possible scenarios and estimate their probabilities.

Regarding the problem of establishing the moment to start prepositioning, let us
assume that the system is in its Initial State. We know that the uncertainty about the
hurricane’s landfall at the next time period t.,; should be lower than that of current
time period t.. In the worst case, they would be equal. If that worst case happened, we
would incur an opportunity cost for not having started prepositioning at time t., when
the logistic costs were lower, since we were waiting unsuccessfully for a lower uncertainty
at time t.,,. The key question becomes: how much are we willing to risk in term of
opportunity cost for hoping to achieve a lower uncertainty? Then, in order to determine
if a given time t. should be the time for initiating the prepositioning, we evaluate the
cost of acting at time ¢, and compare it to that obtained from waiting one more period to
start prepositioning, i.e. begin activities at time t..,. If the difference between waiting
and acting immediately is lower than the risk that we are willing to make, we decide to
wait one more period.

Once we have reached the breaking point at which we have abandoned the Initial
State, we need to establish the prepositioning and re-prepositioning activities at every
time period. This involves determining the amount of supply to be allocated at each
selected SP. To do so, we build a set of possible solutions. A solution is denoted as a
3-dimension matrix that gives the flow of units from each SP (including the MDC) to each

SP at each time period. Our objective is to find a set Q of feasible solutions, evaluate
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; Scenarios
Solutions T2 ]S
1
| Q|

Table 1: Solutions versus Scenarios

them under each possible scenario and then recommend a solution that outperforms the
others.

We use a Decision Theory approach for finding the best solution based on a selected
criteria. Two types of criteria are considered: minimization of expected cost, and mini-
mization of the maximum regret. Our approach is summarized in Table 1. The columns
of Table 1 denote the set of possible scenarios, whereas its rows represent a set of possible
solutions.

In the following sections we present our mathematical model for building the set of
possible solutions (Section 4.1) and selecting the best solution for any given time period
(4.2). These two sections comprises all the procedures needed to define any prepositioning
or re-prepositioning action while in the Active State. Also, such procedures are involved
in the selection of the starting time for the first prepositioning activity, which is discussed

in Section 4.3.

4.1 Mathematical Model for Building the Set of Solutions

Once a forecast advisory is obtained and the possible scenarios are defined, we can build
a universe of possible solutions. Our approach consists in finding the best solution for
each possible scenario. Therefore, at every time period we will have as many solutions as

possible scenarios.

4.1.1 Notation

Sets

e J: Set of potential DPs (indexed with j and with | J |= m)

12



I: Set of potential SPs (indexed with i and with | I |=n)

S: Set of possible scenarios (indexed with s)

Ts: Set of planning horizon periods (indexed with ¢ and k) under scenario s
H,: Set of surviving SPs under scenario s

H,: Complement of set H,

Parameters

t.: Current time period
ts,: Lead-time under scenario s in number of periods

a;js: Distribution cost per unit supplied from SP ¢ € TU MDC to DP j, if SP ¢ is

set up and not destroyed, under scenario s

bt : Distribution cost per unit supplied from SP ¢ € TUMDC to a SP ¢ € T at time

i's®

t > t., under scenario s

vM: Binary value that equals 1 if one unit delivered at time k from SP i € IUM DC

can reach SP ¢’ € I before time ¢; 0 otherwise

! .. Flow of units that were shipped from SP ¢ € TUMDC to a SP ¢ € I at time

t <t

l;: Binary value that equals 1 if SP ¢ € [ was set up as part of an action executed

at time ¢t < t,

sur: Cost of one unit of overstock

short: Cost of one unit of unmet demand

r: Cost of one unit of supply stored at an SP that becomes inoperative

cap;: Capacity of SP 1 if it is set up

13



B: Available budget for setting up SPs

e D;;: Demand at point j under scenario s

g: Cost of one unit that is still in transit at the moment of landfall

h: Cost of acquiring one unit of supply

¢;: Set up cost for SP ¢

Decision Variables

Yijs: Flow of units delivered from SP ¢ € IUMDC to DP j under scenario s
e w;: Binary variable that equals 1 if ¢ € I is set up; 0 otherwise

e ul,: Flow of units from i € TUMDC to i’ € I at time ¢t > ¢,

xt: Level of storage at SP i € TUMDC at the end of time ¢ > ¢,

e 2.: Number of in-transit units at time of landfall under scenario s

4.1.2 Binary Mixed Integer Programming Model Formulation

In this section we present the mathematical formulation for our problem P1(t., s), which is
a deterministic model that must be solved every time we reach a new current time period
t. (the stochastic part of our formulation will be presented in Section 4.2.2). P1(t.,s)

determines how to use the prepositioned units in the best way under a given scenario s.

P1(t., s):
min 7y (t., ) = Z Z Z u“,bf” + Z Zausyz]s + Z m:
(te<t<ty,) (:€IUMDC) (i'€l) (t€eHs) J (ieMy)
+ Z sur (:z: Zyms) + Zshort - Z Yijs | + 92 (1)
(1€Hy) (1€eHs)
Z Z Unipoy — Z Z f, f{MDC}UZtJiIDC}]
i€l t>t, i€l t<tc
subject to:
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cqw; < B
w; > 1, Vi
Db < v VieH,

Zyijs <0, Vi € Hs

=220 Sl )
ot e T Vit >t.
Yijs €L Vi, j
€7t Vi, j

w;  binary Vi

DD

(k<tc) (i’ EIUMDC)

k
fii

(13)

(14)

P1(t., s) gathers information about the actions that have been already applied from

time periods prior to .. The problem computes actions to be carried at current time

t. and also in future time periods t > t.. However, we only actually execute actions

15



corresponding to the current time period ¢.. The reason for considering actions for future
time periods is that we might have units that have been already shipped but that are still
in transit in time t.. So, we plan what to do with them once they have arrived at their
destination. However, future actions might change when we reach the next time period
ter1 and solve Pl(t. 1, s).

The first term in the objective function given by (1) corresponds to the cost for
delivering units from the MDC to SPs and among SPs during time periods t. to ty,; the
second term refers to the cost of serving DPs from surviving SPs; the third, relates to the
penalization cost for affected units at destroyed SPs; the fourth term describes the cost
for surplus units at surviving SPs; the fifth term gives the cost for unsatisfied demand;
the sixth term gives the cost of in-transit units at landfall; and the seventh term gives
the acquisition costs. Acquisition costs apply for the total number of units that would
be delivered from the MDC to SPs from time ¢, and beyond, minus the units that have
been sent back from SPs to the MDC in previous periods.

Among the costs that are specified in (1), the shortage costs are the most difficult to
estimate. From the perspective of a private company, shortage costs can be defined in
terms of lost sales, loss of goodwill or cost of backorder. In the case of a humanitarian
organization, shortage costs can be computed as the cost to obtain and promptly dis-
tribute relief goods to attend the unmet demand. For instance, they can be defined as
the estimated cost of an emergency order to be supplied by means of fast transportation
modes, such as airplanes or helicopters (Consuelos Salas et al., 2012). In the literature,
shortage costs are generally considered to be much greater than purchase costs before the
disaster. For example, in the computational experiment given by Rawls and Turnquist
(2010), the authors use a shortage cost equal to 10 times the acquisition cost. Consue-
los Salas et al. (2012) also uses a shortage cost that significantly exceeds the purchase
cost. Shortage costs will also depend on the type of commodity being provided. As stated
by Consuelos Salas et al. (2012), additionally to the cost of emergency orders, experts

need to carefully quantify potential disturbance and related issues for every specific case.
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Constraints (2) are the capacity constraints. Constraints (3) define the amount of
stored units at SP ¢ at the end of period ¢. Constraints (4) ensures that if a supply 7’
cannot be reached from SP i before landfall, then SP i does not deliver units to SP ¢'.
Constraints (5) limit the number of units that can be delivered from SP i at period ¢ to
the final inventory at ¢ at period ¢t — 1. Constraints (6) state that the financial resources
for setting up SPs at time ¢, cannot exceed the available budget. Constraints (7) enforce
SPs that were opened before time t. to remain open. Constraints (8) limits the number
of units that can be delivered to surviving SPs to their inventory at time t;,. Constraints
(9) state that destroyed SPs cannot serve demand. Constraint (10) gives the number
of in-transit units at landfall. Constraints (11) through (14) describe the nature of the
decision variables.

Once we have solved P1(t.,s) for every s, we will have | S | solutions, where each
solution ¢, is characterized by a matrix with the values uf yir Which gives the flow of

qte )2

units to SPs under solution ¢, .

4.2 Decision Theory Approach for Selecting the Best Solution

for a Given Time Period

In the previous section we describe how to build a set of solutions for our problem. In
this section we present our approach for selecting which, among the solutions generated
by solving problem P1, should be applied in any given time period. In Subsection 4.2.1
we discuss a mathematical model for evaluating the performance of each solution in our
set Q under every possible scenario. Then in Subsection 4.2.2 we use the results of the
overall performance of each solution across all of the scenarios in order to finally select

the solution that would be applied.
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4.2.1 Mathematical Model for Evaluating the Performance of each Solution

under each Scenario

Once we have found the set Q. of possible solutions by solving the problem P1(¢,,s)
for all possible scenarios, we need to evaluate the performance of each solution ¢;, under
each scenario s. To do so, we solve the problem P2(t.,s,q,) for every ¢, and every s:

P2(tca S, th):

min ZQ(tca S qtc Z Zazjsyms Z 7’!E fq Z sur <l’ Zyz]s>

(i€Hs) J (i€Hs) (i€Hs) (15)
_'_ Z ShOTt (D]S — Z Z y"]3>
J i€ls  j
subject to:

Yijs S -TYE{]ZC)N Vi € Hs (16)
OAD DD DR U D DD DI LN L (17)

t<t. '€elUM DC te<t<ty, i'€lUMDC
yijs S 07 VZ € Hs (18)

tt s titr,

=220 [ (0= ) gy (1= )| (19)
Yijs € Z+7 VZL] (20)

Recall that each solution ¢ is characterized by the values of the flows from the
MDC to SPs and among SPs in each time period. Therefore, in this case ufqtc)ii, are not
decision variables, but parameters corresponding to solution ¢;,. The problem above is
in fact simply a transportation problem.

In P2 we assume that we will deliver the flows as defined by solution ¢, but under
scenario s. Note that the lead-time for scenario s might be shorter than the lead-time
under which ¢;, was computed as the optimal solution. Then, when trying to implement
q:, under scenario s, there might be flows that we will not actually schedule, because
they fall beyond the lead-time ¢;,. Also, there will be units that will not reach their

destination before such a lead-time. Therefore, the planned flow of units from a SP to all
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DPs is limited to the amount of units that we will actually be able to position at such a
SP under scenario s, following actions given by solution ¢, as stated in constraints (16)
and (17).

The total cost of solution ¢;, under scenario s would be given by the objective value
in (15) plus the costs due to in-transit units at landfall; units that must be purchased
to deliver flows before landfall; and delivery costs from the MDC to SPs and among
SPs under the given scenario s. Note that these amounts do not affect the optimization

process of P2, since they are fixed from ¢;.. These costs are given in equation (21).

9zs +h Z Z uﬁqtawm}i - Z Z f ézci{MDC}vff]T/[DC}

+ Z Z Z U%qtc)n" bgi’s

(te<t<ty,) (iclUM DC) (i'€l)
4.2.2 Selecting the Best Solution

Based on the performance of each possible solution under every possible scenario, we can
apply different criteria to select the most convenient solution in a given time period. We
use two criteria for this purpose: (1) minimum expected cost, and (2) minimum of the

maximum regret.

e Strategy 1: Select the solution, ¢; , with the minimum expected cost over all the
possible scenarios. Let us denote c(P2(t.,s,q,)) as the optimal cost for prob-
lem P2(t.,s,q,). Then the expected cost for each solution ¢;, would be given by
Clg,) = Z [c(P2(t., s,qt.))]ps, where pg is the probability of scenario s. The

selected solution would be ¢; | C(q;) < C(qu.), V..

e Strategy 2: Apply a min-max regret approach, where the selected solution, ¢; ,
is the one that has the minimum-maximum regret value. The regret, R(s,q,)
from applying solution ¢, under scenario s can be defined as c¢(P2(t.,s,q.)) —
ming, c(P2(tc,s,¢,.)). The maximum regret Rp,q.(q.,s) would be equal to

max; 12(s,q;.). Then the selected solution ¢; would be given by ¢; | Rmaz (g}, 5) <

Rmam (th ) S) ’ thc .
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Since we are using a rolling horizon approach, once we have selected ¢; , we will

actually deliver only those units corresponding to the flow uﬁ; it i.e. the units that are
te

scheduled to be delivered immediately. Also, when we reach the next time period, namely

t!. (where t/ = t. + 1) this flow would become fi(;é_l) when we apply our methodology for

finding ¢,

4.3 When to Start the First Prepositioning Activity

As mentioned in previous sections, there is a trade-off between forecast accuracy and
logistic costs. In the early stages of the hurricane, while the system is in its Initial
State, once a forecast advisory has been issued, we face two alternatives: (1) start the
prepositioning activities immediately to avoid higher logistic costs, or (2) do nothing
and wait until the next advisory in order to reduce the uncertainty of the hurricane
predictions. In this section we propose a strategy for aiding the user to make a decision
in this situation.

We can decide whether to start prepositioning immediately or wait an additional
period by applying the algorithm described below. The function of such an algorithm is
to compare the costs from both alternatives (waiting or acting immediately) and suggest

a course of action based on the difference of such costs.

e Step 1: If current time ¢, = ty,_1, solve the problems P1(t., s) and P2(t., s, q;.), and
apply solution ¢; , since there is no further opportunity for taking more observations.

Otherwise, solve the problem P1(t,,s) for current time t..

e Step 2: Solve the problems P1(t.;1,s) and P2(t.y1, s, q;.), assuming that no action

is carried at time t..

e Step 3: In Section 4.2 we discuss two ways for selecting ¢;. Independently of which
alternative we use, let us denote c(t) as the cost from the solution ¢; obtained for
time ¢. Then we would start prepositioning at time ¢, if ¢(t.1) — c(t.) > 7, ™ > 0.

Otherwise, we wait until reaching time ¢..; and go to Step 1.
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This approach is based on the assumption that the worst case that we can expect is
that the probabilities for the scenarios computed in time period ¢.,; are exactly the same
as those computed at time period ., i.e. the prediction in ¢.,; is not more accurate than
that of period t.. In this case, 7 would represent the maximum opportunity that we are

willing to risk for taking one more observation.

5 Computational Experience

In this section we present the results that we have obtained from applying our model to
a set of computational instances. First, we discuss our methodology for generating the
set possible scenarios and their corresponding probabilities. Later, we discuss our data

inputs and results.

5.1 Set of Possible Scenarios and Computation of their Proba-
bilities

One of the fundamental inputs of our model is the definition of the possible scenarios along

with their probability of occurrence. One possible approach is that given by Czajkowski

and Woodward (2010). The methodology proposed by Czajkowski and Woodward (2010)

contains some limitations, but we found it to be reasonable enough to illustrate the

application of our study.

In the paper written by Czajkowski and Woodward (2010), the authors use a Marko-
vian approach that assumes that the forecast in the next time period depends only on
the current forecast, and not on the forecast of previous periods. The state of the Markov
process is defined by three attributes of the hurricane: intensity and location at land-
fall, as well as time of landfall. Regarding hurricane’s intensity, there are five possible
categories, which correspond to the ones established by the Saffir-Simpson scale *. The

location of the hurricane at time of landfall is measured in terms of the distance from a

!The Saffir-Simpson scale uses information about hurricanes’ wind speed to classify them into five
categories. Major hurricanes are those that reach Category 3 or higher. This classification can be used
to estimate the potential property damage for a given hurricane. For further information we refer the
reader to http://www.nhc.noaa.gov/aboutsshws.php
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point of reference. The possible states for the location are: within 25 miles, 25 - 75 miles,
75 -125 miles, 125 - 175 miles, 175 - 225 miles, 225 - 275 miles, and more than 275 miles.
Finally, the authors define the lead-time as the hours remaining until the strike of the
hurricane. The possible values for lead-time are 96 h, 72 h, 48 h, 36 h, 24 h, and 12 h.
A lead-time of 72 means that the hurricane is expected to make landfall in less than 72
h but in more than 48 h.

The three attributes that define the Markovian state in the approach used by Cza-
jkowski and Woodward (2010) can be determined from the hurricane’s forecast advisory
issued by the NHC (Figure 1). The hurricane’s category and location can be read directly
from the advisory. Regarding the time of landfall, we have that the advisory from the
NHC labels as “INLAND” the time periods in which the hurricane is expected to have
touched mainland. Then, Czajkowski and Woodward (2010) uses this information to
estimate the lead-time. For instance, in the advisory given in Figure 1, the first period
that has the label “INLAND” is the one that corresponds to 12 h which is interpreted
as a lead-time of 12 h. Note that this actually implies that the hurricane is expected to
occur within 12 h.

Tables 2, and 3, give the one-step transition probability matrices offered in Czajkowski
and Woodward (2010) for hurricane’s intensity and location, respectively. Table 4 is a
partial example of the whole transition matrix for lead-time built by Czajkowski and
Woodward (2010). In Table 2, we have that, for instance, there is a probability of 0.83
that the forecast in time t + 1 says that the hurricane will be of category C2, given that
the current forecast at time ¢ says that the hurricane is of category C1. A similar analysis
applies for the transition matrix given in Table 3. In relation to the lead-time, notice that
each possible state is defined as XX.YY, where XX is the lead-time in hours, whereas YY
keeps track of the number of times that we have had a forecasted lead-time equal to XX.
For example, the first time that we have a forecast of 96 hours, we will be in state 96.01;
the second time we get the same forecasted lead-time, we will be in state 96.02 and so

on.
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For creating our scenarios we first determine the corresponding lead-time. For prac-
tical purposes, we rename the lead-time given in Czajkowski and Woodward (2010) as
the forecasted lead-time, and we redefine the lead-time of a scenario as the amount of
hours remaining to obtain a forecasted lead-time of 12.01. To compute the lead-time we
use the fact that the advisories are issued every six hours. Let us assume that there is a
probability equal to 1.0 that the next advisory gives a forecasted lead-time of 12.01 given
that the current advisory has predicted a forecasted lead-time of 24.02. In this case, our
lead-time would be six hours, which is equal to the time between the two advisories. The
reason to consider the occurrence of a forecasted lead-time of 12.01 for computing our
lead-time is that in Czajkowski and Woodward (2010) a forecasted lead-time of 12.01
means that the hurricane will occur in less than 12 h, which could imply that it might
even occur within 1 h. Then, at that point we would not have any time left to perform
prepositioning activities.

To clarify even further how we relate the scenarios in our model with the corresponding
lead-time, consider that the current forecast is 48.01 and that the forecasted lead-time
matrix given in Table 5 applies. In this case, the possibilities for lead-time would be
as follows: with probability 0.18, we could pass from 48.01 to 48.02, then to 24.01 and
then to 12.01, which gives a total of three more advisories for a lead-time of 18 h; with
probability 0.12, we could pass from 48.01 to 24.01 and then to 12.01 for a lead-time of
12 h; with probability 0.28, we could pass from 48.01 to 24.01, then to 24.02 and then to
12.01 for a lead-time of 18 h; and with probability 0.42 we could pass from 48.01 to 48.02,
then to 24.01 and then to 12.01 for a lead-time of 24 h. Then, if the current forecasted

0 1 2 3 4 5

0 100% 0% 0% 0% 0% 0%

1 11% 8% 6% 0% 0% 0%

2 0% 15% 60% 25% 0% 0%

3 0% 0% 4% 68% 28% 0%

4 0% 0% 0% 18% 79% 4%
4
5

0% 0% 0% 18% 79% 4%
0% 0% 0% 0% 50% 50%

Table 2: Intensity Markov Transition Probability Matrix
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0 25 75 125 175 225 225

0 0.4% 30.0% 39.5% 19.8% 4.9% 3.7% 1.6%
25 15.0% 20.2% 24.9% 222% 11.7% 3.3% 2.7%
75 19.8% 24.9% 2.9% 16.9% 20.6% 9.9% 5.1%
125 9.9% 222% 16.9% 12% 15% 19.8% 15.0%
175 2.5% 11.7% 20.6% 15.0% 0.4% 15.0% 34.8%
225 1.9% 33% 99% 198% 15% 0.4% 49.8%
275 0.8% 1.9% 25% 9.9% 19.8% 15.0% 50.2%

Table 3: Location Markov Transition Probability Matrix

96.01 96.02 96.03 96.04 96.05 96.06 72.01 72.02 72.03 72.04 72.05 72.06 72.07 72.08 72.09 72.10 72.11 72.12 48.01

96.01 83% 17%

96.02 67% 33%

96.03 50% 50%

96.04 40% 60%

96.05 30% 70%

96.06 100%

72.01 81% 19%
72.02 2% 19%
72.03 81% 19%
72.04 78% 22%
72.05 75% 25%
72.06 1% 29%
72.07 67% 33%
72.08 61% 39%
72.09 56% 44%
72.10 50% 50%
72.11 25% 75%
72.12 100%

Table 4: Lead-Time Markov Transition Probability Matrix

lead-time is 48.02, we have three possible lead-times: 18 h with probability of 0.46, 12 h
with probability 0.12, and 24 h with probability 0.42. We perform similar computations
for defining the possible lead-time values and their probabilities for every possible value
of forecasted lead-time.

By knowing the lead-time for any given forecasted lead-time, we can know the cor-
responding number of additional advisories. For instance, a lead-time of 18 h gives 3
more advisories. With that information, we can establish the possible intensities and
locations for hurricane’s landfall. To do so, we compute the n-steps probability matrices
for intensity and location from the one-step transition probability matrices given in Ta-

bles 2 and 3, where n would be the number of additional advisories until landfall. For

Forecasted Lead-Time in ¢ + 1

Forecasted Lead-Time in ¢t | 48.02 | 24.01 | 24.02 12.01
48.01 0.6 0.4
48.02 1.0
24.01 0.7 0.3
24.02 1

Table 5: Example of Lead-Times to Create Scenarios
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Figure 2: Zones for Computational Instances

the computations of our model, we assume that the intensity and location of hurricane’s
landfall are independent for any given lead-time. Therefore, the probability of a sce-
nario with lead-time equal to 7', category equal to C and location equal to L would be
given by P(Category = C | Lead — Time = T') * P(Location = L | Lead — Time =
T)x P(Lead — Time =T).

The number of scenarios can be quite large in theory. For instance if every combination
(location, intensity and lead-time) is considered, from the data in Tables 3 to 5, we would
have a total of 798 scenarios. However, suppose that the current forecast is Category
1, Distance = 25, and lead-time of 24.04, and that we have only one more time period
ahead. Then the total possible scenarios are only 14.

Recall that the data about the location of hurricane’s landfall delivered by Czajkowski
and Woodward (2010) uses a point of reference, and that the hurricane’s possible location
is measured in relation to such a point. Based on the possible locations for hurricane’s
landfall given by Czajkowski and Woodward (2010), we have defined the possible affected
area as the one shown in Figure 2. Instead of using a point of reference, we have set a
line of reference which corresponds to the left border of our area. Each zone depicted in
Figure 2 corresponds to one of the categories for hurricane’s location at landfall defined
in Czajkowski and Woodward (2010). Locations for the SPs and DPs are randomly
generated, taking care that the SPs and DPs are similarly distributed through out all the
zones. The location of the MDC is selected to be safe, away from the possible affected

area.
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5.2 Data Input

For our computational experience, we have generated a fixed APA that contains given
sets of SPs and DPs. Parameters that are not scenario-dependent and that are part of
the basic model discussed in Galindo and Batta (2012) (such as budget (B), setup costs
(¢i), capacities of SPs (cap;), among others), are generated in a similar way as described
in Galindo and Batta (2012). Specifically, for each instance, we randomly generated the
locations of SPs and DPs by uniformly assigning their z and y coordinates respectively
along the width and height of the APA. Also, we randomly generate the population
for each DP using a Uniform distribution. To compute set up costs and capacities for
SPs, we have used the approach given by Cornuejols et al. (1991). According to such
an approach, the set up cost for a given SP is computed as a + by/cap;, where a and
b are random numbers uniformly generated between 0 and 90, and between 100 and
110, respectively. The capacity of each SP was randomly generated in such a way that
the total capacity approximates 70% of the global population. The available budget is
uniformly generated between 10% and 80% of the sum of set up costs. The values for
costs, populations, capacities and all the remaining parameters in our model should be
regarded as illustrative only, even though they are designed to be realistic. For further
information regarding the generation of the data described above, we refer the reader to
Galindo and Batta (2012) and Cornuejols et al. (1991).

Additionally, for each instance in our computational tests, we have randomly gener-
ated an initial forecast for each of the hurricane’s characteristics: location, intensity, and
lead time. In the generation of such an initial forecast, we have assigned equal probabil-
ity to all of the possible values that each of these characteristics can take. Then, based
on the initial forecast, we used a Monte Carlo simulation, where the probability of each
possible scenario was computed using the reasoning discussed in the previous section, in
conjunction with the information given in the Markovian transition probability matrix
from Czajkowski and Woodward (2010). Also, parameters corresponding to demand val-
ues (Djs), set of surviving SPs (Hj), and delivery costs from SPs and from the MDC to

DPs (a;;s) are scenario-dependent and relate to the situation that we might find once the
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hurricane has made landfall. These parameters take values depending on the hurricane’s
category and location. For instance, the SPs that would be destroyed in a given scenario
are those that are within a certain distance from the hurricane’s location at landfall,
where such a distance depend on the hurricane’s category; a similar reasoning applies
for computing the demand of each DP. In our simulation, as well as in real-life, it is
possible that the hurricane dissipates before it makes landfall. In such a situation, there
is no demand at DPs and no destruction at SPs. Another parameter that is scenario-

dependent is the delivery cost from the MDC and from SPs to other SPs (bt

iis)- This cost
applies before the hurricane’s landfall and we assume it to be a decreasing function of
the lead-time, and dependent on the forecasted category.

In summary, there is a set of data that varies for each instance in our simulation,
which includes location of SPs and DPs, DPs’ population, set-up costs, SPs’ capacities,
available budget and the initial forecast regarding hurricane’s location, intensity and lead
time. Once this data has been specified for a given instance of our problem, we use
a Monte-Carlo simulation to simulate the subsequent forecast advisories, including the
final status of the hurricane. Then we use that information to generate demand values,
destruction of SPs and delivery costs among locations. We have two extreme cases: (1)
the hurricane dissipates without making landfall; and (2) the hurricane makes landfall

with Category 4 or 5. Our simulation stochastically considers both extremes as well as

the possibilities in between.

5.3 Results

We have that the following four approaches are possible for resource deployment:

e Solution No. 1: obtained by applying the forecast-driven model discussed in Section
4, where the solution for each time period was found using the minimum expected

cost.
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e Solution No. 2: obtained by applying the forecast-driven model, but this time we
used the min-max regret approach to select the most appropriate solution in each

time period.

e Solution No. 3: obtained by applying the static model discussed in Galindo and
Batta (2012). In this case, we assume that the model is applied once we obtain a

forecasted lead-time of 48 h.

e Solution No. 4: obtained by applying a wait-and-see approach in which no actions
are carried out before the occurrence of the hurricane, i.e. all arising demand is

served from the MDC.

Taking into consideration the four approaches stated above, we have performed a

series of computational tests in order to answer the following questions:

1. In the forecast-driven model, is the minimum expected cost strategy better than

the min-max regret strategy?

2. Are the strategies used in the forecast-driven model better than the static model

given in Galindo and Batta (2012)?

3. Are the strategies used in the forecast-driven model better than a wait-and-see

approach?

In order to give answers to the questions above within a short period of time, we
used small instances of our problem. Our findings are discussed in the following section.
Then, we present our results for larger instances, where we offer some insights about

computational solution times.

5.3.1 Results for Small Instances

Our computational tests were performed on instances of the problem with 7 SPs and 14
DPs. In Figure 3 we present our results. For obtaining the results shown in Figure 3, we

have simulated the evolution of a hurricane since it is first forecasted, until we obtain a
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forecasted lead-time equal to 12.01. At that time, we assume that the hurricane occurs
with the conditions given by the last forecast. The initial forecast regarding the charac-
teristics of the hurricane (category, location and lead time) are randomly generated and
thereafter, the subsequent forecasts are randomly created using the Markovian transition
probabilities from Czajkowski and Woodward (2010). The cost of each solution is com-
puted taking into consideration the cost of the units that were actually delivered before
the hurricane; the cost of destroyed units; surplus and shortage costs; and the cost to
deliver units after the hurricane from the surviving points and from the MDC.

Among the 15 instances in our simulations, the maximum number of scenarios for
any time period was 230. One way in which the number of scenarios can be reduced is
by grouping some of the categories for each of the hurricane’s attributes. For instance,
instead of considering a hurricane of Category 0, 1, 2, 3, 4 and 5 as different states, we
can define three states as: “no hurricane” (category 0), “minor hurricane” (categories 1
and 2), and “major hurricane” (categories 3, 4 and 5). However, this aggregation is left as
part of future research since it cannot be performed solely with the information contained
in the one-step probability matrices given in Czajkowski and Woodward (2010).

We have used the cost from Solution No. 1 as a value of reference for computing the
values in the y-axis in Figure 3, where each value is given as the cost of the corresponding
solution over the cost obtained for solution No. 1. This is why we obtain a horizontal
line in y = 1 for solution No. 1. The reason for using solution No. 1 as our reference is
that this approach was the one that generally gave the best results.

From Figure 3, we note that the wait-and-see approach is generally the one that
gives the worst results. It usually outperforms the other strategies for the cases in which
hurricane’s category at landfall is very low, i.e. 0 or 1. Solutions from the forecast-driven
model are always at least as good as the other two approaches. Figure 4 shows our results
when considering only the two solutions obtained from the forecast-driven model. As we
can see, the approach that considers the minimum expected cost is usually better than
the one based on the minimization of the maximum regret. The reason for this is that,

generally, the min-max regret approach uses a scenario that is very unlikely to occur,
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and what actually happens, is very different from that worst-case scenario. The following
section presents some insights regarding the circumstances under which Solutions No.1

and No.2 outperforms each other.

5.3.2 Insights Regarding Solutions No.1 an No.2

In order to obtain insights regarding the results presented in Figure 4, we have created
several types of instances for our problem, according to the following design based on the

initial forecast for hurricane’s category and lead time:

1. Hurricane’s intensity: strong hurricanes, i.e. initial forecasted category equal to 5,

and weak hurricanes, i.e. initial forecasted category of 1.

2. Hurricane’s lead time: long lead times, i.e. initial forecasted lead time of 96 h, and

short lead times, i.e. initial forecasted lead time of 48 h.

Hence, we have 2% types of instances of our problem. We tested 20 runs that were
randomly generated for each type of instances. Our findings are summarized in Table 6.
From Table 6, we can see that when the initial forecast indicated that the hurricane

would be strong and the lead-time long, Solution No.1 tended to be the best alternative.
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Figure 4: Relative Costs for Solutions No. 1 and No. 2

Weak Hurricane | Strong Hurricane
Short Lead-Time 15 5%)
Long Lead-Time 50 95

Table 6: Percentage of Times in which Solution No.1 ouperformed Solution No.2

The opposite occurred when we had an initial forecast of a weak hurricane with short
lead-time. In the other cases, we did not see any dominance of one solution strategy
over the other. However, we did notice that when the hurricane at landfall was strong
(independently of the initial forecast) Solution No.l tended to be the better; whereas
Solution No.2 tended to be more convenient for hurricanes that turned out to be weak
(again, independently from the initial forecast). In our search for an intuitive reason for
these results we realized that Solution No. 1 minimizes the total expected cost. Such an
expected cost can be dominated by scenarios with the largest costs, which are likely to
be those with stronger hurricanes. In other words, we could expect Solution No. 1 to be
better fitted for scenarios with stronger hurricanes and therefore, it should not surprise
that its performance is better under these circumstances. On the other hand, when the
hurricane turns out to be weak, it is possible that Solution No. 1 has over-prepositioned
items that can result in a better performance of Solution No. 2.

Additionally to the analysis above, we have registered the times at which the prepo-

sitioning activities started under each type of the instances of our problem. For the cases
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in which we had a short lead-time in the initial forecast, the model started prepositioning
very soon: in all cases prepositioning activities started while the forecasted lead-time was
still of 48 h, except for two cases in which the min-max regret strategy did not perform
any prepositioning at all. For the instances with long lead-times, for Solution No. 1 90%
of the runs started while the forecasted lead-time was equal to 72 h and 10% while it
was equal to 48 h. In the case of Solution No. 2, in 10% of the runs, it did not perform
prepositioning activities, whereas in 80% the prepositioning started while the forecasted
lead time was of 72 h. In the other 10% of the runs, prepositioning activities started
while the forecasted lead-time was of 24 h.

To explore the potential applicability of our approach to a realistic situation we solved
a large instance with 154 SPs and 301 DPs. The following section relates to the solution

of this large problem instance.

5.3.3 Results for Larger Instances

In Table 7 we show the solution times for the two strategies considered in the forecast-
driven model, when using a larger instance of the problem. These solution times represent
the time that it takes to find a solution for a given time period based on a given fore-
cast. Such solution times include: generating the possible scenarios based on the current
forecast, finding the best solution for each scenario, evaluating each solutions under each
scenario, and determining the best actions to be performed at each time period (including
establishing if current period is a good time to start prepositioning). As it may be seen,
the solution times for the forecast-driven model are reasonable. Moreover, solution times
given in Table 7 are a good sign that humanitarian practitioners can obtain a solution
for any given time period in much less than 6 hours, which is the time between successive
advisories. Also, it seems that the solution times for the min-expected cost tend to be
slightly larger than for the min-max regret approach.

The simulation times to generate all of the time periods with their corresponding fore-
cast and scenarios are a limitation for testing additional large instances of our problem.

Further research for evaluating the computational solution times for the forecast-driven
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154 SPs and 301 DPs
Period | Minimum Expected Cost | Min-Max Regret
1 395.0 388.0
2 912.0 917.0
3 575.0 574.0
4 556.0 556.0
5 539.0 339.0
6 579.0 370.0
7 336.0 185.0
8 341.0 204.0
9 283.0 166.0
10 338.0 352.0

Table 7: Solution Times in Seconds for the Forecast-Driven Model

Solution Number | Cost
Solution No. 1 7.50E7
Solution No. 2 7.63E7
Solution No. 3 1.19E8
Solution No.4 2.49E8

Table 8: Solutions for 154 SPs and 301 DPs

model when using larger instances of the problem is left as part of future research. In
this respect, a variation of the Proposition 2 in Galindo and Batta (2012) would apply for
the forecast-driven model to improve solution times by reducing the number of variables
of the problems.

Table 8 shows the corresponding costs for all of the four types of solutions that were
considered in Figure 3. In this case, the approaches for the forecast-driven model are
the ones that give the best solution. On the other hand, the solution from the static
model outperforms slightly that from the wait-and-see approach. Also, between the two
strategies for the forecast-driven model, the one that uses the minimum expected cost,
outperforms the other. These results are consistent to those observed in Figure 3. In
other words, from the solution of the large problem, we reach similar conclusions to those

obtained by solving the 15 random instances of the smaller problem.

6 Discussion and Future Research Directions

In this section we discuss some of the limitations and future research directions regarding

the forecast-driven model.
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e Even though the approach given by Czajkowski and Woodward (2010) to generate
the input data for our model is very interesting, and it does not rely on the statistical
independence of successive advisories, it has some inherent limitations that we
suggest be overcome in future computational exercises. It would be more realistic
to incorporate part of the history of the latest advisories to generate the transition
probabilities in the one-step probability transition matrices. For instance, we could
define the probability of the next forecast reporting a hurricane of Category 5, given
that the last three advisories have predicted that the hurricane will be of Category
1. Also, we can include a fourth dimension that gives the direction of the trajectory

of the hurricane in order to improve the prediction about the hurricane’s location

at landfall.

e We have assumed that the travel times do not change throughout the planning
horizon. Moreover, one of the reasons to have greater logistic costs as the hurricane
approaches, is because we would likely need to use transportation modes that are
more expensive in order to maintain the same transportation times. A more realistic
approach would be to consider travel times that depend on the forecasted lead-
time. In this case, we would relate the travel times to the congestion of roads due
to evacuation procedures. In the literature, we did not find any research that can
provide us with an estimation of travel times based on the forecasted lead-time
of a disaster. We believe this would be a valuable future research direction for

evacuation and prepositioning models.

e We have used Euclidean distances to compute the travel times between any pair
of points. In practice, it would be more realistic to use road-distances that also

accounts for possible disruptions on the transportation network.

e The criteria for selecting the starting time for the prepositioning activities can be
improved by incorporating the expected accuracy of the future forecast. In this case,
we would need to make an estimation of the possible forecasts that might arise in

the following periods. Moreover, it is possible to develop a dynamic programming
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model that takes into consideration all of the possible future forecast advisories
throughout all the future time periods. The complications of such an approach

would rise from the number of scenarios that would need to be considered.

e As future work, it would be of value to select not only SPs from a set of candidates,
but also DPs. In this respect, we would need to consider setup costs for DPs and
allocation of demand to selected DPs. We could adjust previous related research

that has addressed similar problems before, such as that given by Jia et al. (2007).

7 Conclusions

In this paper we have discussed a forecast-driven model for prepositioning supplies in
preparation for a foreseen hurricane. This model enhances the one discussed in Galindo
and Batta (2012). The model is based on Decision Theory approach where the user must
take an action based on a set of possible states of nature. Such states are defined as
the possible scenarios that might occur when the hurricane makes landfall, where each
scenario is define in terms of the hurricane’s location, category, and lead-time.

Our model determines the time to start prepositioning, and the units to be prepo-
sitioned at each selected SP. It also accounts for the possible re-positioning of already
prepositioned supplies. We have developed two approaches for selecting the best solution
in each time period: minimum expected cost, and min-max regret. These two approaches
were tested through a set of computational examples from which we observed that the
first approach usually delivers better results than the second, especially for hurricanes
that turn out to be of categories 4 or 5. However, neither approach dominates the other.
Nevertheless, both approaches are significantly better than the wait-and-see approach
and than the static model given in Galindo and Batta (2012).

We have pinpointed some limitations regarding our forecast-driven model, which can
be improved through future research, such as the use of road-distances and dynamic
travel times. We also found some limitations in relation to the input data used for our

computational experience. In this respect, we recommend the use of an improved version
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of the approach given by Czajkowski and Woodward (2010), that incorporates more than

one past advisory to create the transition probability matrices.
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