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Executive Summary

This paper considers the problem of calculating flight time for unmanned aerial vehicles (UAVs) while
incorporating flight dynamics in an operational field that contains obstacles. These flight time calculations
can be used as parameter inputs in mission planning and dynamic reassignment problems. A network
generation procedure is developed and pseudonodes are added into the network to include flight dynamics
in the edge weights. The network generation procedure includes a method for handling a pop-up target
in a dynamic reassignment problem. A selective Dijkstra’s algorithm was designed and implemented to
ensure that the shortest path between two nodes of interest contains flight dynamics. A complex mission
plan consisting of thirty tasks and three obstacles was the largest test scenario of nine developed scenarios.
Our network generation procedure along with the shortest path calculations of all 992 node pairs of interest
solves in approximately one second. This procedure allows for the fast computation needed for a dynamic
domain such as the use of mission planning algorithms and dynamic reassignment algorithms.

Application Area

Unmanned Systems

OR Methodology

Network Methods



INTRODUCTION AND PROBLEM DESCRIPTION

As the use of unmanned aerial vehicles grows in the military domain, important factors have and will

emerge. In 2005, the United States Air Force (USAF) released “The U.S. Air Force Remotely Piloted

Aircraft and Unmanned Aerial Vehicle Strategic Vision” (USAF 2005). In the strategic vision, an outline

is given for what the USAF considered the future vision and recommendations should be for the use of

UAVs. One of the major bullet points that was made in this document is that routing and path planning

of these UAVs is an important factor in their future use in operations across the world.

UAV routing problems fall into one of two major categories. Mission planning algorithms are not

dynamic and take place prior to the beginning of a mission. Dynamic routing algorithms are used when

a change in the original mission plan is needed during flight. Non-dynamic mission planning algorithms

can be seen vastly in literature (Kingston and Schumacher 2005; Mufalli et al. 2010; Shetty et al. 2008;

Shima et al. 2006; Weinstein and Schumacher 2007; Wilde et al. 2007). Dynamic routing algorithms can

have single objectives (Bellingham et al. 2001; Kinney et al. 2005; Schumacher et al. 2007) or multiple

objectives (Berger et al. 2007; Murray and Karwan 2010; Tavana et al. 2008). They also may contain

elements such as time windows for the tasks, payload capacity, fuel capacity, the ability to skip certain

tasks, and precedence in targets among other features.

Problem Description

The purpose of this research is to devise a method by which the minimal flight time and associated

travel route of a single UAV can be determined in a plane that consists of bases, tasks and polygonal

obstacles. These obstacles can either be due to topography or be no fly zones (NFZ) caused by adversaries

or political policy. These obstacles or NFZs can be as simple as a mountain that extends into the flying

elevation of the UAV or a threat that exists on the ground from an adversary. Possible scenarios will include

a certain number of given bases, tasks and obstacles on the plane. Many methods have been created for the

routing of a UAV using obstacle avoidance within a plane from a single source to a single target. However,

many of these methods use very complex algorithms and methods to find these trajectories. These methods

are very time consuming and thus are not desirable for our purpose. A network generation procedure was

developed and enhanced to include flight dynamics and thus a shortest path; obstacle-free flight time that

includes flight dynamics will be calculated for a UAV on the network between all node pairs of interest
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in the operational field. A node pair of interest is defined as a pair of nodes (i, j) where both node i and

node j are bases, tasks, or a combination of the two. The shortest paths between all possible node pairs of

interest are calculated. The goal is to include as large of a scenario as would be used in mission planning

in a time-frame small enough for use in a dynamic domain. These flight time and travel route calculations

are meant to provide more accuracy in flight time calculations to mission planning algorithms, as well as

provide these algorithms with the ability to incorporate flight dynamics and obstacles.

Let G = (V,E) be a network, where V is the set of nodes and E is the set of edges in the network.

Edges have weights attached to them that in our network represent the distance between two nodes. There

are four complications to our network generation procedure. First, the procedure is complicated by the

inclusion of obstacles. Often used automatic generators cannot be used in this case because in the presence

of obstacles they cannot create networks that guarantee that the optimal path between two nodes of

interest is present in the network. The second complication exists when the assumption of a point-like

object traversing throughout the network is removed and a model is used to include flight dynamics (e.g. a

Dubins’ model). This may require adding a large number of what we call pseudonodes to the network. This

creates another problem because the shortest path algorithms tend to slow down when they are run on a

very large network. Third, while the shortest path calculations seem simple most traditional shortest path

algorithms, such as Dijkstra’s algorithm (Dijkstra 1959) do not typically handle multiple types of nodes in

a single graph, so modifications of this algorithm must be made in order to find the shortest path(s) that

include these flight dynamics additions in our research. The biggest consideration of these complications

is that the entire procedure from data input until the calculation of all possible origin-destination (OD)

pair calculations should be done as fast as possible for use in a dynamic military environment where time

is critical for mission success.

PATH PLANNING WITH OBSTACLE AVOIDANCE

Path planning with obstacle avoidance can be defined as the maneuvering of a vehicle from one point

to another point in an operational field while avoiding certain areas of that operational field. This problem

exists for any type of vehicle in any appropriate operational environment. In our research, we explore UAV

path planning with obstacle avoidance. These obstacles can be defined as topographical obstacles (e.g.

mountains that extend into the flight altitude) or adversarial obstacles (e.g. stationary SAM sites).
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Literature Review

The underlying problem of path planning with obstacle avoidance has been explored in operations

research literature. Larson and Li (Larson and Li 1981) find the rectilinear solution to the problem of

path planning in the presence of barriers. Larson and Sadiq (Larson and Sadiq 1983) apply this rectilinear

solution to the problem of facility location in the presence of barriers for travel. Sarkar, Batta, and Nagi

(Sarkar et al. 2004) have a commentary on previous work of Butt and Cavalier (Butt and Cavalier 1997)

solving the inadequacies in their solution approach. The same authors (Sarkar et al. 2009) explore the

rectilinear solution to the problem of path planning in the presence of convex polygonal congested regions.

These all solve the rectilinear problem, which is not the same as the Euclidean shortest path problem

in the presence of obstacles. Lee and Preparata (Lee and Preparata 1984) solve the Euclidean shortest

path problem in the presence of rectilinear barriers. The barriers in our research are not only not solely

rectilinear, but also our shortest path must contain flight dynamics, which is not the focus of any of these

works.

Another of the fields that has studied this problem is the field of computational geometry. There are

several methods that are used in this field for the shortest path problem. Mitchell (Mitchell 1996) and

Storer and Reif (Storer and Reif 1994) utilize the continuous Dijkstra’s paradigm to solve the obstacle

avoidance problem in a plane. The continuous Dijkstra’s paradigm has a fairly slow solution time in

comparison to what is needed for our research, as well as they are only considering a single source and

single vertex. Lee (Lee 1978) and Welzl (Welzl 1985) perform work in the area of using the visibility graph

for the solution of the underlying shortest path problem. The creation of the visibility graph is complex in

nature and this is also only concerned with a single source and vertex pair. Mitchell (Mitchell et al. 1987)

explores the shortest path problem from the discrete geodesic problem point-of-view. Herschberger and

Suri (Herschberger and Suri 1997) propose an optimal-time algorithm for the shortest path computation

between two points in the presence of polygonal obstacles. Mitchell (Mitchell 1998) performs an extensive

review of the geometric shortest path problem. These methods are also designed for a scenario that only

includes a single source and destination pair.

The problem of path planning with obstacle avoidance has had many different perspectives studied

and explored from several points-of-view that do not fall into one of the above stated fields of mathematics.

Zabarankin et al. (Zabarankin et al. 2006) develop a method for three-dimensional risk minimization of

aircraft detection. Goldman (Goldman 1994) presents a method for exploring the three-dimensional path
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planning problem with circular danger regions. Our problem is considering a single UAV at a constant

altitude, as well as does not have a risk consideration. Bertuccelli et al. (Bertuccelli et al. 2009) present

a method by which they analyze task assignment of multiple UAVs in an uncertain environment. Our

work is to provide flight time data for these task assignment problems. Divelbiss and Wen (Divelbiss and

Wen 1997) present an algorithm for finding a feasible path using nonholonomic motion planning in the

presence of obstacles. Their work is focused on ground based vehicles such as tractor trailers. Royset et al.

(Royset et al. 2009) takes the approach of solving this problem using a constrained shortest path model

that discretizes the relevant airspace into a grid. Discretization of airspace does not guarantee that the

optimal path is included in the network. Lewis and Ross (Lewis and Ross 2007) write of a pseudo spectral

method for real-time motion planning and obstacle avoidance. Their method is not in fact real-time and

has a very slow solution time. Kunchev et al.(Kunchev et al. 2006) review methods and algorithms by

which mobile robots and UAVs can perform obstacle-free paths. Their division of the work-area method

would be very large for airborne operations and was meant for smaller ground-based work areas.

NETWORK DEVELOPMENT

Our research uses a network generation procedure for the purpose of calculating the flight time of a

UAV in the presence of obstacles while incorporating flight dynamics. We implement what we refer to as

pseudonodes for the purpose of including flight dynamics.

Model Assumptions

Our model makes a few reasonable assumptions for its use. The first assumption is that the data for

all of the vertices must be known prior to the network generation process. This means that the location of

all of the obstacles should be known or approximated and defined. While this assumption is not necessarily

always a true condition, with today’s imagery and reconnaissance capabilities, this condition can often exist.

For instance, if all of the obstacles in an operational field are topological, today’s geographic information

systems (GIS) software could easily be able to determine if a land feature obstructs the motion of a UAV

at a certain altitude. This would create a situation where this condition is most certainly met and the

data would be available for such a condition.
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Another assumption that is needed is all bases, tasks, and obstacles must remain static throughout the

process. Movement of vertices and obstacles is not handled by this model. Once again, if the obstacles are

purely topological then they will obviously remain static. If the obstacles are caused by adversaries, they

too often remain static during a given period of time and would be handled under the current condition

of the model.

The assumption of treating a UAV as a point-like object is made in this model. The operational field

that we are examining can easily be several to hundreds of square miles. This large of an operational field

can easily make a UAV be reasonably approximated as a point-like object. Another assumption about

the UAV itself is that it maintains a constant velocity throughout its travel time. The assumption of the

UAV flying at a constant elevation is also used in this model. UAV control systems are often designed

and operated to hold a constant velocity and can even attempt to maintain constant elevation during a

mission, making this assumption reasonable.

Another assumption that is made in this model is that all of the paths that are developed by the

model are feasible. This is satisfied by having a requirement that the obstacles are located a reasonable

distance away from one another. With this requirement being held, all of the paths that will be generated

should be close to if not perfectly feasible. This is a result of the obstacles are often defined by vague edges.

For example, a stationary SAM site’s range might be set at a certain distance, however this range could

have a tolerance and as long as the given range is at the outer edge of that tolerance, it is likely allowed

to enter the obstacle edge by a slight margin. As long as the provided information for the model has a

slight exaggeration of the obstacles, any path that may enter the obstacle would still be feasible. In our

experience, not only was it difficult to force a path to enter an obstacle, but the obstacles must be located

closely to one another for this to occur.

A major assumption of this model is that when considering a pair of interest in the network, it is

assumed that the UAV will always be facing on the rhumb-line towards the first vertex that it is traveling

to. The rhumb-line between two points is the straight line that connects the two points. An example of

this assumption is if we are considering a vertex triplet i, j, k starting a shortest path out of node i, the

UAV is considered to start traveling from i along the rhumb-line between i and j. In the same shortest

path consideration, the same node i is considered in another starting triplet of i, p, k, then the UAV is

considered to start along the rhumb-line from i to p.

We utilize a flat Earth approximation for the vertices from latitude and longitude down to Cartesian
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coordinates for mathematical purposes. We use this method because the use of multiple projection systems

(Gauss-Kruger and Transverse Mercator) and a Java-based GIS method (GeoTools Envelope Method) at

locations within the United States provided very inconsistent networks. These were determined to be

inconsistent because edges were added through the center of no fly zones or edges that where far away

from these no fly zones were not added. The consistent results of the flat Earth approximation lead to its

use.

Literature Review

There has been much work in the use of a network generation procedure for the purpose of path

planning for not only UAVs but also mobile robots. Latombe’s (Latombe 2001) work in robot motion

planning uses a method of dividing the plane into cells for the network generation. Chen et al. (Chen

et al. 1997) use a proposed algorithm that is developed by combining what they consider the advantages

of the grid based methodology that has been presented in other papers and the quad tree method. Casas

et al. (Casas et al. 2007) present a method whose objective is to create an automated generalized network

generation procedure within a geographical information system (GIS) environment. Any of these above

methods use a discretization method for the relevant airspace or operational field. This does ont guarantee

that the optimally shortest path is included in the network. Helgason et al. (Helgason et al. 2001) develop

a model for the mission planning of a set of cruise missiles to avoid high population density areas as well as

important areas of a city. This heuristic is used in place of a flight dynamics generator. We utilize a flight

dynamics generator in our network generation procedure and thus do not have the need for a heuristic

based approach.

Network Generation

Our network generation procedure consists of the following steps:

• Model Input

• Vertex Addition

• Circle Estimation

• Obstacle Defining Edge Addition

• Other Edge Addition
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Model Input

Input for the model is a .csv (comma separated values) file where each row contains a vertex name,

an obstacle number, a vertex number, an obstacle shape, a latitude, a longitude, and a radius. The vertex

name must be a unique string of characters for the entire network. The obstacle number is an integer

value for each obstacle in the operational field. The vertex number is unique for each obstacle number.

The obstacle shape value is 0 for a base or target vertex, 1 if the shape of the obstacle is defined by points

only, and 2 if the obstacle is circular. The latitude and longitude values correspond to the actual latitude

and longitude values of the vertex on the surface of the Earth. The radius is a value in kilometers of the

radius of a circular obstacle if the vertex represents the center of a circular obstacle.

Vertex Addition

The vertices in the network represent a base, a target, or an obstacle. These vertices are represented

by the latitude and longitude that is provided by the model input.

Circle Estimation

If a vertex has an obstacle shape value of 2, then it represents a circular obstacle. If this is found in

the model input, then the circular obstacle is estimated by using an inscription method within an n-sided

regular polygon. For this to occur, we must first translate from rc which is the apothem or radius of the

inscribed circular obstacle as provided by the model input to ro which is the radius of the obstacle defining

vertices to be found. Let s represent the length of one of the n sides in the polygon.

Using the law of sines and solving ro in terms of s gives:

r0 =
s

2 ∗ sin(πn)
(1)

Pythagorean theorem then yields:

r2
0 =

s

2

2
+ r2

c (2)
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Figure 1: Circle Estimation Using Hexagonal Approximation

Substituting using equation 1 and solving for ro in terms of rc gives:

r0 =
rc

cos(πn)
(3)

Once a value for ro is found, and given that lat1 and long1 are the latitude and longitude of the

starting point respectively, and d is the distance to be traveled at heading θ, the latitude of the destination

point would be the result of equation 4 (Movable Type Scripts). The longitude of the destination point

would be the result of equation 5 (Movable Type Scripts).

asin(sin(lat1) ∗ cos( d
R

) + cos(lat1) ∗ sin(
d

R
) ∗ cos(θ)) (4)

long1 + atan2[sin(θ) ∗ sin(
d

R
) ∗ cos(lat1), cos(

d

R
)− sin(lat1) ∗ sin(lat2)] (5)

Using these formulas at evenly spaced headings around the circular obstacle allows us to estimate

the circular obstacle with any number of points. Using the above equations, and spacing these vertices at

θ = m
360 for m = 0, 1, 2, ..., n− 1, with n being the number of sides chosen to estimate the circular obstacle.

We determined that n = 6 was a good representation of the circular obstacle without slowing the network

generation procedure down. An example of taking a single point and estimating a circular obstacle around

that single point using a hexagonal approximation (n = 6) is shown in Figure 1.
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Obstacle Defining Edge Addition

Obstacle defining edges are added during the iteration through the model input. The obstacle defining

vertices are listed first and together in the input and if the iterator finds that a vertex is next in line and

belongs on the same obstacle, a directed edge is added between the first and second vertex in the list.

When a dummy vertex (a vertex with a 0 value for vertex number on the obstacle) is reached, a directed

edge is added from the last vertex in the list on the obstacle to the first vertex on the obstacle.

The edge weights for these edges is set to the Haversine distance between the two end points of the

edge. This Haversine distance is the great circle distance across the Earth’s surface (Movable Type Scripts).

The formula for the Haversine distance between two points on the Earth’s surface is done by the following:

∇lat = lat2 − lat1 (6)

∇long = long2 − long1 (7)

a = sin2((∇lat)/2 + cos(lat1) ∗ cos(lat2) ∗ sin2((∇long)/2)) (8)

c = 2 ∗ atan2(
√
a,
√

1− a) (9)

d = R ∗ c (10)

Other Edge Addition

The next step in the network generation procedure is the addition of edges that are not obstacle

defining edges. All possible edges are considered for addition into the network at this step in the procedure.

In order for a possible edge to be added into the network, it must not intersect with circular obstacles or

any of the edges of the obstacles defined solely by points anywhere in the operational field. There are three

cases that a possible edge will fall into when considering intersection with a circular obstacle. These are

described in Figure 2 (Weisstein).

The method for checking which case the possible edge falls into is completed by:

dx = x2 − x1 (11)
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(a) Case 1: no intersection (b) Case 2: one intersection (c) Case 3: two intersections

Figure 2: Circle-Line Intersection Cases

dy = y2 − y1 (12)

dr =
√
d2
x + d2

y (13)

D =

∣∣∣∣∣∣∣
x1 x2

y1 y2

∣∣∣∣∣∣∣ = x1y2 − x2y1 (14)

The points of intersection are:

x =
Ddy ± sgn∗(dy)dx

√
r2d2

r −D2

d2
r

(15)

y =
−Ddx ± |dy|

√
r2d2

r −D2

d2
r

(16)

The function sgn∗(x) is defined by:

sgn∗(x) =

 −1 for x < 0

1 otherwise
(17)

The discriminant is then:

∆ = r2d2
r −D2 (18)

The summary of the existence of intersection point(s) is shown in Table 1.
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Table 1: Summary of Existence of Intersection Point(s) of Circle and Line

∆ incidence

∆ < 0 no intersection
∆ = 0 tangent intersection
∆ > 0 intersection

Figure 3: Line Segment Intersection

If the line created by the vertex pair of interest has a ∆ value that puts it in Case 1 or Case 2, then

that edge passes the circle intersection test for that circular obstacle. If it falls into Case 3 then there is

one more step to complete in order to determine if the edge passes the circle intersection test or not. This

last step is to determine if the intersection points occur within the line segment that is defined by each

vertex of interest on the line. This is completed by determining if the intersection points from equations

15 and 16 fall between the vertices of interest in the pair. If either of the intersection points falls along the

line segment being considered, then the possible edge fails the circle intersection check. If the intersection

points fall outside of this line segment then the possible edge will pass the circle intersection check for that

circular obstacle.

The method for checking the intersection with the non-circular obstacle defining edges is done using

the geometric formulas for line segment intersection (Bourke 1989). Figure 3 shows two lines for the

purpose of an example of line segment intersection and to be considered in the formulas for line segment

intersection.

The equations of the line segments in Figure 3 are:

Pa = P1 + ua(P2− P1) (19)
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Table 2: Summary of Existence of Intersection Point(s) of Two Line Segments

ua ub Intersection

denom. = 0 denom. = 0 none
denom. and num. = 0 denom. and num. = 0 coincident line segments

0 < ua < 1 0 < ub < 1 between endpoints

Pb = P3 + ub(P4− P3) (20)

Solving these equations for the possible intersection point of these line segments (Pa = Pb) results in

the following equations where ua and ub are unknown values.

x1 + ua(x2 − x1) = x3 + ub(x4 − x3) (21)

y1 + ua(y2 − y1) = y3 + ub(y4 − y3) (22)

Solving these equations for ua and ub results in the following equations.

ua =
(x4 − x3)(y1 − y3)− (y4 − y3)(x1 − x3)

(y4 − y3)(x2 − x1)− (x4 − x3)(y2 − y1)
(23)

ub =
(x2 − x1)(y1 − y3)− (y2 − y1)(x1 − x3)

(y4 − y3)(x2 − x1)− (x4 − x3)(y2 − y1)
(24)

By substituting either of these values into the equation of the lines located above, the intersection

point of the line segments is given by the following equation.

x = x1 + ua(x2 − x1) (25)

y = y1 + ua(y2 − y1) (26)

The results of these equations put the line segments into one of many cases, only three of these which

are interesting. These three cases are described in Table 2.

If the line segments defined by the possible edge pass the line segment intersection test for all ob-

stacle edges that define non-circular obstacles in the operational field then it has passed the line segment
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intersection check.

When a possible edge (i, j) passes the circular obstacle intersection check and the non circular obstacle

intersection check, that edge is added to the network. The edge’s weight is set to be the Haversine distance

between the two end points i and j for the edge.

At this point in the network generation procedure, the network now contains half of the edges that

a directed network without flight dynamics should have. At this point, the model takes every edge that

exists in the graph and creates the directed edge that is opposite to that. That is for each edge (i, j) this

part of the model creates an edge (j, i) and sets the edge weight to the weight of (i, j). This complete

network GNFD is the network on which any non-flight dynamics tests or analyses were completed.

Flight Dynamics

Once GNFD is completed, the next step in the network generation procedure is to include flight

dynamics. The contribution of this research is in the inclusion of flight dynamics in the network generation

procedure and in the calculations of flight time in the presence of obstacles.

The use of pseudonodes is the method that we developed to include flight dynamics into the calculation

of flight time. A pseudonode is a node that is located at the exact geographical location as one of the

original nodes, yet allows for some other functionality in the model. A pseudonode not only contains

the geographical data that the original node contains, but also contains the node that the UAV would

previously be located at, as well as the node that the UAV would be heading towards after it goes through

the pseudonode. The node that the UAV would previously be flying from into the pseudonode will be

called the previous node, and the node that the UAV is heading towards after the pseudonode will be

called the next node. For example, if a UAV is located at node i and is going to fly from node i through

node j to node k, the pseudonode would be located at node j and would be called jik. This node set of

i, j, k is called a node triplet. This addition of pseudonodes allows for the inclusion of flight dynamics into

the network. The reason that flight dynamics are needed in the network is that the actual flight time for

a UAV to traverse a specific edge in the network might not just be the straight line distance along that

edge. An example of the actual path of a UAV along a triplet i, j, k is shown in Figure 4. As can be seen

from the figure, the flight time along the edge (j, k) will not be equal to the straight line distance along

edge (j, k) if the UAV is coming from node i.
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Figure 4: Flight Path Along a Vertex Triplet

There are a couple of conditions that must be met in order for the model to determine if the pseudonode

jik should be added to the network. These conditions not only determine if a pseudonode should be located

at jik, but also if the pseudonode could possibly be used. The first condition is that in GNFD, an edge

must exist between node i and node j, as well as an edge between node j and node k. This is required

because in order for the UAV to fly from i though j on it’s way to k, there must be edges that exist for

this edge sequence in GNFD.

The next condition is used in order to limit the number of pseudonodes that are added to the network.

This condition is that if an edge exists between node i and node k, then the model will not add the

pseudonode jik into the network. This condition is implemented because if an edge exists between task i

and task k (no obstacle is in the way), then the shortest path between these two tasks will just be that

edge and there would be no need to fly from i through j to k as the inclusion of the pseudonode would

entail.

Another condition that is added is the condition that node j must be an obstacle defining node. If

this condition is not met, a lot of unnecessary pseudonodes will be created between node triplets that

only contain tasks. These pseudonodes will never be used in the shortest path calculations between an

individual pair of tasks. The shortest path between two tasks in an operational field will begin and end

at a node that designates a task, and any nodes in between will be nodes that define obstacles. Thus, any

pseudonodes that would be created in a triplet that only contains tasks would not be used in any of the

shortest paths that are desired.

After the previously mentioned conditions are determined to be met and a pseudonode jik is created,

the next step is to connect these pseudonodes to the rest of the network. A directed edge is added from
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node i to node jik. The edge weight of this edge is the Haversine distance that was set as the edge weights

in the edges that were originally added in GNFD. Next, a directed edge from node jik to node k is added

and the edge weight of this edge is set to what is referred to as a Dubins’ factor for distance. This Dubins’

factor comes from a Dubins’ Curve Path Model for approximating a minimum distance path for a Dubins

flight model (Henchey 2010). Any flight dynamics model can be used in order to determine this edge

weight. Dubins’ original work (Dubins 1957) lead to work by Skhel and Lumelsky (Shkel and Lumelsky

2001) that limited the number of calculations needed to determine the minimum distance path for a Dubins

problem. This work lead to the speed of the Dubins’ Curve Path Model. The accuracy of the Dubins’

Curve Path Model that is used is shown in Grymin and Crassidis (Grymin and Crassidis 2009). Our

research chooses the Dubins’ Curve Path Model for approximating the actual flight time between point j

and point k originally coming from point i due to this speed of computation and good accuracy.

Since the Dubins’ Curve Path Model uses a flat Earth approximation, we needed to scale the approxi-

mated flight time using the Haversine distance that we used for the other edge weights. This can easily be

scaled as shown in equation 27, where DDijk is the new Dubins’ factor that is used for the edge weights

here along the edge from the pseudonode jik to vertex k. HDjk is the Haversine distance from vertex j to

vertex k. DCPijk is the Dubins’ Curve Path Model’s flight distance flying from j to k originally coming

from i, and SLDjk is the straight line distance that the Dubins’ Curve Path Model calculates from vertex

j to vertex k.

DDijk = HDjk ∗
DCPijk
SLDjk

(27)

An example of the addition of a pseudonode into a triplet (i, j, k) is shown in Figure 5. This figure

shows the addition of a vertex and two directed edges and the setting of these edge weights on the triplet.

The vertices and edges that are black would have been added during the process of developing GNFD. The

vertices and edges that are dashed are added during the process of including flight dynamics.

The next step is to connect all of the pseudonodes that should be connected. There is only one

condition that must be met in order to determine if two pseudonodes should be connected. If the next

node of one pseudonode corresponds to the node that the second pseudonode relates to in GNFD, then the

two pseudonodes should be connected. In other words, if pseudonode jik and kjl both exist in the network,

then the future node of the first pseudonode is node k and the current node of the second pseudonode is
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Figure 5: Addition of a Pseudonode to a Vertex Triplet

Figure 6: Connection of Pseudonodes

also node k. With this condition being met, a directed edge from jik to kjl is added. The edge weight

of this edge is set to be the same Dubins’ factor distance that was shown previously. An example of this

connection between pseudonodes is shown in Figure 6. The vertices and edges that are black would have

been added previously in the procedure. The dashed edge indicates this edge that is added during this

part of the network generation procedure for including flight dynamics.

After the correct pseudonodes are created, the correct edges are added, and the edge weights are

set properly, GNFD is now GFD. GFD will represent the network on which any flight dynamics tests or

analyses were completed. This is the complete network for this research.=
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SELECTIVE DIJKSTRA’S ALGORITHM

The last step in calculating the flight time between desired nodes on the network is to calculate the

shortest path between these desired nodes. Given a scenario of bases, tasks, and some obstacles existing

in the operational field, mission planning will need accurate flight time calculations. Let G = (V, E) be

the directed network that was developed with the previously mentioned procedure. In order to calculate

the shortest flight time from any source vertex S to any target vertex T , the shortest path from S to T on

G must be calculated.

While all pairs of tasks and bases are analyzed, each pair will fall into one of two cases. Case One is

the case in which there exists an edge in the network that connects the origin of the pair to the destination

of the pair. The shortest path in this case is obviously that single link between the origin and destination

of the pair. Case Two is the case where there does not exist an edge in the network that connects the

origin and destination of the pair. The shortest path in this case must be determined by a shortest path

algorithm. In order to ensure that the resulting path incorporates flight dynamics, the UAV must fly from

the desired origin node in the pair through any number of connected pseudonodes in the network and

ultimately end up at the desired destination node. After comparing multiple methods, it was determined

that the use of Dijkstra’s Algorithm would be the best way to determine these shortest paths.

Traditional Dijkstra’s Algorithm (TDA) can be described as a single-source graph-search algorithm

that finds the geodesic, or shortest path between two vertices within the graph. The algorithm consists

of a label-setting operation for the vertices. This algorithm is popular in routing research as a network is

easily developed over roads or other methods of travel. In this research, the network was generated over

the operational airspace of the UAV.

Let distance[X] be the distance from the source vertex S to the vertex X along it’s shortest path

between V and X. Let parent[X] be the parent vertex of vertex X along it’s shortest path between V and

X. The steps below represent the steps of the TDA.

1: for V ∈ G do
2: distance[V ] = ∞
3: parent[V ] = undefined
4: end for
5: distance[S] = 0
6: Q = set of all nodes in G
7: while Q is not empty do
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8: u = vertex in Q with smallest distance[]
9: if distance[u] = ∞ then

10: break
11: end if
12: remove u from Q
13: for (neighbor v of u) ∈ Q do
14: tempDistance = distance[u] + edgeWeight[u,v]
15: if tempDistance < distance[v] then
16: distance[v] = tempValue
17: parent[v] = u
18: end if
19: end for
20: end while

At line 12, if the u to be removed from Q is the target, then the procedure can be terminated and the

shortest path is found. It u is the target, then let S be an empty list. In order to obtain the edges that

develop the shortest path:

1: while parent[u] is defined do
2: insert u at beginning of S
3: end while

After this procedure, the list S will be the list of nodes in the shortest path, and a list of edges Epath

can easily be determined from this. Epath must be traversed in order to obtain the shortest path along the

network from source s to target t.

One modification for a ‘Selective’ Dijkstra’s Algorithm (SDA) was necessitated by the need to modify

Q. Instead of initializing Q to be the set of all vertices in the network, our SDA needed to determine which

vertices could possibly be in a shortest path that includes flight dynamics. If a vertex is either the source

vertex s or the target vertex t, then it is clear that the shortest path must contain these vertices in order

to have the actual shortest path between them. Therefore, s and t are initialized into Q. If a shortest path

between s and t is to contain flight dynamics, then any vertex that would be reached along the shortest

path must be a pseudonode. Therefore, all pseudonodes in the network must be initialized into Q in order

to determine the true shortest path within the network that will include flight dynamics during the full

length of the path. With Q initialized properly, the rest of the SDA is the same as the TDA, yet includes

the selectivity that is needed in order to provide paths that include flight dynamics between all of the

vertex pairs in the scenario.

The above selectivity can also be completed on GNFD if desired. The only change to the above

19



Figure 7: Selective Dijkstra’s Algorithm vs. Traditional Dijkstra’s Algorithm on GNFD

algorithm would be to initialize the obstacle defining vertices into Q instead of the pseudonodes. This

would allow for analysis on GNFD using this algorithm.

In running tests of the SDA, it was noticed that some scenarios ran faster on GNFD than using the

TDA. So a comparison of the percent difference of running the SDA and TDA on the GNFD was completed.

This comparison is shown in Figure 7.

This figure shows that while some scenarios have a faster run time with SDA in comparison to the

TDA, as the scenario grows, the time difference becomes minimal. However, the SDA is needed on GFD

and therefore still needed to be implemented in the model.

One possible explanation for why the SDA performed better in the scenarios only where it was needed

can be seen in Table 3. In this table, V stands for Vertices, E stands for Edges, OE stands for Obstacle

Edges, FD stands for flight dynamics network, and NFD stands for the non flight dynamics. This table

clearly shows that when the network goes from GNFD to GFD, the density of the network drops drastically.

This is because for every pseudonode that is added to the network, two edges are added, and thus the

density would decrease in the network. As can be seen from this table, the density of the GNFD is much

more varied than the density of the GFD in both general edges per vertex and for obstacle edges per vertex.
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Table 3: Network Density Comparisons

Avg

Obstacles 1 1 1 2 2 2 3 3 3
Tasks 10 20 30 10 20 30 10 20 30
Bases 2 2 2 2 2 2 2 2 2

NFD V 16 26 36 20 30 40 24 34 44
NFD E 134 434 856 244 518 932 310 618 968

NFD V to OE 36 68 93 100 147 199 146 209 266

NFD E per V 8.4 16.7 12.8 12.2 17.3 23.3 12.9 18.2 22.4 17.2
NFD OE per V 2.3 2.6 2.6 5.0 4.9 5.0 6.1 6.1 6.0 4.5

FD V 108 296 488 388 838 1496 590 1270 2062
FD E 470 1244 2352 1552 3658 6696 2420 5396 9276

FD V to PE 244 540 1044 940 2332 4308 1544 3542 6272

FD E per V 4.4 4.2 4.8 4.0 4.4 4.5 4.1 4.2 4.5 4.3
FD OE per V 2.3 1.8 2.1 2.4 2.8 2.9 2.6 2.8 3.0 2.5

IMPLEMENTATION

The calculation of these flight times using the method described in the previous sections can be

utilized in two main areas of research for the routing of vehicles. For the purpose of describing the

implementation of our work, the two areas of application that would benefit most is mission planning and

dynamic reassignment of UAVs. General results from our research are given, and specific implementation

in mission planning and dynamic reassignment will be described.

Results

All test cases, computations, and results come from running the Java model on a Dell Latitude

D830 Laptop with an Intel Core 2 Duo T9300 CPU at 2.5GHz with 4GB RAM. The first analysis that

was performed on the model was to determine if generating one full network was faster than generating a

separate network for each vertex pair of interest. The network generation time and shortest path calculation

time using TDA on the non-flight dynamics networks were added together for the total time for each pair.

Then, five pairs of interest were chosen and their times were summed. These times that are shown are the

average of five runs for each vertex pair of interest. The results of this analysis are shown in Table 4.
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Table 4: Network per Pair vs. Network per Scenario

Pair Number Run-Time (sec)

1 .1353
2 .1183
3 .1143
4 .1330
5 .1193

Total .6203

Single Large Network .5487

Table 5: Computation Times for Nine Sample Scenarios

Obstacles 1 2 3 1 2 3 1 2 3
Bases 2 2 2 2 2 2 2 2 2
Tasks 10 10 10 20 20 20 30 30 30

Vertices 108 296 488 388 838 1496 590 1270 2062
Edges 470 1244 2352 1552 3658 6696 2420 5396 9276

NGT (sec) .0698 .2093 .2762 .1756 .3181 .4669 .2151 .5436 .5935

SPF 132 132 132 462 462 462 992 992 992
SPT (sec) .1199 .2814 .3599 .3267 .5278 .6661 .4329 .8157 .9909

These results show that even without flight dynamics included, the generation of a single large network

results in faster computation time than generating a separate network for each vertex pair of interest. This

result confirms our belief that this was the fastest method for computation.

The next important result is the computation time of the nine sample scenarios that were used to test

the model. The sample scenarios, their network size, and their associated network generation time with

flight dynamics included, and time to calculate all shortest paths of interest can be found in Table 5. In

this table, NGT stands for the network generation time of the scenario. SPF stands for the shortest paths

found while computing the scenario. SPT stands for the shortest path time for computing the shortest

paths in the scenario. This time also represents the total run time for that scenario in the model. These

times that are shown here are the average of ten runs of each scenario.

The fast computation time of the largest scenario shows that this model can be used in algorithms

in substitution for straight line flight paths and will not slow down the algorithm. We judged that the
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Figure 8: Flight Time Percent Change for All Paths Ordered

dynamic domain of this model would not be hindered by using our method of including flight dynamics in

its calculations.

The next analysis that was completed was based on comparing the flight times that were calculated

using TDA on the GNFD and the flight times that were calculated using the SDA on GFD. This percent

difference is between the flight time of the shortest path found in the GNFD and the flight time of the

shortest path found in GFD. We calculated the percent difference between the flight times for every vertex

pair of interest in these two networks. Percent difference is defined in equation 28.

PercentDifference =
|(FDtime −NFDtime)|

(FDtime+NFDtime)
2

∗ 100 (28)

We chose to complete this analysis on the largest scenario that we tested the model on. This scenario

consisting of thirty tasks, two bases, and three obstacles was the scenario that was chosen. Figure 8 shows

the percent difference of all the flight times for all 992 paths that were calculated by the model for this

scenario. This figure has them ordered from smallest percent change to largest percent change.

An important step in determining if this model will create a more accurate flight time calculation that

is currently used is determining if any flight paths will change as the result of including flight dynamics.
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Table 6: Paths in Largest Sample Scenario

Total Paths 992
Single Edge Paths 470

Long Paths 522
Changed Paths 37

Percent Paths Changed 7.0881

(a) GNFD Task 8 to Task 16 (b) GFD Task 8 to Task 16

Figure 9: Example of Changed Path

Table 6 shows the breakdown of the 992 paths that existed in the largest sample scenario. A long path is

defined as a path that has more than a single edge contained in it. A changed path is defined as a path that

contained different vertices when computed using GFD than when it was computed using GNFD. With

the results of this table, it confirms that this model will in fact make a difference and change paths from

GNFD to GFD. An example of a path that was changed is shown in Figure 9. The solid line in Figure 9a

represents the non-flight dynamics shortest path between 2 tasks in the sample scenario. The dashed line

in Figure 9b represents the flight dynamics shortest path between the same 2 tasks in the same sample

scenario. This shows that in fact adding flight dynamics and recalculating the shortest path can change

the path taken.

In order to gain more insight into how these changed paths line up with the total paths percent change

in flight time, Table 7 was developed. It shows six categories for percent change of the flight times and

how the total number of paths breaks down into these categories, as well as where the changed paths fall

in these cases. Using the results in this table it was determined that the changed paths do not fall into a
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Table 7: Comparison of Total Paths to Changed Paths with Percent Difference

Case % Diff. Range Paths % Paths Changed Paths % Paths

1 0 522 52.6210 0 0
2 0 to 1 95 9.5766 7 18.9189
3 1 to 2 85 8.5685 6 16.2162
4 2 to 5 176 17.7419 17 45.9459
5 5 to 10 92 9.2742 6 16.2162
6 10+ 22 2.2177 1 2.7027

Total 992 37

single case for determining the flight time difference. These percent differences are based on the percent

difference of ten runs of the model for all nine of the test scenarios. For this comparison we separated

the network generation time from the total computation time, allowing for the percent difference to be

computed for just the time it takes to calculate the shortest path on the network.

With the analyses described above, it is reasonable to assume that the model that was developed in

our research is implementable and useful for mission planning and dynamic reassignment. It would be

difficult to estimate the path changes as a percentage increase on a path, as well as difficult to estimate

which paths would change in the scenario.

Mission Planning

Mission planning is the first area of application that will benefit from a more accurate calculation

of flight time as provided by our research. Mission planning is often times treated as an instance of the

traditional operations research problem of the Traveling Salesman Problem (TSP). Since this is an NP-hard

problem, heuristics must be used in order to generate a feasible solution for a moderately to large sized

problem in reasonable time. Mufalli et al. (Mufalli et al. 2010) is an example of such a method used to

determine a route selection for complex missions. In this paper they use column generation as the basis

for developing these mission plans. Implementing our model into algorithms such as this one by Mufalli et

al. can easily be done. Running our model on the scenarios being analyzed by the algorithms will provide

the distance or flight time data that is needed. This data can be used in the Mufalli model as well as other

mission planning algorithms wherever it is required. Most mission planning algorithms that are seen in the

literature utilize flat Earth approximated distances, straight line flight paths, and consist of an obstacle
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free operational field for the UAV. These three assumptions can be removed from the mission planning

algorithms with implementation of our model.

The first assumption that can be removed is the use of a flat Earth approximated distances. Since

our model calculates the edge weights either as the Haversine distance or a scaled version of the Haversine

distance including flight dynamics, the model includes no distances that are calculated using the flat Earth

approximation for distance.

The second assumption that can be removed is that of the straight line flight paths. Since the

pseudonode method is included in our network generation procedure, flight dynamics is automatically

included in the flight time for any path that has pseudonodes in it. This method and the setting of the

edge weights as previously described allows for our research to guarantee that flight dynamics is included

in the solution.

The third assumption that can be removed is the obstacle-free operational field. The testing of

the model with both circular and non-circular obstacles located in the operational field shows that this

methodology works with operational fields that have obstacles located in them. This will allow for mission

planning to be completed in operational fields that contain obstacles.

The most important factor in terms of implementing this model is computational speed. Mufalli et

al. determine the routing of a UAV for a complex mission plan of around thirty tasks. Therefore, our

largest test for our model that consisted of thirty tasks, two bases, and three obstacles is a realistic test for

the implementation of our model in mission planning algorithms. Our computation time of this large of a

scenario in roughly one second shows that our model can be implemented even with the heuristic solution

methods of mission planning and not slow them down in their computations.

Dynamic Reassignment

The next area of UAV routing application that would benefit from use of our research is dynamic reas-

signment. The underlying operations research problem is the dynamic resource management problem. This

problem consist of the reassignment and rerouting of the UAVs to the new tasks based on time-sensitivity

or other priority requirements. In Murray and Karwan (Murray and Karwan 2010), the framework for a

mathematical model for multi-objective dynamic resource management problem is developed and utilized.

Their model is easily modified (Murray 2010) to include our results as data for their optimization models.
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Figure 10: Implementation of Pseudonodes in Dynamic Reassignment

The same three previously mentioned assumptions are made in this model. The same reasons hold

for why our model would improve the accuracy of the flight time calculations associated with this model

and others used to solve the same problem. With these three assumptions being helped, there is one

more stage of implementing our research that needs to be addressed. While the same results listed for the

implementation of our model for mission planning can be used for the above assumptions, the addition of

popup targets into the model results in another method being needed for the addition of the pseudonode

for incorporation of flight dynamics.

Consider a single UAV heading along a predetermined mission plan path from a task toward an a

priori task y. If the current location is considered vertex x, the distance from the current location until

reaching the a priori task y is the Haversine distance between x and y. If a popup task is located at point z,

then a pseudonode can be generated at current location x, storing the UAVs heading. The edge connecting

Pseudonodexz to pop-up task z will be the Dubins’ factor from x going through x and continuing toward

point z. An example scenario can be found in Figure 10. This shows a single UAV at a current location x

on a heading towards a priori task y, when a pop-up occurs at point z. This figure shows how our research

can be used in dynamic resource management problems involving UAVs.

CLOSING REMARKS

With the expanding role of autonomous vehicles in applications that range from the military domain

to manufacturing facilities, an accurate use of routing methods is needed and desired. In the military

domain specifically, UAVs are commonly used and their expanding use is highly beneficial. With a domain
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as dynamic as the military domain, use of UAVs in operational fields that consist of obstacles will be a

common occurrence. The ability of mission planning algorithms and dynamic reassignment algorithms to

deal with these obstacles and still provide accurate routing plans is an important aspect in the continued

growth of UAV use.

While our research provides a more accurate method of incorporating flight dynamics in an operational

field that contains obstacles, there are extensions that could be completed to improve computation time and

accuracy of the calculations. These extensions are centered around either making the model more accurate

for all scenarios for mission planning and dynamic reassignment algorithms or just geared towards reducing

the assumptions that were made.

One aspect of our model that is not currently used is the checking of feasible paths. If obstacles

are placed close enough together in the operational field, a path generated by our model could enter an

obstacle and not be feasible. In order to determine if a path is feasible, the location of the UAV must be

known at all times. Avoiding the need to know the exact location of the UAV at all times is one of the

main reasons that we developed the network generation procedure. The assumption that the obstacles are

placed far enough apart for the UAV to most likely have feasible paths allows for the model to run with

this assumption. If needed, this could be completed. It likely slow the calculations down to the point of

not being usable for its intended purpose.

Removing the assumption that was made about the UAV being on the rhumb-line to start all flight

paths chosen by the shortest path algorithm could be another extension for our model. This would increase

the computation time of the model. If this extension was completed, new vertices will need to be added

for all entrance headings into a vertex prior to finding the edge weight towards the next vertex in the flight

path. Each of these vertices that would be added will need a new flight dynamics generator calculation to

determine the flight time for the associated edges. For example, in an (i, j, k) vertex triplet being traversed,

the i vertex will need to be replaced with multiple idegreeHeading. This means that for the degree separation

θ that is chosen, there needs to be 360◦

θ new i vertices that has associated edges to j with flight dynamics

edge weights included. In addition to increasing the size of the network, this extension would also mean

that for each i being considered as the source vertex in a vertex pair of interest, there would need to be the

same number of shortest paths added for that node. Thus, in a large mission plan such as scenario nine of

our test scenarios, the original 992 shortest paths found would need to be replaced with 992 ∗ 360◦

θ shortest

paths. This would cause the most drastic increase in computation time for the model. Smaller values of
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θ would obviously increase this computation time more than larger values of θ. Since our current model

runs a complex mission plan in approximately one second, this extension might be able to be completed

for larger values of θ in the small time frame given for these calculations and improve the ability of mission

planning algorithms to use our model for more accurate calculations of flight time. However, the mission

planning algorithms that we have reviewed do not currently model the problem in a way that would allow

them to handle this extension of changing vertex triplets (i, j, k) into quadruplets (i, idegreeHeading, j, k).

The handling of this extension would be difficult with the current formulations used in mission planning

algorithms that we have reviewed.

Along with the removal of the rhumb-line assumption, removal of the constant altitude assumption

also creates an interesting addition to the model. This changing of altitude would mean the most difference

for obstacles. Topographical obstacles would be able to now maintain their true shape. Three-dimensional

adversarial obstacles as well would be used. This would most certainly increase the network size by a large

amount. Unlike the previous extension, this would not increase the number of shortest path calculations

that need to be run. The same SDA would be able to compute these shortest paths on the network.

This method would be similar then to the method used in Casas et al. (Casas et al. 2007). Their

method of developing the network over airspace using a GIS creates a network that would avoid obstacles

in the operational field while incorporating a change in altitude. Therefore, vertices in the network will be

available at certain altitudes and not at others. This method cannot guarantee that the optimal path is

located within the network. This is why this method could not be used directly for our work.

There are likely other extensions that could be completed on our model to enhance its ability to

be used. Our model’s ability to provide flight time calculations in an operational field that contains

obstacles, while incorporating flight dynamics for complex mission plans in a short amount of time makes

it implementable and usable in mission planning algorithms. Improving aspects of mission planning will

likely improve the routing of UAVs as described by the USAF in 2005. Their continued growth in use is

an important aspect of the military domain, as well as by local authorities at the city and state level.
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