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Abstract

The adoption of electric vehicles (EVs) grows in rapid fashion in the transportation industry.

However, limited battery capacity of EVs and the lack of charging facilities become challenges

to obtain efficient route plans. In this paper, we propose a variant of electric vehicle routing

problems considering the limited charging capacity at each station and the possibility of strategic

partial recharging. A heuristic method, based on variable neighborhood search and tabu search,

with simple charging time adjustment processes is presented to solve large instances of the

problem. The proposed capacitated E-VRP model is tested with small size instances with a

commercial optimization solver, while the heuristic method is implemented on both small and

large instances. The main conclusion is that the battery capacity of the EVs and the number of

chargers can significantly affect the total traveled distance.

Keywords: Electric Vehicles; Vehicle Routing Problem; Capacitated Charging Station; Partial

Recharge; Heuristic

1 Background and Motivation

With the increasing interest of green logistics strategies and operations, all-electric vehicle (EV)

adoption is becoming a major green logistic activity. Because of its positive effects on reducing
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greenhouse gas emission and ability of promoting urban sustainability, more and more EVs are

being deployed by package delivery companies, i.e. FedEx, UPS, DHL, for last-mile deliveries

(International Post Corporation, 2013). However, the big challenges of limited driving range and

limited charging infrastructure of EVs hold back the widespread adoption of electric trucks in the

parcel delivery service industry. A typical all-electric truck can drive 75 to 100 miles with a fully

charged battery (Ingram, 2014; Daclison-Dickey, 2013) but this range can be decreased significantly

by cold temperatures and by range anxiety (Botsford and Szczepanek, 2009; Tredeau and Salameh,

2009). Given that the daily driving needs of urban pickup/delivery trucks can range from 150 miles

to 250 miles, the available range is not sufficient to complete the delivery route. Therefore, visits to

charging stations along the routes are needed and proper planning for charging infrastructure can

be a critical factor that can determine success of all-electric truck adoption.

There exist different types of charging techniques including conductive charging, inductive

charging and battery swapping. Within conductive charging, where charging infrastructure is

required, there are different levels of charging technologies: Level 1 charging, which is convenient

but slow, needs average 20 hours to full charge the battery; Level 2 primarily charging needs 2 to

3 hours; and Level 3 fast charging intended for commercial and public applications can complete

charging in 30 minutes to 1 hour (Yilmaz and Krein, 2013). A typical parcel delivery center has 100

to 200 trucks and each truck typically makes 70-90 stops daily. Given these numbers and the fact

that all trucks would likely run out of battery about the same time, even using Level 3 charging

technology the available chargers at a delicate charging station can be a significant problem that

delays adoption of all-electric trucks in the parcel delivery service industry. Moreover, the congestion

and waiting at the charging station make vehicle routing even more challenging.

In this paper, we introduce the all-electric truck routing problem while considering limited

capacity at charging stations. Level 3 charging technology is assumed to be implemented for our

electric-truck routing problem. Practical constraints of a typical EV routing problem are considered,

including vehicle capacity restrictions and customer time window to enable time-definite deliveries.

Moreover, our routing model incorporates (1) the dynamic charging time, which depends on the

battery level when vehicle arriving at the station, (2) the possibility of partial recharging at the

station, (3) conflict avoidance at chargers due to limited capacity, and (4) the ability to handle both

pickup and delivery.
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To the best of our knowledge, none of the models available in the literature of electric vehicle

routing problems considers the capacitated charging stations. The limited capacity of charging

stations can enforce electric vehicles to wait in the queue, which can potentially impact the feasibility

of routing plans, especially when time windows at the customer locations are narrow, as well as

increase the total travel time. The consideration of charging capacities naturally leads to the strategy

that allows charging EVs partially. By incorporating these important issues, this paper delivers a

flexible routing and operational plan.

The rest of this paper is organized as follows: In Section 2, a review of the related literature is

provided. In Section 3, the E-VRP model considering the limited capacity at charging stations and

partial recharging for EVs is presented in detail. In Section 4, the heuristic method used to solve

our new EV routing problem is described. Section 5 conducts numeric experiments and provides

corresponding results obtained from both small and large size instances with further analysis. We

conclude in Section 6.

2 Literature Review

The vehicle routing problem (VRP), originally introduced by Dantzig and Ramser (1959), is one

of the most widely studied problems in operations research and combinatorial optimization. The

VRP aims to minimize the total transportation cost of visiting a set of customers with known

demands by designing proper routes for a fleet of vehicles departing from and returning to the

depot. As an important extension of VRP, the VRP with time windows (VRPTW) considers the

realistic constraint that customers must be served within a specific time period (Solomon, 1987).

Another remarkable extension of VRP is the capacitated VRP which considers the limited cargo

capacity of vehicles (Laporte et al., 1986). Lots of existing work of VRPTW and capacitated VRP

used conventional vehicles as the means of transportation. However, the increasing negative effects

caused by conventional vehicles become a heavy burden on the environment. In order to reduce

such burden, green logistics using a clean means of vehicles such as electric vehicles (EVs) becomes

an urgent necessity (Davis and Figliozzi, 2013).

Green logistics has recently received increasing attention due to its sustainability in the long

term. Electric vehicles (EVs) strongly relate to the field of green logistics, because they are powered
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by clean, sustainable and renewable energy sources. However, EVs have limitations of driving range

and need to reach recharging facilities, which make EV routing problem (E-VRP) different from

the traditional vehicle routing problem (VRP). Routing models considering alternative fuels, e.g.,

electricity and hydrogen fuel that are alternative to fossil fuels, have just developed in recent years;

see Lin et al. (2014) for a survey. When a VRP is general enough to be used for any alternative fuel

vehicles, it is called a green VRP (G-VRP) problem, while it is called an E-VRP when it focuses on

EVs.

Gonçalves et al. (2011) study the VRP with pickup and delivery with a mixed fleet of EVs and

conventional vehicles. They assumed that EVs can be recharged anywhere during the route and

the number of recharging stops is determined by dividing the total traveled distance by the EV

travel range, which is unrealistic in the actual routing cases. Conrad and Figliozzi (2011) study a

recharging VRP where vehicles with limited range, wherein the vehicles are capacitated and the

recharging time is assumed to be fixed. The existence of customer time windows is studied to

show its influence on the objectives, including number of employed vehicles and total travel costs.

Additionally, bounds are formulated to predict average tour length. A G-VRP with consideration

of limited vehicle driving range and limited refueling infrastructure is proposed by Erdoğan and

Miller-Hooks (2012). It assumes the possibility of visiting one or more recharging facilities during

the route and the recharging time is assumed to be fixed. However, there is no capacity constraint

or time window constraint in the model formulation.

Schneider et al. (2014) introduce E-VRP with time windows (E-VRPTW) as an extension of

G-VRP, which has additional constraints on vehicle capacity and customer time window as well

as consideration of dynamic recharging time based on the difference between vehicle battery level

and full battery capacity. The proposed model is solved by a hybrid variable neighborhood search

(VNS) approach combined with tabu search (TS) heuristic. Goeke and Schneider (2015) extend by

considering a mixed fleet of EVs and conventional vehicles. Felipe et al. (2014) consider multiple

charging technologies and the possibility of partial recharge to strategically reduce the travel time,

but without time window consideration. Schiffer and Walther (2015) consider a location-routing

problem to determine the location of charging stations, incorporating an E-VRPTW with partial

recharge.

In this paper, we consider the capacity of charging stations. While there are some models that
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consider the charging capacity available in the literature of public charging station siting decision

(Upchurch et al., 2009; Zhang et al., 2015), our model in this paper is the first of its kind in the

electric or green VRP literature. We construct our model and devise an algorithm based on the

work of Schneider et al. (2014). The key additional components are, as discussed in Section 1, the

consideration of charging capacity and the possibility of allowing partial charging strategically. Our

model utilizes partial charging to avoid potential conflicts at charging stations, as well as to reduce

the total travel time as in Felipe et al. (2014).

Note that three types of capacities are considered in our model: the capacity of cargo space in

each EV, the battery capacity (the size of battery cells), and the capacity of charging stations—two

EVs cannot charge at a charger at the same time.

3 Electric Vehicle Routing Problem (E-VRP) considering the Ca-

pacity of Charging Stations

A typical VRPTW using conventional vehicles is known as the problem of assigning customers to

vehicles and forming the routes of vehicles to visit customers in order. An extension of VRP using

electric vehicles, namely E-VRP, is introduced with EV-specific challenges. Given the common

constraints of VRP, E-VRP seeks the minimal total distance from the routing plans of a set of EVs

which depart from the depot, visit a set of customers, and return to the depot without exceeding

the EVs driving range. The driving range of each EV depends on its battery capacity which is

limited. In order to let an EV to complete its route, it is necessary to have EVs charged en route.

The E-VRPTW model of Schneider et al. (2014) enforces customers to be visited within pre-

specific time interval, enables recharging of EVs en route, and incorporates the limited freight

capacity of EVs. However, the E-VRPTW uses the assumption that the capacity of charging

stations is unlimited so that more than one EV can charge at a charger at the same time, which

is an unreasonable assumption for the currently available charging facilities. The E-VRPTW also

assumes that EVs are always recharged to a fixed battery level always, i.e. full battery capacity,

which may not be necessary. Moreover, the E-VRPTW considers pick-up service only.

In order to consider real-word characteristics, specifically, limited number of chargers at a

charging station, flexibility of partial charging for EVs, and both pick-up and delivery services, we
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develop an improved model from the E-VRPTW formulation of Schneider et al. (2014). Conflicts

may occur at such capacitated charging stations and partial charging may help to reduce the time

vehicles need to stay at a charging station. Our model resolves conflicts at capacitated charging

stations and enables partial charging for EVs. Similar notations for data sets and constants from

Schneider et al. (2014) are used to describe our model and a complete list of variables and parameters

is summarized in Table 1.

We develop an improved model from the E-VRPTW formulation of Schneider et al. (2014) with

additional consideration of important real-world characteristics, specifically, limited chargers at a

charging station and flexibility of partial charging for EVs. Conflicts may occur at such capacitated

charging stations and partial charging may help to reduce the time vehicles need to stay at a

charging station. Our model resolves conflicts at capacitated charging stations and enables partial

charging for EVs. A similar notation for sets, variables, and constants from Schneider et al. (2014)

are used to describe our model. Our notation is summarized in Table 1.

3.1 Model formulation

Our E-VRP is formulated as a mixed-integer program. We let V denote the set of customers and K

is the number of chargers, Fk is the set of dummy nodes for each charger k = 1, ...,K and F is the

set of dummy nodes for all chargers, i.e. F ′ =
⋃K

k=1Fk. Nodes 0 and N + 1 denote the same depot,

and every route starts from 0 and ends at N + 1. Let V ′0,N+1 denotes all the nodes including depot

instances 0 and N + 1, V and F ′. The E-VRP is defined on a complete graph G = (V ′0,N+1, A), with

the set of arcs A = {(i, j) : i, j ∈ V ′0,N+1, i 6= j}. Each arc (i, j) is associated with a distance dij

and a travel time tij .

Each EV is assumed to start from depot 0 with full battery Q, with constant battery consumption

rate h, and is assumed to be recharged at a charger with a constant recharging rate g. A linear

recharge process is also assumed to simplify the problem. Additionally, it is assumed that each EV

is not necessarily recharged to full capacity during the route, which enables partial recharging for

each EV. Each customer i ∈ V is associated with a time window [ei, li] and a service time si. A set

of homogeneous EVs with cargo capacity of C is located at the depot and the maximal number of

available EVs is p. The objective function of this model is to minimize the total traveled distance.
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Table 1: Variable and Parameter Definitions of the capacitated E-VRP model

Data sets 0, N + 1 Depot instances
V Set of customers V = {1, ..., N}
V0 Set of customers including depot instance 0, V0 = V ∪ {0}
K Number of chargers
Fk Set of dummy nodes for charger k, k = 1, ...,K

F ′ Set of dummy nodes for all chargers, F ′ =
⋃K

k=1Fk

F ′0 Set of dummy nodes for all chargers and depot instance {0},
F ′ =

⋃K
k=1Fk

V ′ Set of customers and visits to chargers, V ′ = V ∪ F ′
V ′0 Set of customers, visits to chargers and depot instance {0} ,

V ′0 = V ′ ∪ {0}
V ′N+1 Set of customers, visits to chargers and depot instance N + 1,

V ′N+1 = V ′ ∪ {N + 1}
V ′0,N+1 Set of customers, visits to chargers and depot instances 0 and

N + 1, V ′0,N+1 = V ′ ∪ {0} ∪ {N + 1}

Constants Tmax Maximal time duration of a route
M Big M
p Maximal number of available EVs at depot
C Vehicle demand capacity
Q Vehicle battery capacity
h Battery consumption rate
g Battery recharging rate
dij Distance between nodes i and j
tij Travel time between nodes i and j
qi Demand at customer node i, 0 if i /∈ V
ei Earliest start of service at node i
li Latest start of service at node j
si Service time at node i

Decision Variables xij Binary decision variable; 1 if arc (i, j) is traveled, 0 otherwise.
τi Time of arrival at node i
ui Remaining cargo on arrival at node i
yi Remaining battery level on arrival at node i
zi Target battery level when leaving from node i

Dummy Variables ζij Dummy variable for linearization, ζij = zixij
ψij Dummy variable for linearization, ψij = yixij
w1
ij , w

2
ij Binary dummy variables for linearization
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We formulate a mathematical optimization model as follows:

min
∑

i∈V ′0,j∈V ′N+1, i 6=j

dijxij (1)

subject to

∑
j∈V ′N+1, j 6=i

xij =
∑

j∈V ′0, j 6=i

xji ∀i ∈ V ′ (2)

∑
j∈V ′N+1, j 6=i

xij = 1 ∀i ∈ V (3)

∑
j∈V ′N+1, j 6=i

xij ≤ 1 ∀i ∈ F ′ (4)

∑
j∈V ′N+1, j 6=i

x0j ≤ p (5)

ei ≤ τi ≤ li ∀i ∈ V ′0,N+1 (6)

τj ≥ τi + (tij + sij)xij − Tmax(1− xij) ∀i ∈ V0, j ∈ V ′N+1, i 6= j (7)

τj ≥ τi + tijxij + g(zi − yi)xij − Tmax(1− xij) ∀i ∈ F ′, j ∈ V ′N+1, i 6= j (8)

u0 = C (9)

0 ≤ uj ≤ ui − qixij + C(1− xij) ∀i ∈ V ′0, j ∈ V ′N+1, i 6= j (10)

y0 = Q (11)

0 ≤ yj ≤ yi − hdijxij +Q(1− xij) ∀i ∈ V, j ∈ V ′N+1, i 6= j (12)

0 ≤ yj ≤ zi − hdijxij ∀i ∈ F ′0, j ∈ V ′N+1, i 6= j (13)

zi ≥ yi ∀i ∈ F ′ (14)

zi = yi ∀i ∈ V0 (15)

(τi − σj)(τj − σi) ≤ 0 ∀i, j ∈ Fk, i 6= j, k = 1, ...,K (16)

σi = τi + g(zi − yi) ∀i ∈ F ′, j ∈ V ′N+1, i 6= j (17)

xij ∈ {0, 1} ∀i ∈ V ′0, j ∈ V ′N+1, i 6= j (18)

The objective function of minimizing total traveled distance is presented in (1). Constraints

(2)–(5) establish flow conservation. Constraint (2) is a flow balance equation between the numbers
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of incoming and outgoing arcs at each node. Constraint (3) ensures that each customer should

be visited exactly once and constraint (4) enforces the connectivity from chargers to other nodes.

Constraint (6) ensures that each node is visited within its time window.

Constraints (7) and (8) guarantee the time feasibility between successive nodes. Note that

constraint (8) allows partial recharging. Since (8) involves nonlinear terms (zi − yi)xij , we will

linearize using additional variables as explained in Section 3.2.

Constraint (9) enforces that the initial cargo capacity of EVs at the depot is full capacity C, while

constraint (10) ensures a nonnegative demand load upon arrival at any node. Further, constraints

(11)–(15) handle the battery levels of EVs. EVs leave the depot with full battery capacity under

constraint (11) and battery level is always nonnegative when arriving at any node with constraints

(12)–(13). Constraints (14)–(15) enforce the relationship between the remaining battery level upon

arrival at a node and the target battery level when leaving from the node.

Finally, nonlinear constraints (16) avoid possible conflicts at a charger as described in Section

3.3, while constraint (17) establishes the leaving time of an EV from a charger to be dynamically

dependent on the difference between the target battery level after recharging and the present battery

level upon arriving at the charger.

Note that the key differences from the model of Schneider et al. (2014) are constraints (8) and

(16) for allowing partial recharge and avoiding conflicts at chargers, respectively. We explain these

constraints in more detail in the subsequent sections.

3.2 Partial charging at a charger

In the EVRPTW of Schneider et al. (2014), EVs are assumed to be always recharged to full battery

capacity Q at the charging station. Decision variable yi specifies the battery level for an EV arriving

at node i and the charging time for an EV at a charger depends on the charging amount: the

difference between Q and yi.

In our model, partial charging for EVs at the chargers is incorporated. In addition to yi, a

new decision variable zi , indicating target battery level when leaving from node i, is introduced to

enable partial charging. If node i is a customer node, the target battery level zi remains the same

as yi. If node i is a charger node, this indicates that at a charging station, an EV is not necessarily

charged to full battery capacity Q and only the difference between zi and yi needs to be recharged.
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This also affects the charging time for an EV at a charger.

Suppose an EV travels from charger i to any other possible node j (and 6= i). When τi and σi

denote EV’s time of arrival at charger i and time to leave from node i, respectively, the relationship

between τi and σi is as follows:

σi = τi + g(zi − yi) ∀i ∈ F ′, j ∈ V ′N+1, i 6= j

where (zi − yi) is the amount of battery level to be recharged at charger i, and g(zi − yi) is the time

that takes to recharge.

Similarly, τj is EV’s time of arrival at node j and time to leave from node j, respectively. The

constraint of arrival times between two nodes i and j is formulated as follows:

τj ≥ τi + tijxij + g(zi − yi)xij − Tmax(1− xij) ∀i ∈ F ′, j ∈ V ′N+1, i 6= j (19)

In order to linearize the quadratic constraint (19), we first let ζij = zixij and introduce the

following additional constraints:

ζij ≥ 0 (20)

ζij ≤ zi (21)

ζij ≤Mxij (22)

ζij ≥ zi +M(xij − 1) (23)

which will ensure ζij = zi when xij = 1, and ζij = 0 when xij = 0. Similarly, we let ψij = yixij and

ψij ≥ 0 (24)

ψij ≤ yi (25)

ψij ≤Mxij (26)

ψij ≥ yi +M(xij − 1) (27)
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(c) Cases when there are conflicts at the charger

Figure 1: Two vehicles at a charger

Finally, with above additional constraints, constraint (19) is replaced by:

τj ≥ τi + tijxij + g(ζij − ψij)− Tmax(1− xij) ∀i ∈ F ′, j ∈ V ′N+1, i 6= j (28)

3.3 Conflict-free

This section explains constraint (16) and introduces a linearization method. Suppose both EV a

and EV b need to be recharged at the charger k in order to complete the routes. With reference to

Figure 1a, i, j ∈ Fk are dummy nodes for the same charger k, and EV a is recharged at dummy

node i while EV b is recharged at dummy node j. τi is the arrival time of EV a at node i and σi is

the time EV a leaves node i after finishing recharging. Similarly, τj is the arrival time of EV b at

node j and σj is the time EV b leaves node j after finishing recharging. As shown in Figure 1b, no

conflict exists if there is no time overlap of EVs a and b being recharged at the charger k. However,
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if time overlap exists, there will be conflicts at the charger as presented in Figure 1c. In order to

avoid the conflicts at the same charger k, we present the following constraint:

(τi − σj)(τj − σi) ≤ 0 (29)

for all i, j ∈ Fk, i 6= j, k = 1, ...,K.

Note that (29) is nonlinear. To linearize, we introduce new binary variables and a big M

parameter. For each pair of dummy nodes for the same charger, i.e. (i, j) for charger k, new binary

variables w1
ij and w2

ij are introduced. The non-linear constraint is transformed as follows:

τi − σj ≥ −M(1− w1
ij)

τj − σi ≥ −M(1− w2
ij)

w1
ij + w2

ij ≥ 1

w1
ij , w

2
ij ∈ {0, 1}

for all i, j ∈ Fk, i 6= j, k = 1, ...,K.

4 A Heuristic Method

Our solution method for the capacitated E-VRP (1)–(18) has the objective of minimizing total

traveled distance and is developed from the hybrid method proposed by Schneider et al. (2014),

wherein a variable neighborhood search (VNS) heuristic is combined with a tabu search (TS) method

for the intensification phase of VNS and simulated annealing (SA) for acceptance criterion. Table 2

provides an overview of the VNS/TS hybrid heuristic proposed by Schneider et al. (2014).

A typical VNS algorithm has three components including shaking phase, local search and stopping

criterion. In this hybrid VNS/TS algorithm, given a current best solution S, VNS randomly generates

a neighboring solution S′ in predefined neighborhood N(S) of S. Next, TS is applied as local search

on S′ to determine the local optimal S′′. If S′′ satisfies the acceptance criterion, the VNS accepts

solution S′′ and restarts with S′′ and its neighborhood. Instead of accepting only the improving

solutions, the SA acceptance criterion allows acceptance of deteriorating solutions to further diversify
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Table 2: An overview of the VNS/TS method of Schneider et al. (2014)

Initialization.
Initial solution S.
Generate a set of neighborhoods of S: Nk for k = 1, ..., kmax.
Choose a stopping condition.

Iterations.
Repeat the following steps until the stopping condition is satisfied.

1. Set k = 1.
2. Repeat the following steps until k = kmax.

(a) Shaking: Generate a random solution S′ from the k-th neighborhood
of Sk.

(b) TS local search: Apply TS with S′ as initial solution and S′′ is the
obtained local optimum.

(c) SA acceptance criteria: Check the acceptance condition, if satisfied,
accept and make move to S′′, i.e. set S = S′′, continue and restart
search from Step 1; otherwise set k = k + 1 and go to Step 2(a).

the search.

To solve the capacitated E-VRP (1)–(18), we first apply the VNS/TS algorithm of Schneider

et al. (2014). The solution obtained may have conflicts at charging stations and will recharge EVs

always to the full battery capacity. In our heuristic method, we try to adjust charging plans in the

obtained solution to resolve the conflict. While the VNS/TS algorithm minimizes the total traveled

distance, our heuristic method also tries to minimize the makespan of the entire pickup/delivery

plan.

Figure 2 presents the flow chart of our solution method. In Step 1, the VNS/TS algorithm

is applied to E-VRP to find the best feasible solution. In Step 2, we compute time durations of

charging stations for the current best feasible solution and check any conflicts observed at the

charging stations. In Step 3, we tweak the time of visiting and leaving charging stations route by

route to remove conflicts found at the charging stations, without violating any of the customer time

windows.

In Step 3, as illustrated in Figure 2, suppose we have a conflict between route r and route k.

There are two cases: (i) the vehicle in route r arrives first, and (ii) the vehicle in route k arrives first.

In Case (i), determine the minimum charging time in routes r and k required for completing the
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Figure 2: Flowchart of the revised heuristic method

route without running out of battery, and determine the latest departure time from the charging

station in route k that does not violate all time window constraints at all the subsequent customer

nodes. To avoid conflict, try the following adjustments in order:

1. In route k, keep the charging time at the minimum required level, and increase the waiting

time as much as possible.

2. In route r, keep the charging time at the minimum required level.

Perform the second adjustment for route r only if the first adjustment cannot resolve the conflict.

If both adjustments fail to resolve the conflict, we proceed to Step 4.

In Case (ii), we determine the minimum required charging times in routes r and k. Adjust

charging plans as follows, again one by one in the specified order:

1. In route k, keep the charging time at the minimum required level.

2. In route r, keep the charging time at the minimum required level.
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3. In route r, increase the waiting time at the charging station, but without leaving the charging

station later than the original departure time.

In the last adjustment, we want to keep the same departure time of the vehicle in route r from

the charging station, since route r is the critical route that determines the makespan of the entire

routing plan. If all adjustment attempts fail to resolve the conflict, go to Step 4.

Since the simple adjustment process in Step 3 failed to create a feasible solution, we generate a

new E-VRP in Step 4 eliminating occupied time durations of charging stations and already visited

customers and the apply VNS/TS heuristic to solve the new problem.

A simple example with 5 customers to illustrate our method is shown in Figure 3. The solution

for this example using VNS/TS is as presented in the figure and three routes are generated. Conflicts

are observed at charging station S5 in route r2 and r3. The makespans of r1, r2, and r3 are 374,

907, and 857, respectively. In order to resolve conflicts, at first, routes are ranked by makespan

in descending order that is r2, r3 and r1. Secondly, keep r2, we check charging station S5 in r2,

and find the conflicts with r3. Then, recognizing that S5 is occupied by r2 from time 476 to 491

we postpone the available time of S5 in r3 to start from time 491. Therefore, S5 is occupied by r3

from time 491 to 504. Lastly we update serving time of the nodes in r3 which are visited after S5

and check if their time windows are satisfied. In this example, after tweaking the time at charging

station, the current solution is still feasible and it is then accepted to be the final solution without

conflicts at the charging station. Repeat this process until all routes are checked and all conflicts are

resolved. In the end, both the total traveled distance and the minimal makespan remain the same

as the solution before resolving the conflicts at the charging stations. Therefore, this example also

shows that resolving conflicts at charging stations does not necessarily increase the total distance or

makespan.

5 Numerical Experiments

In this section, we conduct numerical experiments to test and evaluate the performance of the

proposed model. In order to be able to evaluate the solution quality, instances are newly designed

to be solved by the commercial solver CPLEX and the heuristic. Our instances are created from

instances used for E-VRPTW by Schneider et al. (2014), which are first generated based on
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• Depot: D0

• Customers: C12, C30, C64, C85, C100

• Charging stations: S5

• Solution: 3 vehicles with routing
– r1: D0 → C64 → S0

– r2: D0 → C30 → S5 → C100 → S5 → S0

– r3: D0 → C12 → S5 → C85 → S0

• Distance cost: 295.92
• Minimal makespan: 907
• Conflicts at the charging station exist:

– r2 visits S5 during [476, 491].
– r3 visits S5 during [472, 485].

Figure 3: A simple example with conflict at the charger

benchmark instances for the VRPTW proposed by Solomon (1987). These instances are with 5,

10 and 15 customers. Given an instance of Schneider et al. (2014), we first reduce the available

chargers to create possible conflicts at charging stations. Such reduction of charging stations may

make it impossible to satisfy the original customer time windows. In such a case we create new time

windows to make the problem instance feasible. Moreover, each charging station is capacitated with

limited number of chargers. In our case the capacity of each charging station is assumed to be 1.

Instances are labeled as in the first column of Table 3: for example, m101c5, wherein ‘m101’

is a unique instance index and ‘c5’ means there are 5 customers. All numerical experiments are

performed on a desktop computer with an Intel Xeon E5-2630 2.40 GHz Processor with 32 GB

RAM, running Windows 7 Enterprise.

5.1 Performance of the heuristic method on small size instances

Small size instances with up to 15 customers are solved by both the CPLEX solver using the

formulation proposed in Section 3 and the heuristic approach presented in Section 4. Results

of those instances are obtained and compared in Table 3. Solutions presented in the table are

the optimal solution and results are presented in multiple criterions, including number of vehicles

denoted by n, total distance by d and time to solve by t in seconds. Instances are solved to optimality

in a few seconds to at most 3 minutes in the CPLEX solver. For the heuristic, the solution provided

for each instance is the best found solution in 10 runs. The results show the ability of both the
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Table 3: Comparison of Results obtained from CPLEX Solver and Heuristic for Small-size Instances.
Note that n denotes the number of vehicles, d the total traveled distance, t the time to solve the
instance, and ∆d the difference between results from CPLEX solver and heuristic.

Capacitated E-VRP Heuristic

Instance n d t (sec) n d t (sec) ∆d (%)

m101c5 3 274.81 3.34 3 274.81 0.53 0.00
m104c5 2 209.74 3.08 2 209.74 0.47 0.00
m205c5 2 140.70 2.97 2 140.70 0.61 0.00
m206c5 2 270.83 2.96 2 270.83 0.89 0.00
m101c10 3 369.69 9.22 3 369.69 1.35 0.00
m104c10 2 273.93 12.34 2 273.93 2.49 0.00
m202c10 2 243.20 4.72 2 243.20 1.78 0.00
m205c10 2 242.88 2.14 2 242.88 1.54 0.00
m103c15 3 348.54 1779.84 3 348.54 85.32 0.00
m106c15 3 253.62 8.28 3 253.62 27.01 0.00
m202c15 3 374.89 131.78 3 374.89 29.52 0.00
m208c15 2 301.83 6.60 2 301.83 20.31 0.00

proposed capacitated E-VRP model and heuristic to solve small size instances. The last column in

the table, ∆d, denotes the difference between the total traveled distance given by Heuristic and

CPLEX solver for each instance. It is shown in the table that there is no difference for the total

traveled distance obtained from CPLEX solver and heuristic for all instances. It is clearly seen from

the table that the numbers of EVs employed in both approaches are the same. The results also

shows the proposed capacitated E-VRP model is able to avoid possible conflicts at chargers and

enable the partial recharging for EVs at charger.

5.2 Performance of the heuristic method on large size instances

To generate large size instances, we start with the small size instances used in previous Section 5.1.

We first fix the location of the depot. Then we randomly select and merge small size instances to

have 100 customers and re-scale them with reference to the depot. Later, we allocate 20 chargers in

the manner that every customer is reachable from the depot with no greater than two chargers. At

last, we apply different time windows to customers to create a set of large size instances. Large size

instances with 100 customers and 20 chargers are solved by the heuristic and results are presented

in Table 4. These instances have the same distribution of customers and allocation of chargers but

different time windows for customers. For the solutions obtained from the heuristic, the number of
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Table 4: Results of Large Size Instances Using Heuristic Method. Note that n1 and n2 denote the
number of vehicles for two cases, respectively; d1 and d2 the total traveled distance for two cases,
respectively; and ∆d2 the increase percentage when comparing d2 to d1.

Higher Battery Lower Battery
Capacity Capacity

Instance n1 d1 n2 d2 ∆d2 (%)

m101c100 8 897.23 8 904.21 0.78
m102c100 8 908.62 8 913.33 0.52
m103c100 8 946.80 8 957.63 1.14
m104c100 8 908.75 8 909.51 0.08
m105c100 8 944.32 9 950.23 0.63
m106c100 9 885.70 9 885.87 0.02
m107c100 9 946.42 9 965.62 2.03
m108c100 10 977.24 9 985.87 0.88
m109c100 8 897.23 8 906.21 1.00
m110c100 10 904.81 9 913.33 0.94
m111c100 8 941.04 10 948.41 0.78
m112c100 10 977.30 10 987.68 1.06

employed EVs and the total traveled distance are given as columns n and d in Table 4. Instances

are solved under both higher battery capacity of 62 and lower battery capacity of 50.

Results show that heuristic method is able to handle larger size E-VRP with capacitated charging

stations. It is seen from the results that, for these instances with the same distribution of nodes,

time windows of customers will affect the number of employed EVs and total traveled distance. In

general, the tighter the time windows for customers, the higher the total traveled distance. It is also

observed that for the same instance, different levels of battery capacity has impact on the solution

that, lower battery capacity will result in higher total traveled distance and possibly larger number

of employed EVs. The maximal increase of total traveled distance with lower battery capacity is

2.03% while the minimal increase is 0.02%, compared to that with higher battery capacity. The

average increase of total traveled distance is 0.82%.

5.3 Impact of the number of chargers

Further analysis is conducted on the instances to show the impact of number of chargers on the

solution. Instance m101c100 is selected to use as illustration. Initially, this instance has 100

customers and 20 chargers and it is solved without using all chargers as present in Section 5.2. Then
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we classify chargers into two subsets. One subset including the chargers used in the solution is

named U1, and the other including the rest of chargers is named U2. Next step is to delete a charger

each time and re-solve the instance. Chargers subset from U2 is first selected to be deleted one by

one. Once chargers from U2 are deleted, we begin to delete chargers from subset U1. Instance is

re-solved by heuristic method and corresponding solutions for this instance with different number of

available chargers are obtained by heuristic method and are as shown in Figure 4.

In Figure 4, number of chargers is the horizontal axis and obtained total traveled distance is the

vertical axis. It is observed in the figure that, in the beginning, total traveled distance remains the

same as 897.23 for the instance with number of chargers being 20 and decreasing to 15. Starting

from the case that the number of chargers becoming 14, it is shown in the figure that the total

traveled distance increases as number of chargers decreases. When the number of chargers is 8, the

total traveled distance is 1035.95, which is 15.46% increased from the case with 20 chargers. Once

number of chargers decreases to 7 or less, the problem becomes infeasible. This result shows that

number of charger has a significant influence on the solution of total traveled distance. The more

chargers, the smaller total traveled distance possibly. It is also seen from the figure that there exists

a lower bound of number of chargers below which the problem will become infeasible; similarly, an

upper bound exists that above that point, the total traveled distance may not be improved any

more.

5.4 Impact of charging rate

Instance m101c100 is selected to test for the impact of charging rate on the solution. It is set up

with 8 available chargers and full battery capacity Q = 62. Charging rate, as a parameter, varies in

different experiments. Initially, the charging rate is g = 2.07 so that the time of recharging to full

battery capacity is Q
g = 30 minutes. Gradually, it decreases to 1.38, 1.03, 0.83, 0.69, 0.59, 0.52, in

such a way the time of charging to full battery capacity time increase from 30 to 45, 60, 75, 90, 105,

and 120 minutes, respectively. We use the proposed heuristic method to solve these instances with

different charging rate.

It is observed from the results that the lower the charging rate, the higher the total distance.

This can be explained by the fact that the increasing of recharging time may lead to the violation of

customer time windows. If any violation occurs, the vehicles will be re-routed or additional vehicles
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Figure 4: Impact of number of chargers on the total traveled distance
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Table 5: Results of instances with different charging rate, when the battery capacity is fixed at 62.

Recharging rate, g Q/g Number of vehicles total traveled distance Makespan

2.07 30 8 1035.95 2819.30
1.38 45 8 1082.77 2853.95
1.03 60 10 1168.53 2818.62
0.83 75 10 1168.53 2818.62
0.69 90 10 1168.53 2818.62
0.59 105 10 1168.53 2818.62
0.52 120 10 1168.53 2818.62

Table 6: Results of instances with different battery capacities , when the recharging rate is fixed at
g = 2.07.

Battery Capacity, Q Q/g Number of vehicles total traveled distance Makespan

62 30 8 1035.95 2819.30
93 45 9 1044.91 2776.54

124 60 8 1043.52 2772.67
155 75 8 1038.81 2764.35
186 90 7 1009.43 2759.35
217 105 7 1009.43 2759.35
248 120 7 1009.43 2759.35

will be deployed.

5.5 Impact of battery capacity

Instance m101c100 with 8 available chargers, and a fixed recharging rate g = 2.07 is selected to

test the impact of battery capacity on the solution. Battery capacity Q increases from 62 to 248

in such a way the recharging time varies from 30 to 120 minutes. The results are shown in Table

6. As the battery capacity increases, the total traveled distance first increases, and then decreases

monotonically, reaching to a stationary level at the end. The first unexpected increase is related to

the increase in the number of vehicles used from 8 to 9. By deploying an additional vehicle when

the battery capacity is changed from 62 to 93, the algorithm was able to decrease the makespan.

The trend afterward is intuitive.
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6 Conclusions

In this paper, we propose an improved E-VRP model developed from the EVRPTW model of

Schneider et al. (2014) to minimize the total traveled distance. Customer time windows and vehicle

capacity constraints are incorporated in the capacitated model. Furthermore, our capacitated

E-VRP model considers the limited capacity at the charging stations and enables partial recharging

for EVs at chargers. Also, EVs are possibly recharged to a necessary battery level other than full

battery capacity at the chargers during the routes.

We develop a modified heuristic method from VNS/TS heuristic to obtain the solution. In

the numerical experiments, both small and large size instances are tested and presented. Small

size instances are solved by both the CPLEX solver using the formulation of capacitated E-VRP

model and heuristic method based on VNS/TS. The study shows the capability of capacitated

E-VRP model to handle conflicts at charging stations and dynamic recharging for EVs. Also for

small size instances, it is shown that heuristic method has much better performance with regard

to computational time when compared to using CPLEX solve with capacitated E-VRP model.

Heuristic method is also tested to be able to solve large size instances. The results from large size

instances show that the total traveled distances will decrease when the battery capacity is higher.

Further analysis of number of chargers shows that it has influence on the total traveled distance.

Proper number of chargers is needed to reduce both the total traveled distance and the cost of

establishing the charging facilities.

Future work could explore the influence of locations and capacities of charging stations and

allocate the charging stations to proper locations with optimized capacity, so that the total costs

including cost of total traveled distance and cost of establishing such charging facilities can be

reduced. Also, the possible alternative way to solve a large size problem is to split the service area

into sections that have density of customers, so that in each cluster the EV may have sufficient

battery to serve without recharging en route.
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