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Abstract

Military reconnaissance missions often employ a set of unmanned aerial vehicles (UAVs)
equipped with sensors to gather intelligence information from a set of known targets. UAVs
are limited by the number of sensors they can hold; also attaching a sensor adds weight
to the aircraft which in turn reduces the flight time available during a mission. The task
of optimally assigning sensors to UAVs and routing them through a target field to maxi-
mize intelligence gain is a generalization of the team orienteering problem studied in vehicle
routing literature. This work presents a mathematical programming model for simultane-
ous sensor selection and routing of UAVs, which solves optimally using CPLEX for very
simple missions. Larger missions required the development of three heuristics, which were
augmented by column generation. Results from a performance study indicated that the
heuristics quickly found good solutions. Column Generation improved the solution in many
instances, with minimal impact on overall solution time. The rapid nature of the solution
approach allows it to be used in other mission planning tasks. A fleet sizing application is
discussed as an example of its flexible usage.

Keywords: unmanned aerial vehicles, routing, sensor selection, column generation, team
orienteering problem

1. Introduction

1.1. Problem Description

In unmanned aerial vehicle (UAV) mission planning, there exists a set of predetermined targets
that require surveillance. The surveillance required at each target is unique and can only be
satisfied with a specific sensor, or set of sensors. Surveillance benefit is obtained when UAVs visit
targets with the appropriate sensors attached. The goal of mission planning is to route the UAV
fleet through the target field in an effort to maximize surveillance benefit. For simplicity, mission
planners often assume that the sensors attached to each UAV in the fleet are fixed. Modern
UAVs have the ability to interchange sensors, providing greater flexibility in mission planning.
The cost/time associated with a sensor change is usually small so swapping sensors between
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missions is feasible. Assuming fixed sensor attachments simplifies the complexity associated
with the planning phase, but also hinders the effectiveness of the mission. The consideration of
interchangeable sensors adds complexity for the following reasons:

1. Increased Combinations: When sensors are fixed on UAVs, each target has a unique
benefit when it is visited. Consideration of interchangeable sensors adds a great deal of
complexity because the benefit of visiting a target is no longer fixed. Thus, the increase
in complexity is dependent on the quantity of sensors considered and the sensor capacity
of the UAV.

2. Travel Time Variability: UAVs with predefined sensor attachments have a fixed travel
range. When interchangeable sensors are considered the sensor payload weight assigned to
each UAV will vary. As the payload weight increases, the travel time available for UAVs
to visit targets decreases. This variation in travel time adds additional complexity to the
problem.

Furthermore, each sensor may not be compatible with every type of UAV. In Section 1.2, an
example case is presented to demonstrate the problem. This case will be referenced in subsequent
sections to assist in the explanation of the solution approach.

1.2. Example Case

Consider six targets spread over a terrain of 100 by 80 units. Intelligence is gained when these
targets are surveyed with a particular sensor. Some targets may only benefit from a single sensor,
while others may benefit from a combination of sensors. The quantitative benefit of surveillance
is based on priority and importance, as determined by a mission planner. Typically, this data
would be derived from a prior reconnaissance mission or existing intelligence. Figure 1 details
the spatial layout of targets.

Figure 1: Spatial Arrangement of Targets and Base

The Cartesian coordinates of each target are listed in parenthesis. A single base is considered
and located at the origin. All UAVs must depart from the base, survey a set of targets, and
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return to the base before their available travel time is depleted. The requirement for each UAV
to return to the base is pertinent, as many of the UAVs and sensors are relatively expensive.
However, relaxation of this requirement can be incorporated for disposable UAVs. Euclidean
distance is assumed as the travel time between targets.

Next, the surveillance benefit of visiting a target will be discussed. Four sensors are considered in
this example. While not explicitly defined, the sensor set could include electro-optical/infrared
cameras, video recording devices, and radiation detectors. The sensor-target benefit matrix
(STBM) is shown in Table 1.

Table 1: Sensor Target Benefit Matrix

S1 S2 S3 S4

T1 100 0 130 135
T2 145 120 100 75
T3 80 0 0 120
T4 160 80 50 25
T5 0 0 0 300
T6 50 45 110 0

Here, if a UAV visits target T1 with sensor S1, a benefit of 100 units is obtained. Additionally,
if sensor S3 was also attached, the surveillance benefit of visiting target T1 would increase to
230. Target T3 receives no benefit if it is visited by sensor S2 or S3. The characteristics of the
resources available to survey the targets will now be detailed.

Two UAVs are considered, each UAV with the ability to carry two sensors. Additional attributes
are detailed in Table 2.

Table 2: UAV Attributes

UAV Sensor Capacity Unloaded Range Load Limit

1 2 300 125
2 2 350 140

The unloaded range represents the time a UAV can travel without any sensor attachments while
the load limit indicates the maximum sensor payload weight. The attributes of each sensor is
displayed in Table 3.

Table 3: Sensor Attributes

Sensor Sensor Weight Travel Time Reduction

S1 100 100
S2 75 75
S3 125 125
S4 40 40
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If sensor S1 is attached to UAV 1, the travel time would reduce to 200 units. Also, sensors
S1 and S2 cannot simultaneously be attached to UAV 1 because doing so would exceed the
load limit. The weight of a sensor is strongly correlated to its hindrance on travel time (Scaled
Composites, 2004). Thus, in this example, the travel time reduction is equivalent to the weight
of a sensor. It should be noted that the mathematical formulation developed does not require
this equivalence.

If one were to consider the sensor selection and routing aspects of the problem independently,
the solution procedure may elect to assign sensors to UAVs first and then route them through
the target field. Alternatively, one could create a route for each UAV first and subsequently
assign sensors. Here, the former procedure will be discussed.

In a two step method that assigns sensors first and routes UAVs second, two logical approaches
are suggested for the sensor assignment step.

1. Highest Potential Benefit: Using this approach, one would assign sensors based on
their potential benefit. It is assumed that assignment precedence is based on greatest
unloaded travel range. The potential benefit of a sensor is the benefit it could obtain if
it was capable of visiting all targets. For the example problem, the potential benefit of
sensors S1, S2, S3, and S4 is 535, 245, 390, and 655, respectively. Using this approach,
one would assign sensor S3 to UAV 1 and sensors S1 and S4 to UAV 2. Note that we
cannot assign both sensors S2 and S3 to UAV 2 due to payload limitations. S3 was chosen
over S2 because it has a higher potential benefit.

2. Lowest Travel Time Reduction: The logic behind this approach is to load each UAV
with sensors that minimize travel time reduction. Hence, UAVs will be able to visit more
targets, even though the benefit per visit may be less than the previously stated method.
Once again, assignment precedence is based on unloaded travel range, with the lightest
sensor being assigned to the UAV with the lowest range. Here, sensor S4 would be assigned
to UAV 1 and sensor S2 would be assigned to UAV 2.

After assigning sensors using either of these methods, the UAVs can be optimally routed through
the targets. Given a small problem, the optimal route can be obtained using a straightforward
mathematical programming model. Figure 2 shows the optimal routes when the above ap-
proaches are used. The solid and dashed lines represent UAV 1 and UAV 2, respectively. Table
4 summarizes the results.
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(a) Highest Potential Benefit (b) Lowest Travel Time Reduction

Figure 2: Route Assignments for Two-Step Heuristics

Table 4: Summary of Results for each Sensor Selection Procedure

Sensor Selection Procedure UAV 1 Sensors UAV 2 Sensors Benefit

Highest Potential Benefit S3 S1,S4 915
Lowest Travel Time Reduction S4 S2 830

The optimal sensor and route assignment is shown in Figure 3. Clearly, the sensor selection
utilized for the optimal solution is some combination of the selection procedures above. The
optimal solution was acquired using the Integrated Sensor Selection and Routing Model (IS-
SRM). The ISSRM is a mixed integer linear programming formulation that will be detailed in
Section 2. For this example, a 9% improvement is obtained due to a combined consideration of
sensor assignment and routing of the aircraft.

Figure 3: Optimal Solution using Integrated Sensor and Routing Model

1.3. Connection to Team Orienteering Problem

The UAV sensor selection and routing problem is a generalization of the team orienteering
problem (TOP) (Butt and Cavalier, 1994). To establish this connection with the TOP, we first
discuss the orienteering problem (OP) which was initially investigated by Tsiligirides (1984). In
the OP, a single vehicle begins at a starting location and must reach a designated destination
prior to time Tmax. Along with the starting and ending points, a set of locations exist with an
associated benefit which can be collected by the vehicle. The objective of the OP is to route
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the vehicle through a subset of the locations in a way which maximizes the collected benefit.
Of course, the vehicle must reach the end point by time Tmax. The problem gets its name
from the sport of orienteering. In this navigation based game, players begin at a central control
location and must visit other control locations where they accumulate points. The quantity of
points received is typically based on how difficult it is to reach the control location. Players are
disqualified if they fail to reach a predefined destination before the time limit, and the winner
is the individual who accumulates the greatest number of points. Clearly, the optimal route is
the solution to the OP. The TOP is identical to the OP, but multiple vehicles may be used to
visit the control points.

Two papers have been published which present exact algorithms for the TOP: Boussier et al.
(2007) present a branch and price algorithm while Butt and Ryan (1999) use column generation.
Unfortunately, each of these approaches can only solve problems of limited size in a reasonable
amount of time. Butt and Ryan find optimal solutions to problems with 100 nodes, but the
vehicle travel time is limited so the average tour size contains fewer than 4 nodes. These results
are not surprising, however, as the OP (a single vehicle instance of the TOP) was shown by
Golden et al. (1987) to be NP-hard. For this reason, most of the literature has focused on the
presentation of heuristic approaches.

Chao et al. (1996) developed a heuristic to solve the TOP. They compare their heuristic with
an extension of a stochastic heuristic originally designed by Tsiligirides (1984) to solve the OP.
In our paper, a variation of Tsiligirides’ heuristic is also used to develop initial solutions for
column generation. This heuristic will be detailed in Section 3.3.3. Tang and Miller-Hooks
(2005) used a tabu search heuristic to solve the TOP. Their procedure included an adaptive
memory procedure to store and update solutions. Archetti et al. (2007) developed two additional
tabu search heuristics along with with a variable neighborhood search, which provided results
superior to the above mentioned. An ant colony optimization approach was used by Ke et al.
(2008) which produced results on par or better than Archetti et al. (2007) with quicker solution
times. In a recent paper by Vansteenwegen et al. (2009) a guided local search framework was
implemented to rapdily find good solutions to the TOP. For a thorough overview of the OP and
TOP see Vansteenwegen et al. (2010).

In the TOP, split deliveries are not allowed and a customer may not be visited by more than one
vehicle. If the sensor assignment and routing problem in this work considered a homogeneous
UAV fleet with fixed sensors, it would be equivalent to the TOP. In this special case, Tmax would
be equivalent to the travel range of each UAV in the fleet. Also, the surveillance benefit gained
for visiting a target would be identical for each UAV. Specifically, the benefit would correspond
to the fixed sensor assignment.

Generally speaking, however, Tmax will be different for each UAV in the fleet for two reasons.
Primarily, the fleet is heterogeneous so the unloaded travel time for each UAV, Tmax, need not be
equivalent. Moreover, each sensor attachment impacts travel time differently. Since each UAV

6



can be equipped with a unique set of sensors, impact on travel distance will not be consistent
across all UAVs in the fleet. Additionally, the value associated with each target will be different
for each UAV in the fleet since it also corresponds to the attached sensors. Butt and Cavalier
(1994) refer to the TOP as the Multiple Tour Maximum Collection Problem (MTMCP) and
assume the start and end point of each vehicle to be the same. Similarly, the work presented
here assumes that each UAV takes off and lands at the same location. Table 5 compares the
sensor selection and routing problem to the team orienteering problem.

Table 5: Comparison of Traditional Team Orienteering Problem (TOP) and Sensor Selection
and Routing Problem (SSRP)

Traditional TOP SSRP

Allowable Travel Time Fixed Across All Vehicles Variable Across All Vehicles
Customer Benefit Fixed Across All Vehicles Variable Across All Vehicles
Start and End Nodes Unique Identical
Split Deliveries Prohibited Allowed

Additionally, the mathematical model developed here allows for the inclusion of time windows.
We note that Kantor and Rosenwein (1992) initially investigated the orienteering problem with
time windows and developed a tree based heuristic. The tree heuristic is compared to an
insertion procedure centered on an extension of a heuristic developed by Laporte and Martello
(1990). For problems with few nodes and small Tmax values, the tree based heuristic outperforms
the insertion heuristic in terms of solution quality. As the quantity of nodes, Tmax, and time
window width increase, the tree heuristic is unable to find a solution in reasonable time.

1.4. Relationship with UAV Routing and Planning Literature

In this section, we briefly review contributions that have been made in UAV routing and schedul-
ing. There has been significant work in the area of path planning for UAVs. See, for example,
the papers by Kim et al. (2008), Nikolos et al. (2003), Qu et al. (2005), and Yang and Kapila
(2002). The focus of path planning is primarily on satisfying vehicle dynamic requirements
as well as avoiding obstacles. Mission planning can be viewed as a complex version of path
planning where the objective is to visit a sequence of targets to achieve the objectives of the
mission. For example, in a recent paper by Wu et al. (2009) the mission scenario involves the
delivery of a medical package to a remote location using a small UAV. The goal of our paper
is related to a much more complex mission. We are dealing with targets in an area of inter-
est that can be visited by UAVs to gain information about the targets (i.e., reconnaissance).
The additional complications include the facts that the UAVs can be equipped with several
alternative sensor assignments, each with its own gain values; the weight of sensors reduce the
UAV range; there are time windows for the targets to be visited; and a fuel constraint exists.
Thus, our contribution to the UAV routing and planning literature is in the domain of planning
a complex mission, not in the domain of satisfying realistic vehicle dynamic requirements or
obstacle avoidance.
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1.5. Organization of Paper

Section 2 contains the formulation for the Integrated Sensor Selection and Routing Model (IS-
SRM), which is useful for finding a direct solution using CPLEX when the mission contains few
targets and UAVs. Section 3 details a column generation heuristic, which includes a presenta-
tion of the master and subproblem formulations, a description of three heuristics used to obtain
initial columns, and a heuristic for solving the subproblem. Our computational experience is
detailed in Section 4 where experimental conditions are defined, small/medium sized problems
and large problems are separately considered, and a fleet sizing application is discussed. The
paper ends with a set of conclusions and future work directions in Section 5.

2. Integrated Sensor Selection and Routing Model

The Integrated Sensor Selection and Routing Model (ISSRM) is defined as a mixed integer
linear programming formulation. The formulation is based off the single commodity problem
proposed by Warrier (2001). The inputs, decision variables, and formulation are detailed below.

Indcies

i, j indices for targets(i, j = 0 represents base location)
h index for UAVs
s index for sensors

Inputs

N number of targets
O number of UAVs
S number of sensors
τh sensor capacity for UAV h
Qs quantity of sensor s available at base
Vjs demand of sensor s at target j
Rjs benefit obtained when sensor s visits target j
Dij travel time from target i to target j
λh unloaded travel time of UAV h
Cs travel time reduction when sensor s is attached
δ fuel minimization weight factor
Aih earliest time target i can be visited by UAV h
Bih latest time target i can be visited by UAV h
Wjs time required to deliver a single surveillance unit of sensor s to target j

Decision Variables

fhs 1 if UAV h is equipped with sensor s, 0 otherwise
yijh 1 if UAV h travels from target i to target j
xs

ijh sensor visit from i to j using UAV h

zjsh delivery amount of sensor s to target j using UAV h
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ISSRM Formulation

maximize
O∑

h=1

N∑
j=1

S∑
s=1

Rjszjsh −
N∑

i=0

N∑
j:j 6=i

O∑
h=1

δDijhyijh (1)

subject to
O∑

h=1

zjsh ≤ Vjs ∀j, s (2)

zjsh ≤ Vjsfhs ∀j, s, h (3)

zjsh ≤ Vjs

N∑
i=0, i 6=j

yijh ∀j, s, h (4)

O∑
h=1

fhs ≤ Qs ∀s (5)

N∑
i=0
i 6=j

xs
ijh −

N∑
i=0
i 6=j

xs
jih = zjsh ∀j, h, s (6)

S∑
s=1

fhs ≤ τh ∀h (7)

N∑
j=0
j 6=i

yijh −
N∑

j=0
j 6=i

yjih = 0 ∀i, h (8)

N∑
j=0, i 6=j

yijh ≤ 1 ∀i, h (9)

N∑
j=0

y0jh = 1 ∀h (10)

N∑
j=0

yj0h = 1 ∀h (11)

t0h ≤ λh −
S∑

s=1

Csfhs ∀h (12)

N∑
i=0

N∑
j=0, j 6=i

Dijyijh +
S∑

s=1

fhs ≤ λh ∀h (13)

xs
ijh ≤

N∑
j=0

Vjsfhs ∀i, j, h, s (14)

xs
ijh ≤

N∑
j=0

Vjsyijh ∀i, j, h, s (15)

tjh ≥ Dijyijh + tih −M(1− yijh) +Wiszish ∀i, j, h, s (16)

Aih ≤ tih ≤ Bih ∀i, h (17)

fhs, yijh ∈ {0, 1} (18)
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The first term in the objective function (1) attempts to maximize the surveillance benefit for
the entire fleet of UAVs, while the second term is included to minimize fuel cost when there
are alternate optimal target sets and sensor assignments. If δ is selected properly, the optimal
alternative that minimizes fuel consumption will be chosen. Selection of δ is important because
if the selection is too large, fuel minimization will take precedence over maximizing surveillance
benefit. The mission planner may prefer to use a larger value for δ if he or she anticipates
pop-up targets to appear after the mission begins. This will allow the UAVs to have adequate
fuel available to potentially visit these additional targets. Constraint (2) ensures that the total
sensor surveillance at a target does not exceed the demand of the target. For example, if target
6 required three photographs from a camera sensor S2, V62 = 3. Constraint (5) makes sure that
the total number of sensors assigned among all UAVs does not exceed the number of sensors
available at the base. Constraints (6), (14), and (15) are included to preserve sensor delivery. In
order for a UAV to provide surveillance on a target, the UAV must have the appropriate sensor
equipped and the UAV must visit the target. These requirements are satisfied in constraints (3)
and (4), respectively. UAV sensor capacity is represented in constraint (7). Route continuity is
ensured by the inclusion of constraint (8), and constraint (9) does not allow a single UAV to
visit a target more than once. Each UAV has a maximum flight time when its sensor payload
is empty. This flight time is reduced when sensors are added due to the increased weight.
Constraints (12) and (13) ensure that the route assignments for each UAV does not exceed the
total adjusted flight time. This is performed by restricting the time at which a UAV returns
to the base, t0h, to be less than or equal to the adjusted flight time. Constraints (10) and (11)
require that all UAVs begin and end their route at the base. Constraint (16) keeps track of the
time each UAV visits a target. This constraint works in conjunction with constraint (12), but
also is necessary for the inclusion of time windows which are represented in constraint (17).

The ISSRM works well for simple missions containing a relatively small number of targets, few
UAVs, and minimal sensor attachments. For example, the case in the previous section with
six targets, two UAVs, and four sensors was optimally solved in 15 seconds using CPLEX.
However, for complex missions an optimal solution cannot be found within an acceptable time
limit. Thus, a column generation heuristic was developed to quickly provide good solutions.
For a survey of recent contributions in column generation, see Lubbecke and Desrosiers (2005).

3. Column Generation Heuristic

3.1. Master Problem

Column generation requires decomposition of the original problem. Here, the original problem
is decomposed by UAV. Thus, the number of subproblems in the procedure is equivalent to the
number of UAVs considered in the mission. The subproblems are solved at each iteration of
column generation, providing new sensor and route combinations for the master problem. The
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inputs, decision variables, and formulation for master problem are defined as follows.

Indices

i, j indices for targets
k index for route/sensor combination
h index for UAV
s index for sensors

Inputs

(HK) set of routes/sensor combinations for UAV h
Rjs benefit of delivering one unit of sensor s to target j
F(hk)s 1 if sensor s is included in (hk), 0 otherwise
U(hk)j 1 if target j is included in (hk), 0 otherwise
P(hk)ji 1 if UAV h travels from j to i in (hk)
Vjs maximum demand for sensor s at target j
Qs quantity of sensor s available at base
Ehk additional travel time remaining after flight path is executed for (hk)
Dji travel time from target j to target i
Wjs time required to deliver a single unit of sensor s to target j
Ai earliest time UAV may arrive at location i
Bi latest time UAV may arrive at location i

Decision Variables

x(hk) 1 if UAV h selects route/sensor combination k, 0 otherwise
ghjs units of sensor s delivered to target j using UAV h
tih arrival time of UAV h at location j
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CG Master Problem Formulation

maximize
∑

j

∑
s

Rjsghjs (19)

subject to∑
(k)∈K

x(hk) = 1 ∀h Dual Cost: α (20)

∑
(hk)∈HK

x(hk)F(hk)s ≤ Qs ∀s Dual Cost: βs (21)

∑
h

ghjs ≤ Vjs ∀j, s Dual Cost: νjs (22)

ghjs ≤ Vjs

∑
k

F(hk)sx(hk) ∀j, s, (hk) Dual Cost: ψjs (23)

ghjs ≤ Vjs

∑
k

U(hk)sx(hk) ∀j, s, (hk) Dual Cost: ξjs (24)∑
j

∑
s

Wjsghjs ≤
∑

k

E(hk)x(hk) ∀(hk) (25)

tjh ≥ Dij

∑
k

P(hk)ijxhk + tih +Wisgmis ∀(hk), i, j, s if P(hk)ij is in (hk) (26)

Ai ≤ tih ≤ Bi ∀i, h (27)

x(hk) ∈ {0, 1} (28)

The objective function of the master problem is equivalent to that of the ISSRM, with the
exception of fuel minimization. Specifically, it attempts to maximize the surveillance benefit
for the entire mission. Unlike the ISSRM, the master problem does not generate routes and
sensor combinations. It simply selects from those that it currently has available. The selection
of a single route/sensor combination for each UAV in the fleet is reflected in constraint (20).
Constraint (21) states that the sensors included in the selected combinations cannot exceed the
number available at the base. The cumulative sensor delivery at a target among the selected
combinations cannot exceed the demand at a target. This is satisfied in constraint (22). Addi-
tionally, a combination cannot survey a target unless the combination includes the appropriate
sensor and visits the correct target. These requirements are satisfied in constraints (23) and
(24), respectively.

The constraints mentioned thus far tie in closely to those included in the ISSRM. Since the
subproblem is generating solutions for each UAV independently, there is a chance that the
selected master problem could select combinations that collectively deliver more of a sensor
than demanded at a target. Constraint (22) prevents excess delivery, but at least one UAV
will have additional unused flight time. Constraints (25) and (26) allow the UAVs to utilize
unused travel time surveying other targets in their route. It is important to reiterate that the
extra travel time can only be used at targets in the route generated in the master problem.
A UAV may not use this extra time to visit additional targets outside of the specified route.
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Lastly, constraint (27) specifies the time windows for each target. Next, the subproblem will be
discussed.

3.2. Subproblem

The LP relaxation of the master problem is solved to obtain dual costs which are passed to the
objective function of the subproblem. The subproblem is as follows.

Indices

i, j indices for targets
h index for UAV
s index for sensors

Inputs

Csh travel time reduction when sensor s is attached to UAV h
τh quantity of sensors UAV h can carry
λh unloaded range of UAV h
Wjs time required to deliver one unit of sensor s to target j
Dji travel time from target i to target j
Rjs benefit of delivering sensor s to target j
Vjs demand of sensor s at target j
Ai earliest arrival time for target i
Bi latest arrival time for target i

Decision Variables

fs 1 if sensor s is selected, 0 otherwise
yij 1 if UAV travels from target i to target j, 0 otherwise
ti arrival time of UAV at target i
zjs delivery amount of sensor s to target j
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CG Subproblem Formulation

maximize∑
j,s

Rjszjs − α−
∑

s

βsfs −
∑
j,s

νjszjs −
∑
j,s

ψjs(zjs − Vjsfs)−
∑
j,s

ξjs(zjs − Vjs

∑
i

i 6=j

yij) (29)

subject to

zjs ≤ Vjsfs ∀j, s (30)

zjs ≤ Vjs

∑
i

yij ∀j, s (31)∑
s

fs ≤ τh (32)∑
j

j 6=i

yij −
∑

j
j 6=i

yji = 0 ∀i (33)

∑
j

i 6=j

yij ≤ 1 ∀i (34)

∑
j

y0j = 1 (35)

∑
j

yj0 = 1 (36)

t0 ≤ λh −
∑

s

fsCsh (37)∑
i=0

∑
j=0
j 6=i

Dijyij +
∑
s=1

fs ≤ λh (38)

tj ≥ Dijyij + ti −M(1− yij) +Wiszis ∀i, j, s (39)

Ai ≤ ti ≤ Bi ∀i (40)

fs, yij ∈ {0, 1} (41)

As mentioned earlier, the goal of the subproblem is to generate a beneficial route/sensor com-
bination to pass back into the master problem. A separate subproblem is solved for each UAV,
and thus, the number of subproblems is equivalent to the number of UAVs. A beneficial solution
is one with a positive reduced cost. Here, the objective function is the reduced cost. Thus, if
the objective function assumes a positive value, then adding the corresponding route/sensor
combination into the master problem will improve the master problem’s objective provided
that this column can be brought into the current basis at a non-zero level. Similar to those
found in the ISSRM, constraints (30) and (31) ensure that a UAV cannot deliver a sensor to a
target unless the target is visited and the sensor is attached to the UAV. The maximum sensor
attachments allowed per UAV are modeled in constraint (32). Route continuity is preserved
in constraint (33), while constraint (34) does not allow the same target to be visited multiple
times. Constraints (37) and (38) guarantee that the UAV’s return time to the base does not
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exceed its total travel time adjusted for sensor attachments. Constraints (35) and (36) force the
UAV to start and end at the base location. Constraint (39) is used to preserve the cumulative
travel time during the course of the route. This is used in conjunction with constraint (37) and
also with constraint (40) which specifies the time windows.

As the number of sensors and targets increases, the problem becomes difficult to solve optimally.
However, if a quick solution can be found that corresponds to a positive reduced cost, the pro-
cedure can terminate and this solution can be added back to the master problem. Extensive
testing revealed that the solution time to obtain a beneficial reduced cost for mid to large size
problems was exorbitant. The goal of the subproblem is to determine the sensor/route combi-
nation for a UAV that yields the maximum benefit in reduced cost. However, any sensor/route
combination with a a positive reduced cost suffices in terms of its potential to improve the ob-
jective function of the master problem. With this realization we focus on an efficient heuristic
to solve the subproblem in Section 3.4. Section 3.3 describes the means for generating initial
columns for the master problem.

3.3. Initial Columns

Three heuristic are presented to generate initial columns for the master problem. The first
two heuristics, which will be referred to as Heuristic I and Heuristic II, employ a generative
approach that assigns sensors to the UAV fleet first and subsequently routes them through the
targets. They share the approach for sensor selection, but execute routing decisions differently.
Heuristic I makes use of deterministic routing decisions while Heuristic II utilizes a stochastic
approach. The sensor selection technique used in Heuristics I and II will be discussed in Section
3.3.1. Sections 3.3.2 and 3.3.3 detail the routing approach used for Heuristic I and Heuristic II,
respectively. The third heuristic is based on a local search and is the focus of Section 3.3.4.

3.3.1. Sensor Selection

Sensor selection is based on the premise that the most favorable sensors will be those which
have the greatest surveillance potential and the lowest travel distance degradation. The sensor
potential to weight ratio (SP/W) shown in Equation (42) gives insight on which sensors to
select.

SP/W =
Potential Sensor Benefit

Travel Distance Reduction
(42)

The sensor with the highest SP/W ratio is assigned to the UAV with the longest travel distance
and is removed from the assignable sensor pool. Sensors are assigned to the remaining UAVs in
the same manner. Tables 6 and 7 show the SP/W calculations for the example case presented
earlier.
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Table 6: Potential Sensor Benefit (PSB) For Sensors S1, S2, S3, and S4

Target S1 S2 S3 S4

1 100 0 130 135
2 145 120 100 75
3 80 0 0 120
4 160 80 50 25
5 0 0 0 300
6 50 45 110 0

PSB 535 245 390 655

Table 7: SP/W Ratios

Sensor SP/W Ratio

S1 5.35
S2 3.27
S3 3.12
S4 16.375

Sensor S4 has the highest SP/W Ratio so it is assigned to UAV 2, which has the greatest
unloaded travel range. Next, Sensor S1 is assigned to UAV 1. The travel ranges of UAV 1 and
UAV 2 after they are loaded with sensors are 200 and 310, respectively.

3.3.2. Heuristic I Route Selection

The principle behind the routing portion of both heuristics is to visit targets that supply the
greatest surveillance benefit and require the least amount of fuel. The process is done iteratively
among each UAV in the mission and continuously accesses and updates three matrices. The
remaining benefit matrix (RBM) stores the surveillance benefit for each sensor remaining at
all targets. As UAVs visit targets with the appropriate sensor(s), the values in this table are
updated. The distance benefit matrix (DBM) combines the information from the RBM with
the current UAV location to create a numerical value which defines the benefit of traveling to
a target. Finally, the remaining travel time for each UAV is stored in the remaining travel
distance matrix (RTDM).

The routing algorithm for Heuristic I is defined in Table 8.
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Table 8: Heuristic I Routing Algorithm

Step 0 Initialize RBM, DBM, and RTDM
Set current UAV target to 0 (location of base)
Set current UAV n = 0

Step 1 Set current UAV to n+ 1 and proceed to Step2

Step 2 Scan DBM and select target with highest value, then proceed to Step 3
If no remaining targets exist, proceed to Step 5

Step 3 Check feasibility of target selection
If feasible, proceed to Step 4
If infeasible, remove target as an option and return to Step 2

Step 4 Update RBM, DBM, and RTDM

Step 5 Return current UAV to base
If all UAVs have returned to base, end procedure
Otherwise, proceed to Step 1

Continuing with the example case presented in Section 1.2, this algorithm can be applied to
determine routes for both of the UAVs in the fleet. The DBM for UAV 1 and UAV 2 are shown
in Table 9 and are used to determine the first target to visit.

Table 9: Distance Benefit Matrix For UAV 1 and UAV 2

UAV 1 UAV 2

Target Values Target Value
1 2.17 1 2.93
2 2.13 2 1.10
3 1.04 3 1.57
4 1.89 4 0.30
5 0 5 4.96
6 0.57 6 0

The value of visiting a target is the result when the remaining benefit for a target is divided by
the travel distance to the target from the current location. For example, the value of target 1
with UAV 1 is obtained by dividing 100 (remaining benefit of visiting target 1 with UAV 1) by
46.06 (travel distance from the base to target 1). The target with the highest value is selected
as it provides the highest surveillance benefit per unit of travel. In this case, targets 1 and 5
are selected for UAV 1 and UAV 2, respectively. Next, a feasibility check is performed. This
check ensures that a UAV will have enough fuel remaining to return to the base after it visits
the selected target.

For UAV 1, the sum of the distance to target 1 and the distance from target 1 back to the base is
less than the remaining travel distance indicating that this destination is feasible. The decision
to visit target 1 is finalized and the RBM and RTDM are updated. The process is repeated
for UAV 2. If the target with the highest DBM value was an infeasible option, the next best
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target would be selected and checked for feasibility. The routing procedure ends when all of
the targets are either infeasible or have a value of zero. At this point, the UAV is routed back
to the base and the heuristic concludes. If the procedure were run to completion, the routes in
Figure 4 would be obtained. Table 10 summarizes the results.

(a) Final Route For UAV 1 (b) Lowest Travel Time Reduction

Figure 4: Route Assignments For Two Step Heuristics

Table 10: Summary of Results For Heuristic I

UAV 1 Sensors UAV 2 Sensors Surveillance Benefit Optimality Gap

S1 S4 995 %0.5

The heuristic provides excellent results for the example case with an optimality gap of only
0.5%. While this is certainly not the case for all problems, the heuristic obtains good solutions
to use for initial columns in the column generation procedure.

3.3.3. Heuristic II Route Selection

The routing procedure developed for Heuristic II is based on the construction procedure used
for Heuristic I. The key difference is the inclusion of a stochastic decision for each iteration of
the procedure. In Heuristic I, the target with most attractive DBM value was selected. Here,
the top four feasible targets (j = 1− 4) are considered and one is stochastically selected. When
fewer than four feasible targets with positive DBM values remain, the procedure is adjusted
to select among them. Assuming that four targets are among those to be selected, a weight is
assigned to them as shown in Equation (43).

Wi =
Bi∑4

j=1Bj

(43)

Wi is the weight assigned to target i, while Bi and Bj are the benefits of visiting targets i and
j, respectively. Each target i is assigned a section of a 0 - 1 scale as shown in Figure 5.
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Figure 5: Graphical Depiction of Target Selection For Heuristic II

Next, a number is randomly generated between 0 and 1. A target is selected based on the random
number’s location on the scale. After selection, the matrices are updated as in Heuristic I and
the process continues until all feasible targets are exhausted for every UAV.

Heuristic II has two advantages over Heuristic I. Primarily, due to its stochastic nature, it allows
for the solution to avoid getting stuck at a local minimum. Furthermore, it allows for multiple
initial columns to be generated for column generation. The computational results shown in
Section 4 indicate a significant advantage of using Heuristic II over Heuristic I.

3.3.4. Local Search Heuristic

A local search heuristic was developed to solve the simultaneous sensor selection and routing
problem and is outlined in Table 11. The basis of the heuristic relies on sensor benefit similarities
between targets. Intuitively, targets that have similar sensor benefit requirements should be
included on the same route for several reasons. Primarily, a sensor or small subset of sensors
can provide similar surveillance for every target that is visited. It would not be advantageous to
develop routes comprised of targets with completely disjoint sensor benefits because benefit will
not be achieved at each target unless an equivalent number of sensors is attached. Attaching
many sensors hinders travel range which in turn reduces the quantity of targets that may be
visited on a given route. Equation (44) is used to determine the similarity, χab, between a pair
of targets.

χab =
∑

s

|Ras −Rbs| (44)

Here, Ras and Rbs indicate the benefit obtained when the first and second members of the
target pair are visited by sensor s, respectively. A value of zero indicates that the targets have
identical benefit requirements. As the value increases, the sensor benefits of the target pair
become dissimilar.

19



Table 11: Local Search Heuristic

Step 0 Set iteration counter to 0
Set no improvement iteration counter to 0
Set iteration limit
Set no improvement iteration limit
Create initial routes for each vehicle

Step 1 Remove targets from routes until sensors can feasibly be added for all UAVs
and solve the sensor assignment problem

Step 2 Add most beneficial targets to UAV routes until no additional targets can
feasibly be added

Compare mission effectiveness with current best and update if necessary
If an improved solution was not found, increase no improvement iteration

counter by 1

Step 3 Increase iteration counter
If iteration counter or no improvement counter reach their respective limits, stop.

Otherwise, go to Step 1

Along with setting iteration information, Step 1 establishes routes for each UAV considered in
the problem. To establish these initial routes, the similarity rating is computed for each target
pair. The pair of targets A,B that are most dissimilar (have the highest similarity rating) are
selected, as indicated in Equation (45).

A,B = max
∑

s

|Ras −Rbs| (45)

The process continues by selecting targets that are most dissimilar to previously selected targets,
until the number of targets selected is equivalent to the number of UAVs in the mission. These
targets will be the first added to each of the UAV routes, with the target farthest away from
the base being assigned to the UAV with the greatest range. After the first target is assigned,
additional targets are assigned which are most similar in terms of sensor requirements to those
existing on the route. The idea is to diversify the type of surveillance performed by each UAV
route, while maximizing the surveillance each UAV performs with a subset of sensors. The
latter is accomplished by assigning targets to routes that have low similarity scores χa,b with
each other. The addition of targets to each route ceases when no targets can be added without
exceeding the travel time of the UAV.

Next, sensors are assigned to each UAV in the fleet by solving the Sensor Selection Model.
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Sensor Selection Model

maximize∑
j,s,h

Rjszjsh (46)

subject to∑
h

fhs ≤ Qs ∀s (47)∑
h

zjsh ≤ Vjs ∀j, s (48)

zjsh ≤ fsh ∀j, s, h (49)

zjsh ≤ Yjh ∀j, s, h (50)∑
s

fhs ≤ τh ∀h (51)∑
s

Csfhs ≤ Ψh ∀h (52)∑
s

fhs ≥ 1 ∀h (53)

fhs ∈ {0, 1} ∀h, s (54)

The formulation follows that of the ISSRM, with the objective of maximizing surveillance bene-
fit. The difference is that this formulation is only concerned with sensor placement and utilizes
existing routes determined from other steps in the heuristic. The routes are represented in the
binary variable Yjh, where a value of 1 indicates that that UAV h visited target j and a value
of 0 indicates no visitation took place. Additionally, Constraint (52) ensures that the sensor
attachments do not violate the remaining travel time of a UAV.

Clearly, if the remaining travel time of the UAV is not great enough to assign the lightest sensor,
the model return with infeasibility due to Constraint (53). Prior to solving the model, a set
number of targets is randomly removed from each route to accommodate sensor assignments.
The number of targets removed will determine the quantity and type of sensors that can be
added when the model is solved. Thus, prior to removing targets, a set of sensors is randomly
selected. Targets are randomly removed in a sequential manner until the selected sensor set
can feasibly be assigned. It should be noted that the sensor set may be any size up to that
permitted by the UAV.

After the model is solved and sensors are assigned to the UAVs, there is a reasonable possibility
that additional travel time will remain and thus, opportunity for additional target insertions.
Equation (55) is the basis for target insertions.∑

s∈S Rjs +
∑

s/∈S
Rjs

Cs

(CostInsertion)(1 +
∑

h Ijh) +
∑

b∈rcurrent
χjb

(55)
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Step 2 evaluates Equation (55) for each target not currently included in a given route. Targets
included in other routes are not omitted from consideration. The first term of the numerator
evaluates how well target j benefits the mission with the current set of sensors, while the
second term evaluates the targets benefit potential if included with additional sensors. The
second term also considers the travel time hindrance incurred when a sensor is attached. The
first term of the denominator considers the product of insertion cost and the number of times
the considered target appears in other routes. The similarity, as discussed in Equation (44) of
the entering target with existing targets in the current route, rcurrent, is evaluated in the second
term. Looking at the numerator and denominator independently, it is clear that a desirable
target would have a large numerator and small denominator. Therefore, targets with the highest
overall value are considered first for entry.

Targets are ranked for each route and sequentially added based on feasibility, until all feasible
target entries are exhausted. After this step is completed for all routes, the mission effectiveness
is evaluated, and compared to the best discovered thus far, which is updated accordingly. The
heuristic updates the iteration counter and concludes if the maximum number of iterations has
been reached, or a predefined number of iterations are subsequently performed with no solution
improvement. Otherwise, the procedure returns to Step 1.

3.4. Two-Phase Sensor Selection and Routing Heuristic

As mentioned in Section 3.2, a heuristic was necessary to solve the subproblem. The Two
Phase Sensor Selection and Routing Heuristic (TPSSRH) assigns sensors in the first phase and
selects routes in the second phase. All of the constraints found in the subproblem are satisfied,
and the heuristic makes decisions using derivations of the objective function. Phase I begins
by calculating the potential sensor benefit of each sensor included in the mission as shown in
Equation (56). This value is calculated assuming that each sensor can visit all of the targets.

Potential Benefits =
∑

j

Rjs +
∑

j

ψjsVjs − βs (56)

Next, the sensors are ranked with respect to their potential benefit, and the top three sensors
are selected. The final step of phase one creates a list indicating the benefit of visiting all
targets with each sensor independently, and all combinations of these sensors. For simplicity,
single sensors will be referred to as a combination. Hence, seven lists will be developed. The
value of each target in the list is calculated by Equation (57).

Benefit of Visiting Targetj =
∑
s∈S

Rjs −
∑
s∈S

νjs −
∑
s∈S

ψjs (57)

S represents the set of sensors considered in each of the seven combinations. Clearly, if a UAV
was only capable of holding two sensors, only six of the seven combinations should be used.
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The procedure can also be adjusted to accommodate UAVs capable of holding more than three
sensors by increasing the number of individual sensors considered. This concludes the first phase
of the procedure.

One of the generated sensor combinations and associated target lists is selected at random and
passed to the second phase of procedure which is outlined in Table 12. This phase utilizes a
technique presented by Bodin et al. (1983).

Table 12: Two-Phase Sensor Selection and Routing Heuristic

Step 0 Set l, P , R0, and T = 0
Choose α, set τ = adjusted travel time

Step 1 Assume UAV begins at base
Compute δt and ∆P −R0∆t for all targets i in the target list passed

in from Phase I
Select i that maximizes ∆t and ∆P −R0∆t and satisfies time constraints
Insert target i in the current route, remove i from target list and

proceed to Step 2

Step 2 Update l, Rl, P , τ , and T , then proceed to Step 3

Step 3 Compute ∆t and ∆P for all possible insertions of remaining
targets in the target list

Select target from list that maximizes ∆P −R0∆t and satisfies time constraints
If such a target exists, insert it in the route, remove target from list, and

proceed to Step 2
If such a target does not exist, go to Step 5

Step 4 End procedure and check reduced cost of the solution

The iteration number is defined as l, while P and T correspond to the cumulative benefit and
cumulative travel time, respectively. Rl is defined as the worth of a time unit at iteration l.
This value is a ratio of the cumulative sensor benefit to the cumulative travel time. Thus, the
value of Rl will be high when the cumulative sensor benefit is large relative to the cumulative
travel time. α is used to prevent rapid fluctuations in Rl and introduce randomness to the
procedure. This will be discussed shortly. In Step 0, P , T , and R0 are set to 0 and a value for
α is selected. τ is set to the travel time adjusted for the attached sensors passed in from the
first phase of the algorithm.

Step 1 assumes that each UAV begins at the base location. The change in time ∆t and change
in benefit ∆P is computed for each target i in the target list, which is passed in from the first
phase. ∆t and ∆P are computed by Equations (58) and (59), respectively.

∆t = t(0, i) + t(i, 0) (58)

23



∆P = P (i) (59)

The target i which maximizes ∆P , does not violate ∆t ≤ τ , and satisfies the appropriate time
window is selected. Once selected, target i is removed from the target list. This concludes the
first step of phase two.

Step 2 updates all of the variables. The iteration, cumulative benefit, cumulative travel time,
and remaining travel time are updated according to Equations (60) through (63).

l = l + 1 (60)

P = Pl−1 + ∆P (61)

T = Tl−1 + ∆T (62)

τ = τl−1 −∆T (63)

To update the worth of a time unit, Equation (64) is evaluated.

Rl =
αP

T
+ (1− α)(Rl−1) (64)

As mentioned earlier, α is used to prevent extreme changes in Rl. It is similar to the way
in which a smoothing constant is used in forecasting models. Furthermore, if the procedure
stalls and continuously generates identical columns, the value of α can be altered to introduce
randomization.

Step 3 adds subsequent targets to the route. For each target k in the target list, ∆t and
∆P - Rl(∆t) are computed for insertion between all existing targets i and j currently in the
route. The calculations are performed using Equations (65) and (66).

∆t = t(i, k) + t(k, j)− t(i, j) (65)

∆t−Rl−1∆t = P (k)−Rl∆t (66)

The triplet that maximizes ∆P - Rl(∆t) and satisfies T + ∆t ≤ τ as well as time window
constraints for k and all existing targets in the route is selected. If such a triplet exists, target
k is inserted into the current route and removed from the target list. The process then moves
to Step 2. If a triplet does not exist that satisfies these requirements, no additional targets can
feasibly be added to the route and the process advances to Step 4.

Step 4 checks the reduced cost of the discovered solution. If it is favorable, the route and
sensor combination is added to the master problem as a new column. If the reduced cost is not
favorable the current sensor combination is removed from consideration. A new combination is
randomly selected from phase one, and phase two is restarted. If all sensor combinations are
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exhausted and a favorable solution is not found, no column is added for the UAV at the current
CG iteration. However, a favorable column may still be discovered for the UAV in a future CG
iteration. Column generation ends when an iteration is unable to find a favorable column for
all UAVs, or a predefined maximum number of columns are generated.

4. Computational Experience

4.1. Experimental Conditions

The computational experiments were carried out using software developed in C++ and Java.
CPLEX 12.1 was used to solve the ISSRM, the sensor selection phase of the local search heuristic,
and the master problem for the column generation heuristic. All testing was carried out on a PC
with a 3.00GHz Intel Core 2 Duo processor and 4GB of RAM. Since the authors were unaware
of any existing instances of this problem, fourteen scenarios were developed. Ten replications
of each scenario were run, for a total of one hundred and forty test cases. Table 13 summarizes
the test cases.

Table 13: Summary of Test Cases

Number of Targets Fleet Size Dimensions of Target Field

15 2 100 x 100
30 2,3,4 100 x 100
50 3,4,5,6 150 x 150
100 3,4,5,6,7,8 200 x 200

Target locations were uniformly distributed within the target field and three sensors were con-
sidered for all test cases. The benefit assigned for each sensor/target pair was generated as
follows. The probability that a target had benefit from the first sensor was 1, while the proba-
bilities for sensor 2 and sensor 3 were 0.8 and 0.64, respectively. Given that a target benefited
from a sensor, the actual benefit value was assigned using the distribution in Table 14.

Table 14: Distribution of Sensor/Target Benefit

Benefit Range Probability

1 - 2 0.1
3 - 5 0.1
6 - 8 0.3
9 - 12 0.5

The unloaded range of each UAV in the fleet is dependent on the number considered in the
problem. The first UAV had an unloaded range of 250 units and each subsequent UAV inclusion
added an additional 50 units. Hence, if an eighth UAV was considered, its unloaded range was
600 units. The distance reduction imposed for sensor 1, sensor 2, and sensor 3 was 125, 40, and
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100, respectively. Column Generation was run executed for a maximum of 1000 iterations in
all test cases. While we generated and tested problems with time windows, they tend to make
the problem easier to solve. For this reason, the numerical tests do not include time windows.

4.2. Small and Medium Sized Problems

CPLEX was given two hours to solve the test cases presented in Table 15. These results are
reported in the ISSRM column.

Table 15: Results For 15 Targets and 2 UAVs

Run ISSRM Heuristic Heuristic Local CG Percent
# I II Search Increase

1 113 69 74 113 113 0.0%
2 97 65 74 83 103 24.1%
3 148 118 132 138 138 0.0%
4 116 95 104 104 104 0.0%
5 130 105 127 101 127 0.0%
6 120 92 131 51 131 0.0%
7 93 58 88 84 95 7.9%
8 74 74 82 82 84 2.4%
9 114 90 103 93 103 0.0%
10 104 105 110 115 115 0.0%

The solution times for Heuristic I and Heuristic II were essentially instantaneous and Column
Generation solutions were obtained within 10 seconds for all cases. The maximum number of
iterations for Local Search was set to 50,000 and terminated when no improvement was found in
1,000 subsequent iterations. Local Search and Heuristic II independently found the best solution
in 40% of the cases. In the remaining 20% of the cases, Local Search and Heuristic II both found
the best solution. Heuristic I was outperformed by either Heuristic II or Local Search in each
test case. Column Generation was started with the heuristic solution that provided the best
result. In the event of a tie, both solutions were used as initial columns. In 30% of the cases,
Column Generation improved the solution. Of these cases, the average improvement in solution
quality was 11.5%. Based on these results, Heuristic II and Local Search provide acceptable
results for problems of relatively small size. Heuristic I was outperformed by Heuristic II in
every instance and does not provide any significant saving in computation time. The use of
Column Generation is justified as it significantly improved the solution in several instances with
minimal increase in solution time.

The results for moderately sized test cases containing 30 targets are shown in Tables 16 - 18.
A comparison is made between the ISSRM’s progress after predefined time intervals, each of
the three heuristics, and Column Generation. Column Generation results are independently
provided when initiated using initial columns from Heuristic I, II and Local Search. For many
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instances, CPLEX was not able to find either a feasible solution in the desired time interval
which is reported in the table as NS. Column Generation solutions were obtained within 20
seconds for all runs. With the exception of run # 12, Local Search was the best initial heuristic
solution and was improved by Column Generation in many of the test cases.

Table 16: Results For 30 Targets and 2 UAVs

Run ISSRM ISSRM ISSRM Heuristic Heuristic CG Local CG
# 1 min 3 min 5 min I II HI,II Search LS

11 148 148 148 127 161 168 215 215
12 106 106 106 124 142 148 139 139
13 94 94 121 129 153 153 188 188
14 121 159 159 149 157 159 199 199
15 69 90 101 100 103 107 151 151
16 39 80 80 113 124 124 145 145
17 160 170 170 173 174 185 225 225
18 89 89 89 86 91 101 144 144
19 115 130 130 102 109 121 184 184
20 85 85 99 123 136 139 181 181

Table 17: Results For 30 Targets and 3 UAVs

Run ISSRM ISSRM ISSRM Heuristic Heuristic CG Local CG
# 1 min 3 min 5 min I II HI,II Search LS

21 NS NS 125 127 160 174 273 273
22 NS NS NS 183 219 219 258 258
23 NS NS NS 140 163 181 236 236
24 NS 97 97 151 176 190 242 242
25 NS NS NS 186 206 224 285 285
26 NS 115 115 140 163 181 233 240
27 NS 0 0 164 177 181 279 287
28 NS NS NS 143 164 178 205 230
29 NS NS NS 194 213 222 267 267
30 NS NS NS 175 192 199 295 295
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Table 18: Results For 30 Targets and 4 UAVs

Run ISSRM ISSRM ISSRM Heuristic Heuristic CG Local CG
# 1 min 3 min 5 min I II HI,II Search LS

31 NS NS NS 229 250 250 301 301
32 NS NS NS 250 294 304 384 384
33 NS NS NS 211 251 256 341 350
34 NS NS NS 263 305 319 388 388
35 NS NS NS 231 271 281 343 348
36 NS NS NS 273 275 283 409 409
37 NS NS NS 252 262 283 370 377
38 NS NS NS 212 252 359 260 270
39 NS NS NS 283 317 319 432 432
40 NS NS NS 252 273 278 350 361

The results presented in Tables 16 - 18 represent moderately sized problems. CPLEX was given
5 minutes to solve the ISSRM and was outperformed by heuristic solutions in all thirty runs.
Local Search solved quickly with solution times ranging from 2.74 - 10.88 seconds. The average
solution time for Local Search was 5.21 seconds. When a solution is needed quickly for problems
of this size, it is evident that the three heuristics augmented by CG provide results that are
more favorable than those produced by directly solving the ISSRM.

4.3. Large Size Problems

The results for larger problems are displayed in Table 19. For simplicity, average results for
each scenario are provided. The final integer master problem was unable to converge in some
of the test cases. Thus, a time limit of 5 minutes was imposed on the solution procedure.

Table 19: Results For Large Problems

Target Fleet Heuristic Heuristic Local CG % Improvement
Quantity Size I II Search Min Avg Max

50 3 125 140.3 208.1 211.5 0.0 1.9 5.9
50 4 198.7 231.4 293.6 296.1 0.0 0.8 4.0
50 5 253.6 297.2 394.5 402.1 0.0 1.9 5.0
50 6 305.6 366.1 478.9 488.5 0.0 2.1 6.5
100 3 152.7 173.8 253.2 254.9 0.0 0.7 5.0
100 4 236.1 266.5 341.1 344.6 0.0 1.0 6.0
100 5 279.4 311.7 426 431.4 0.0 1.4 5.2
100 6 395.6 434.8 565.9 572.2 0.0 1.1 3.4
100 7 436.5 481.4 653.4 664.3 0.0 1.6 2.9
100 8 548.1 583.8 738.6 752.4 0.8 1.9 3.9

Local Search was the superior algorithm for each test case, and Heuristic II once again outper-
formed Heuristic I in every scenario. Column generation was able to improve the initial solution
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in 60 out of the 100 test cases. The right most column in Table 19 represents the average overall
percent improvement and includes the 40 cases where CG did not improve the solution. For the
60 cases where column generation did improve the solution, the average percent improvement
was 2.4%, with a maximum improvement of 6.5% and a minimum improvement of 0.2%. Once
again, the use of Column Generation is justified as it provides noticeable improvement while
adding relatively little to the total computation time.

4.4. Fleet Sizing Application

As evident from Sections 4.2 and 4.3, column generation provides a good solution to the sensor
selection and routing problem and solves relatively fast. This behavior allows the solution
approach to be used as a tool for fleet sizing. A mission planner may be unsure as to how
many UAVs he or she should allocate to a mission. Alternative solutions for a mission could be
obtained quickly for a varying number of UAVs. The mission planner could then evaluate the
surveillance benefit for each of the alternatives and make a decision. A fifteen target case with
three sensors is presented for sake of illustration. The case was generated using the approach
described in Section 4.1. The unloaded range of each UAV is 350 units.

Figure 6: Fleet Sizing Example

Here, the surveillance benefit jumps significantly when the fleet size increases from one to two
UAVs. As the fleet size rises from 2 to 6, the surveillance benefit experiences a linear increase.
The addition of 7 or 8 UAVs has a marginal impact on surveillance benefit.

While fleet size is ultimately determined by the mission planner, the algorithms presented in
this work can certainly aid in the decision. For example, an analysis of Figure 6 may lead a
mission planner to question the inclusion of more than 6 UAVs. The cost per UAV and cost
per unit of surveillance benefit may also be factored into the decision.
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5. Conclusions and Future Work

The sensor selection and routing of unmanned aerial vehicles can be modeled as a generaliza-
tion of the team orienteering problem. While the ISSRM developed in this work solves well
using CPLEX for small problems, larger problems required the use of heuristics augmented
with column generation. All three heuristics solved quickly, with local search and Heuristic II
consistently outperforming Heuristic I. For small problems, Local Search and Heuristic II shared
the ability to provide the best solution. As the problem size grows, Local Search consistently
provides superior results. Column Generation improved the solution in many of the test cases,
but also did not significantly increase the overall solution time. Thus, it should be included in
the solution procedure. Also, since the solution approach finds a good solution very quickly,
it provides a foundation for applications beyond sensor and route selection. This work demon-
strated the solution approach functioning as a fleet sizing tool for a single mission. This idea
can be extended to multiple missions and will be briefly discussed.

Consider the role of a mission planner with a set of target clusters requiring surveillance. The
target clusters are not in close proximity, so each will require a separate mission plan. If the
clusters were close to one another, only one mission plan would be required which could be
obtained using the procedures presented in this work. Also, it is assumed that the surveillance
of each target cluster is simultaneous, so UAVs and sensors may not be shared among mission
plans. Thus, the resources allocated to each target cluster will play a significant role in the
success across all missions. Since the solution procedure presented solves quickly, multiple
allocation scenarios could be evaluated in a short amount of time. Furthermore, the solution
procedure could be implemented within a systematic approach designed to optimize UAV and
sensor allocations across multiple simultaneous missions.

Lastly, the ISSRM could not find an optimal solution for relatively small test cases. The
authors are currently investigating a branch and cut approach as a more effective method to
prove optimality for simultaneous sensor selection and routing problems.
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