MTH 337

Introduction to
Scientific and Mathematical Computing

Fall 20I6

Instructor: Adam Cunninaham

University at Buffalo
Department of Mathematics

Contents

1 Getting Started

1.1
1.2
1.3

1.4

Course Description
Install Python
Weekly Reports e
1.3.1 Presenting and Interpreting Results
Jupyter Notebook
141 Magics o o
1.42 Markdown
1.43 WBTEX . . o

2 Programming Python

21
2.2
23
2.4
25
2.6
2.7
2.8
2.9
2.10
211
212
213
2.14
2.15
2.16
217
2.18
2.19
2.20
221
2.22
2.23

Numbers
Booleans
Strings
Formatting Strings L
Type Conversions L
Variable Names
Modules
Lists e

Boolean Expressions
If Statements L
Conditional Expressions
For Loops e
While Loops e
Break and Continue
Comprehensions e
Generator Expressions
Functions
Error Handling with Try-Except o
Reading and Writing Files

Comments L

© 0o ~N g~ N~ D

3 NumPy

3.1 Array Creation
3.2 Array Properties
3.3 Array Operations e
3.4 Array Indexing and Slicing
3.5 Indexing with Integer Arrays L L
3.6 Indexing with Boolean Arrays

4 Matplotlib

4.1 Basic Plotting e
4.2 A More Complex Plotting Example
43 BarPlots. e
4.4 PolarPlots e
45 HIistograms
46 Pie Charts
4.7 Contour Plots
4.8 Multiple Plots
4.9 Formatting Text
4.10 Formatting Mathematical Expressions L.

5 Additional Topics

5.1 Loading Numerical Files
5.2 Images
5.3 Animation
5.4 Random Number Generation
55 Sound Files
5.6 Linear Programming

6 Programming Style

6.1 Choosing Good Variable Names

6.2 Choosing Good Function Names

6.3 No “Magic Numbers”
6.4 Comments

6.5 Errors and Debugging
7 Further Reading

Index

34
35
37
38
40
41
41

43
44
45
46
47
48
49
50
51
52
53

54
54
55
56
58
59
60

62
62
63
63
63
64

65

66

Getting Started

Course Description

This course covers the following areas:

Programming using Python, the scientific computing package NumPy, and the plot-
ting library Matplotlib.

Scientific computing methods used in number theory, linear regression, initial value
problems, dynamical systems, random number generation, and optimization.

Using computers to explore topics in the mathematical and natural sciences.

Presentation of experiments, observations and conclusions in the form of written
reports.

Install Python

We will be using Python 3.5. It is recommended that you use the Anaconda distribution,
which is available free on Windows, Mac and Linux and contains all the packages we need
(NumPy, SciPy, Matplotlib, Jupyter Notebook).

® Download Anaconc % YW

» € @ hitps;//www.continuum.io, e @

LOGIN SUPPORT ~CONTACT

CONTINUUM

ANALYTICS ANACONDA | COMMUNITY | SERVICES | SOLUTIONS | ABOUT | RESOURCES

ANACONDA DOWNLOAD

DOWNLOAD ANACONDA NOW!

0

Jump to: Windows | OS X | Linux ANACON DA

now available for

Anaconda is acompletely free Python distribution (including for commercial use and redistribution). It
includes more than 400 of the most popular Python packages for science, math, engineering, and data GETNOW
analysis. See the packages included with Anaconda and the Anaconda changelog.

Which version should | download and install?

Get Superpowers with Anaconda

Because Anaconda includes installers for Python 2.7 and 3.5, either is fine. Using either version, you can use

Python 3.4 with the conda command. You can create a 3.5 environment with the conda command if you've VIEW OUR
downloaded 2.7 — and vice versa. WEBINARS
If you don't have time or disk space for the entire distribution, try Miniconda, which contains only conda and See upcoming and pi

Python. Then install just the individual packages you want through the conda command. webinars from our

https://store.continuum.io/cshop/anaconda/

CHAPTER 1. GETTING STARTED 1.3. WEEKLY REPORTS

Weekly R eports

Reports will be submitted every week on UBlearns as Jupyter Notebook files containing
text, code, and results. Files will be identified using your surname and the report number
(e.g. "cunninghamOl.ipynb”). The final report will be a pdf compilation of all the weekly
reports, including a title page and table of contents.

Reports usually need to include:

e An introduction. The topic should be explained in a way that would be comprehen-
sible to another member of the class.

e A clear statement of the specific question or task.

e A description of the approach used to tackle the question or task.
e Clearly presented results, including appropriate diagrams and plots.
e An interpretation of the results.

e An appropriate conclusion.

e A list of references to books, articles and websites consulted.

e Python code used to generate all figures and data in the report as code cells in the
Jupyter Notebook.

Extra credit will be assigned for extra or unusual work or insight.

Presenting and Interpreting Resutts

Every assignment in this class involves exploring a topic in science and mathematics,
generating graphical results, and saying something about those results. Graphs should
be labelled in a way that makes the content of the graph clear. They should include the
following information (at a minimum):

e Labels for the x- and y-axes, specifying the units when displaying quantities.
e A title for the graph.
e A number for the title, which can be used to refer to the graph in the report.
The minimum expected for assignments is that the main qualitative features of the results

should be described and an attempt made at explanation. Explaining the quantitative
features of the results is usually a more difficult and challenging task.

Jupyter Noterook
The development enviroment we will be using is the Jupyter Notebook. This provides:

e An interactive environment for writing and running code.

e A way to integrate code, text and graphics in a single document.

http://jupyter.readthedocs.io/en/latest/

CHAPTER 1. GETTING STARTED 1.4. JUPYTER NOTEBOOK

A new Jupyter Notebook opens in a web browser, and contains:

e A Title bar, containing the name of the notebook.
e A Menu bar, containing all the functions available in the notebook.
e A Tool bar, for easy access to the most commonly-used functions.

e A list of cells, containing code or text, and the results of executing the code.

: J u pyte I Untitled Last Checkpoint: a minute ago (unsaved changes) «——— Title bar P
File Edit View Insert Cell Kernel Help — Men u ba r # |Python3 O
+ 22 A B 4+ + M B C code v CellToolbar

«—— Tool bar

| n ——— Cell

The menu bar and tool bar contain the following functions.

‘ Open, save, and modify notebooks‘

‘ Edit, move, and select cells ‘

‘Toggle header and toolbar ‘

‘ Insert new cells into notebook ‘

‘ Run cells and set cell type ‘

‘ Interrupt or restart Python ‘
‘ ‘ Help with Python and libraries ‘

|

File Edit View Insert Cell Kernel Help
+ = & B 4+ ¥+ M B C cod v CellToolbar
‘ ‘ Cell toolbar
‘ Set celltype ‘

‘ Restart kernel ‘

‘ Interrupt kernel ‘

‘Run cell ‘

‘ Move cell down ‘

‘ Move cell up ‘

‘ Paste cell below ‘

‘ Copy selected cell ‘

‘ Cut selected cell ‘

‘ Insert cell below ‘

‘Save notebook ‘

CHAPTER 1. GETTING STARTED 1.4. JUPYTER NOTEBOOK

Code and text are entered in cells, which can be of different types. The main types we
will use are:

e Code cells, which contain Python code.

— Click on a cell with the mouse to start entering code.

— Enter adds a new line in the cell, without executing the code.

— Shift-Enter (or clicking the “Play” ™ button in the toolbar, or Cell — Run
in the menubar) executes the code in the cell and moves the cursor to the next
cell.

— Tab brings up help for the function the cursor is currently in.

e Markdown cells contain text formatted using the Markdown language, and mathe-
matical formulas defined using ETEXmath syntax.

The type can be selected by either using the “Cell Type" c= " pull-down menu in the
toolbar, or Cell — Cell Type in the menubar.

Maaics

Magics are instructions that perform specialized tasks. They are entered and executed in
code cells, and prefaced by “%" for a line magic (which just applies to one line) or “%%"
for a cell magic (which applies to the whole cell). The main ones we will be using are:

e %pylab inline imports numpy and matplotlib (making the functions and variables
in these modules available to us), with plots drawn inline (in the notebook itself).

e %pylab imports numpy and matplotlib, with plots drawn in separate windows.
e %run (file) executes the Python commands in (file).

e %timeit (code) records the time it takes to run a line of Python code.

o %%timeit records the time it takes to run all the Python code in a cell.

An example of timing code execution using %%timeit is as follows,

ontimeit nx o= n+nbrangep(l+m+mil0000p)

n+nbmaxp (nxp) The line “x = range(10000)"
is run once but not timed. The

1000 loops, best of 3: 884 us per “max(x)" line is timed.

loop

@ Note that the %%timeit magic must be the first line in the code cell.

https://ipython.org/ipython-doc/dev/interactive/magics.html

CHAPTER 1. GETTING STARTED 1.4. JUPYTER NOTEBOOK

Markdown

Text can be added to Jupyter Notebooks using Markdown cells. Markdown is a language
that can be used to specify formatted text such as italic and bold text, lists, hyperlinks,

tables and images. Some examples are shown below.

Markdown

How it prints

An hl header

An h2 header
An h3 header
An h4d header
italic

xbold

This is a bullet list
* First item
* Second item

This is an enumerated list
1. First item
2. Second item

[UB link] (https://www.buffalo.edu/)

! [Python] (PythonImage. jpg "Python")

A horizontal line
*kk

An hl header
An h2 header
An h3 header
An h4 header
italic
bold
This is a bullet list
e First item

e Second item

This is an enumerated list
1. First item

2. Second item

UB link

A horizontal line

http://daringfireball.net/projects/markdown/
https://www.buffalo.edu/

CHAPTER 1. GETTING STARTED 1.4. JUPYTER NOTEBOOK

AT

Mathematical expressions in Markdown cells are specified using the typesetting language
IATEX. These expressions are identified using $(formula)$ for an inline formula (displayed

within a line of text), or 3(formula)$$ for a larger formula displayed on a separate line.

Superscripts

1+sn+nbx1+m21+s x?
Subscripts

l+sn+nbxl+mll+s T
Fractions

l+sn+nvfracn+nbl+min+nbl+m2n+nbl+s %

Greek Letters

l+sn+nvalphan+nb, n+nvbetan+nb, n+nvgamman+nb, n+nvkdgisptnb,wn+nvomegal+s

Series
g n
l+sn+nvsumn+nbi o=n+nb l+mln+nbnl+s Y1
Integrals
: b
1+sn+nvintn+nbabl+s /.

Square Roots

l+sn+nvsqrtn+nba o+n+nb bl+s Va-+b
Overline

l+sn+nvbarn+nbxl+s z

Brackets

l+sn+nvl+min+nb, l+m2n+nb, n+nvldotsn+nb, nn+nvl+s {1,2 ... n}
Matrices

1 2
l+sn+nvbeginn+nbbmatrix l+mln+nb 1l+m2n+nb n+nvn+nb [1+m3}+nb 1+m4n+nb n+nvendn-

Proaramming Python

Python is a flexible and powerful high-level language that is well suited to scientific and
mathematical computing. It has been designed with a clear and expressive syntax with a
focus on ensuring that code is readable.

Numeers

The basic numerical types used in Python are:

e Integers.
e Floats (reals).

e Complex numbers (pairs of floats).

Python will automatically convert numbers from one type to another when appropriate.
For example, adding two integers yields an integer, but adding an integer and a float
yields a float. The main arithmetic operations are +, -, *, /, and **. Operations
are evaluated in standard order - Parentheses, Exponentiation, Multiplication, Division,
Addition, Subtraction. To avoid possible ambiguity, use parentheses to make the order of
evaluation clear.

1+m+mi3 o+ 1l+m+mi2

Addition
5
1+m+mi3 o 1l+m+mi?2

Subtraction
1
1+m+mi3 o* 1+m+mi?2

Multiplication
6
l+m+mi3 o/ 1l+m+mi2

Division

1.5

10

CHAPTER 2. PROGRAMMING PYTHON

2.1. NUMBERS

1+m+mi3o**1+m+mi?2

9

Some other useful operations are floor division (//),
(abs).

1+m+mi3 o// l+m+mi2
1

l+m+mil2 o l+m+mib
2

n+nbabsp (01l+m+mi88yp)

88

Exponentiation (not 3°2)

modulus (%), and absolute value

Floor division returns the inte-
gral part of the quotient.

Modulus returns the remain-
der.

abs returns the absolute value.

Python has a built-in complex number type, and knows the rules of complex arithmetic.

l+m+mil o+ 1l+m+miZ2j

(1+23)

n+nbcomplexp (l+m+milp, l+m+mi2p)
(1+23)
p(l+m+milo+1l+m+mi2jp)o.nreal

1.0
p(1+m+milo+1l+m+mi2jp)o.nimag
2.0

n+nbabsp (1+m+mi3o+1+m+midjp)

5.0

nz o= l+m+mil o+ l+m+mi2j
nw o= l+m+mi3 o l+m+milj

11

Generate a complex number (j
is used instead of).

Another way to generate a
complex number.

real returns the real part of a
complex number.

imag returns the imaginary
part of a complex number.

abs returns the modulus when
applied to a complex number.

Note that a '1' is needed in
front of the j.

CHAPTER 2. PROGRAMMING PYTHON 2.2. BOOLEANS

nz o+ nw
Complex addition.
(4+173)
nz o* nw
Complex multiplication.
(5+5j)
Booleans

Python also has a Boolean type, which only takes the values True or False. These also
work like numbers, where True has the value 1 and False the value 0.

n+nb+bpTrue o+owor n+nb+bpFalse
Logical disjunction
True

n+nb+bpTrue o+owand n+nb+bpFalse
Logical conjunction
False

o+ownot n+nb+bpTrue
Logical negation
False

RBRPIEIE @ il True has the numerical value

49 1.

+nb+ * 1+m+mi :
n+nb+bpFalse o* l+m+midl False has the numerical

0 value 0.

Strinas
Strings are sequences of characters. They are identified by surrounding quote marks.

e To generate a string, enclose a sequence of characters in either single ("') or double
("") quotes (Python doesn’t care which).

e A single character in Python is just a one-element string.

e Python strings are immutable - once defined, they can't be changed. They can of
course still be copied or operated on to create new strings.

12

CHAPTER 2. PROGRAMMING PYTHON 2.3. STRINGS

kprintp (1+s+s2abcp) print outputs text to the

discarding th tes).
e screen (discarding the quotes)

Iisteiebe oF It Adding two strings makes a

new string by concatenation.

"abcdef"

LRI LS Multiplying a string by an in-
"abeabeabe" teger repeats the string.
kprintp(l+s+s2I love MTH 337!p) Embedding quote marks

I love 'MTH 337'! within a string.

A "\" within a string is used to specify special characters such as newlines and tabs.

nstringl o= l+s+s2abcl+s+senl+s+s2def

kprintp(nstringlp) The "\n" character specifies a

abe newline.

def

nstring2 o= l+s+s2abcl+s+setl+s+s2def

kprintp(nstring2p) The "\t" character specifies a
tab.

abc def

Strings elements are accessed using square brackets, [].

e Indexing obtains characters from the string using a single integer to identify the
position of the character.

Slicing obtains a substring using start:stop:step to identify which characters to
select.

Indexing and slicing is zero-based - the first character is at position 0.

Indexing and slicing is “up to but not including” the stop position.

e A """ can be used to select all characters either before or after a given position.
1+s+s2abcdep [1+m+miip] Indexing returns the character

at index 1 (indices start at 0,
npn not 1).

13

CHAPTER 2. PROGRAMMING PYTHON

2.4. FORMATTING STRINGS

l+s+s2abcdep [ol+m+milp]

Ile"
1l+s+s2abcdep[l+m+milp:1+m+midp]
Iledll

l+s+s2abcdep [1+m+mi2p:]

IICde n

l+s+s2abcdep[: 1+m+mi2p]

IlabH

l+s+s2abcdep[: : 1+m+mi2p]

Ilace "

Negative indices count back-
wards from the end of the
string.

Slicing a string from position 1
up to (but not including) posi-
tion 4.

Select all characters from posi-
tion 2 to the end of the string.

Select all characters from the
start of the string up to (but
not including) position 2.

Select every second character
from the whole string.

l+s+s2abcdefgp [1+m+milp: 1+m+mibp: 14m+mi2p] gojort every second character

IIbdll
l+s+s2abcdep[: :0l+m+milp]

"edcba"

Formattina Strinas

from positions 1 up to 5.

Reversing a string by reading
it backwards.

Strings can be formatted using the format function. This allows “replacement fields”
surrounded by curly brackets {} in a string to be replaced by some other data. “Format
specifications” within replacement fields define how data is to be formatted, including the

field width, padding and number of decimal places.

e Empty replacement fields {} are filled in order with the arguments given.

e Numbers inside replacement fields specify arguments by position, starting with zero.

l+s+s2 o.nformatp(l+s+s2ap, l+s+s2bp)

Ila bll

14

"Replacement fields” {} are
filled in order by format.

CHAPTER 2. PROGRAMMING PYTHON 2.4. FORMATTING STRINGS

Format specifications for the field width and padding are provided after a colon ":'.

1+s+s21st: 0, 2nd: lo.nformatp(l+m+mi3p,l+d#eidgyments to format can
also be identified by position,
"i{st: 3, 2nd: 4" starting at 0.

e A field width can be specified using :n where n is an integer specifying the number
of characters in the field.

o If the data has less characters than the field width, the default is to insert extra
spaces on the right i.e. to "pad” on the right.

e To pad on the left, use :>n. To explicitly pad on the right, use :<n. The > and <
are like direction arrows "sending” the data to the indicated side of the field.

e Data can be centered in a replacement field using :"n.

kprint l+s+s2:5 o.nformatp(l+s+s2ap, 1+m+m%%p,?g 3 field of width 5 with
the default padding.

a2

kprint l+s+s2:5 o.nformatp(l+s+s2ap, 1+m+*mi2R) the Jeft padding in this
a9 example.

kprint l+s+s2:5 o.nformatp(l+s+s2ap, 1+m+m;'.\%)v9 centering 'a’ in the field

a2 of width 5.

Format specifications for floats allow tables of numerical data to be neatly printed and
aligned.

15

e Integers are referred to using :d.
e Floats are referred to using :f.

e An integer after a decimal point is used to indicate how many decimal places to
display.

e Use :n.mf to indicate a replacement field of width n for a float printed to m decimal
places.

kprint l+s+s2:5.2fo.nformatp(npip) Print pi in a field of width 5 to

3.14 2 decimal places

CHAPTER 2. PROGRAMMING PYTHON 2.5. TYPE CONVERSIONS

kprint l+s+s2:10.4fo.nformatp(npip) Padding can be combined with
other options if the padding is
3.1416 specified first.

Type Conversions

Objects can be explicitly converted from one type to another, as long as the conversion
makes sense. This is called type casting.

e Ints can be cast to floats, and both ints and floats can be cast to complex numbers.
e Complex numbers can't be converted to ints or floats.

e Strings can be cast to numerical types if the string represents a valid number.

Casting is done using the functions bool, int, float, complex, and str.

n+nbboolp(l+m+milp)

Convert integer to boolean.
True
silblbeelp (i e 1) Any nonzero value counts as
True True.
n+nbboolp (1+m+miOp)

Zero equates to False.
False
n+nbboolp(1l+s+s2p)

An empty string is also False.
False

n+nbintp(1+m+mf2.99p) Convert float to integer (the

5 decimal part is discarded).

n+nbintp (1+s+s222p)
Convert string to int.
22

n+nbfloatp(l+s+s24.567p)
Convert string to float.
4.567

n+nbcomplexp (1+s+s21+2jp)
Convert string to complex.
(1+23)

16

CHAPTER 2. PROGRAMMING PYTHON 2.6. VARIABLE NAMES

n+nbfloatp (1+m+milOp)
Convert integer to float.
10.0

nnbcomplexp (1+m#nil0p) Convert integer to complex

(10+03) number.

n+nbstrp (n+nb+bpTruep)
Convert boolean to string.

IlTrue n
e) Convert integer 1 to string
" 1 " II-Z Il'

n+nbstrp (1+m+mf1.234p)
Convert float to string.

"1.234"

Variarle Namwes
Variable names can be used to refer to objects in Python. They:

e Must start with either a letter or an underscore.

e Are case sensitive. So value, VALUE, and Value all refer to different variables.

u“ ”

e Are assigned a value using “=". The variable name goes to the left of the “=", and

the value to assign on the right.

8 (O LR Assign x the value 5 (note that

kprintp (nxp) “=" s used for assignment,

not u::r/
5

ny o= nx o+ l+m+mi3

kprintp (nyp) Assign y the value of z + 3.

8

ncourse o= l1+s+s2MTH 337

kprintp(ncoursep) course is a string (printed
without quotes).
MTH 337

17

CHAPTER 2. PROGRAMMING PYTHON 2.7. MODULES

nap, nb o= l+m+mi2p, 1+m+mi3

kprintp(nap, nbp) Multiple variables can be as-
signed at the same time.

23

nap, nb o= nbp, na

Values of a and b are swapped
kprintp(nap, nbp)

(the right hand side is evalu-

39 ated before the assignment).

nz o= l+m+mi3
nz o+= l+m+mi?2
kprintp (nzp) Sameasz = z + 2.

5

nz o= l+m+mil

kprintp(nzp) Sameasz = z - 1.

4

nz o*= l+m+mi3
Kprintpinzp) Sameas z = z * 3.

12

nz o/= l+m+mi2

kprintp(nzp) Sameasz =z / 2
6
nz o= l+m+mib
kprintp (nzp) Sameas z = z] 5.
1

Modules

A module is a file containing Python definitions and statements. These allow us to
use code created by other developers, and greatly extend what we can do with Python.
Since many different modules are available, it is possible that the same names are used
by different developers. We therefore need a way to identify which module a particular
variable or function came from.

The import statement is used to make the variables and functions in a module available
for use. We can either:

e Import everything from a module for immediate use.

18

CHAPTER 2. PROGRAMMING PYTHON 2.8. LISTS

e Import only certain named variables and functions from a module.

e Import everything from a module, but require that variable and function names be
prefaced by either the module name or some alias.

k+knfrom n+nnmath k+knimport npi

e (aeis) pt is now a variable name that

we can use, but not the rest of

3.14159265359 the math module.

k+knfrom n+nnmath k+knimport o*
kprintp(nep) Everything in the math module

is now available.
2.71828182846

k+knimport n+nnnumpy

kprintp (nnumpyo.narcsinp(l+m+milp)) Everything in numpy can be
used, prefaced by “numpy”.

1.57079632679

k+knimport n+nnnumpy k+knas n+nnnp

) ' Everything in numpy can be
kprintp (nnpo.ncosp (1+m+miOp))

used, prefaced by the alias

i“ 7

1.0
If we want to know what a module contains, we can use the dir function. This returns a
list of all the variable and function names in the module.

k+knimport n+nnmath
kprintp(n+nbdirp (nmathp))

[",,dOC,," s " name_ " s ",,package,," s
"acos", "acosh", "asin", "asinh",
"atan", "atan2", "atanh", "ceil",
"copysign", "cos", "cosh", "degrees", The math module contains
"e", "erf", "erfc", "exp", "expml", all the standard mathematical
"fabs", "factorial", "floor", "fmod", functions.
"frexp", "fsum", "gamma", "hypot",
"isinf", "isnan", "ldexp", "lgamma",
"log", "10g10", "lOglp", "modf",
"pi", "pOW", "radians", "sin",
"Sil’lh", "sqrt", "tan", "tanh",
"trunc"]
Lists

Lists are a type of container - they contain a number of other objects. A list is an ordered
sequence of objects, identified by surrounding square brackets, [].

19

CHAPTER 2. PROGRAMMING PYTHON 2.8. LISTS

e To generate a list, enclose a sequence of objects (separated by commas) in square
brackets.

e List elements can be of any type, and can be of different types within the same list.

e Lists are mutable - once created, elements can be added, replaced or deleted.

nmylist o= p[l+m+milp, l+s+s2ap, l+m+mf6.58p]
kprintp(nmylistp) Use square brackets to create

a list.
[1, "a", 6.58]

n+nblenp (nmylistp) len returns the number of ele-

3 ments in a list.

nlistl o= p[l+m+milp, l+m+mi2p, l+m+mi3p]
nlist2 o= p[l+mt+midp, l+m+mibp, l+m+mi6p]

_ . Adding two lists makes a new
nlistl o+ nlist?2

list by concatenation.

(1, 2, 3, 4, 5, 6]

nlistl o l+m+mi3 Multiplying a list by an integer

[1, 2, 3, 1, 2, 3, 1, 2, 3] repeats the list.

nlist3 o= pl]

Ageretioig (el e list3 is an empty list.

(]

nlist4 o= n+nblistp()

kprintp(nlist4p) Another way to create an
empty list.

(]

Lists can be indexed and sliced in the same way as strings, using square brackets.

nprimes o= p[l+m+mi2p, 1l+m+mi3p, l+m+mibp, l+m+mi7p, l+m+millp, l+m+mil3p, l+m+m
nprimesp [1+m+mi1p] Access the element at index 1

(indexing starts with 0).
3

nprimesp [1+m+mi3p:] List slicing, start at position 3,

[7, 11, 13, 17] through to the end.

20

CHAPTER 2. PROGRAMMING PYTHON 2.8. LISTS

nprimesp[:1+m+mi3p] List slicing, start at the begin-

[2. 3. 5] ning, end at position 2.

nprimesp [1+m+mi2p:1+m+niSp] List slicing, start at position 2,

[5, 7, 11] end at position 4.

nprimespl[::ol+m+milp]
One way to reverse a list.
(17, 13, 11, 7, 5, 3, 2]

List elements can be changed, added, and deleted, modifying an existing list.

nmylist o= p[l+s+s2ap, l+s+s2bp]
nmylisto.nappendp (1l+s+s2cp)

e G e append adds an element to

the end of a list.

[uau "b" "C"]

kdelp(nmylistp [1+m+milp])
kprintp(nmylistp) del deletes an element from a

list.
[uau s "C"]

nmylisto.ninsertp(l+m+milp, l+s+s2dp)

kprintp(nmylistp) insert inserts an element at a
given position.

[nau’ "d", "C"]

nmylistp[l+m+milp] o= l+s+s2e

) _ List elements can be changed
kprintp(nmylistp)

by assigning a new element at

a given index.
[nau, ||e||, "C"] g

Lists can be sorted and reversed.

nletters o= p[l+s+s2ap, l+s+s2bp, l+s+s2cp]

nletterso.nreversep() reverse changes an existing
kprintp(nlettersp) list, reversing the order of el-
ements.

["C" "b" uan]

21

CHAPTER 2. PROGRAMMING PYTHON 2.9. TUPLES

nnumbers o= p[l+m+mi2p, 1+m+milOp, 1+m+mi3p, JHp+mio6n, 1+ms %15%

. a sorte
Agereaio (s albE e eeE i (Be)) but does not modify the exist-

[2, 3, 5, 10, 26] ing list.

nnumberso.nsortp()

kprintp (nnumbersp) sort sorts a list in place, mod-
ifying the existing list.

[2, 3, 5, 10, 26]

n+nbsortedp (nnumbersp, nreverseo=n+nb+prr1.-1,%pe)reverse keyword is used to

[26. 10, 5. 3. 2] sort in descending order.

The min and max functions find the smallest and largest items in a list.

nnumbers o= p[l+m+mi2p, 1l+m+milOp, l+m+mi3p, 1l+m+mi26p, l+m+mi5p]

kprintp (n+nbminp (nnumbersp), n+nbmaxp(nnumPdAsgRy max find the small-
est and largest items.

2 26

Tuples

Tuples are containers like lists, with the difference being that they are immutable - once
defined, elements cannot be changed or added. Tuples are identified by surrounding
standard parentheses, ().

e To generate a tuple, enclose a sequence of objects (separated by commas) in standard
parentheses.

e Tuple indexing and slicing works in the same way as for lists and strings.

e It is an error to try to change a tuple element once the tuple has been created.

Tuples are simpler and more efficient than lists in terms of memory use and performance,
and are often preferred for “temporary” variables that will not need to be modified.

22

ntuplel o= p(l+s+s2ap, l+s+s2bp, l+s+s2cp)
kprintp(ntuplelp) Create a tuple using standard

parentheses.
(uau’ "b", "C")

ntuplelp [1+m+mi2p] Tuple elements can be indexed

nen Just like lists or strings.

CHAPTER 2. PROGRAMMING PYTHON 2.10. SETS

ntuplolp(Tininilp-] Slicing works the same way for

("pr . mem) tuples as for lists or strings.

Any comma-separated sequence of values defines a tuple, which can be used to assign
values to multiple variables at a time.

ntuple2 o= l+m+milp, l+m+mi2p, l+m+mi3

kprintp(ntuple2p) A comma-separated sequence
of values defines a tuple.

(1, 2, 3)

p(nxp, nyp) o= p(l+m+milOp, 1l+m+mi20p)
kprintp(l+s+s2x =p, nxp)

i The variables on the left-hand
kprintp(l+s+s2y =p, nyp)

side are assigned to the values
on the right.

x = 10
y = 20
SED, Wb 6= pllimatizy, lom i) The parentheses are not
e (e, o) strictly necessary, and can be
5 4 discarded.

Sets

Sets are containers with the same meaning they do in mathematics - unordered collections

of

23

items with no duplicates. Sets are identified by surrounding curly brackets, {}.

e To generate a set, enclose a sequence of objects (separated by commas) in curly
brackets.

e Duplicates will be removed when creating a set or operating on existing sets.

e Sets can be used instead of lists when we know that each element is unique and
immutable (unchanging).

nmyset o= pl+m+milp, l+m+mi2p, l+m+mi3p
kprintp (nmysetp) Sets are created using curly

brackets.
set([1, 2, 3])

nmyset o= n+nbsetp([l+m+milp, l+m+mi2p, l+m+mi3p, l+m+mi2p])
kprintp (nmysetp) Creating a set from a list (note

that duplicates are removed).
set([1, 2, 3])

CHAPTER 2. PROGRAMMING PYTHON

2.11. DICTIONARIES

kprintp(n+nbsetp())

set([1)

set ([]) creates an empty set.

The standard mathematical operations for sets are all built into Python.

nsetl o= pl+m+milp, l+m+mi2p, l+m+mi3p
nset2 o= pl+m+mi3p, l+m+midp, l+m+mibSp

l+m+mil o+owin nsetl
True

nsetl o| nset2

{1, 2, 3, 4, 5}
nsetl o nset?2

{3}

nsetl o nset?2

{1, 2}

nsetl o nset2

{1, 2, 4, 5}

nsetl o= nset?2

False

Dictionaries

Create 2 sets.

in tests for set membership.

Set union (the union operator
can also be used).

Set intersection (can also use
the intersection operator).

Set difference (can also use the
difference operator).

Symmetric difference (can
also use the symmet-
ric_difference operator).

Test if one set is a subset of
another (can also use the is-
subset operator).

Dictionaries are containers where items are accessed by a key. This makes them different
from sequence type objects such as strings, lists, and tuples, where items are accessed by

position.

e To generate a dictionary, enclose a sequence of key:value pairs (separated by

commas) in curly brackets.

e The key can be any immutable object - a number, string, or tuple.

24

CHAPTER 2. PROGRAMMING PYTHON

2.11.

25

e New dictionary elements can be added, and existing ones can be changed, by using

an assignment statement.

e Order is not preserved in a dictionary, so printing a dictionary will not necessarily
print items in the same order that they were added.

ndictl o= pl+s+s2xp:1l+m+milp, l+s+s2yp:l+m+mi2p, l+s+s2zp:l+m+mi3p

kprintp(ndictip)

{"x": 1, "y": 2, "z": 3}
ndictlp[1l+s+s2yp]

2

ndictlp[l+s+s2yp] o= 1l+m+mil0
kprintp (nmydictp)

{an: 1, nyu: 10, N, 3}

ndictlp[l+s+s2wp] o= 1l+m+miO
kprintp(nmydictp)

{"x":

1, llyH: 10’ "Z": 3, ”W": 0}

ndictlo.ngetp(l+s+s2ap)

ndictlo.ngetp(l+s+s2ap, l+m+mi42p)

42
ndict2 o= p
kprintp(ndict2p)

{}

ndict3 o= n+nbdictp()
kprintp(ndict3p)

{}

Note the colon in the
key:value pairs.

Dictionary values are accessed
using the keys

Dictionary values can be
changed using the =
assignment operator.

New key:value pairs can be
assigned using the “=" assign-
ment operator.

get returns None if the key
does not exist.

get can also return a default
value.

Creating an empty dictionary.

Another way to create an
empty dictionary.

It is an error to attempt to access a dictionary using a key that does not exist.
This can be avoided by using the get method, which returns a default value if

the key is not found.

DICTIONARIES

CHAPTER 2. PROGRAMMING PYTHON 2.12. BOOLEAN EXPRESSIONS

Boolean Expressions

Boolean expressions are statements that either evaluate to True or False. An important
use of these expressions is for tests in conditional code that only executes if some condition
is met. Examples of Boolean expressions include the standard comparison operators below.

1+m+mi5 o== 1+m+mib
Check for equality.
True

1+m+mib5 o!= 1+m+mib5
Check for inequality,
False

1+m+mi3 o 1+m+mi?2
Less than.
False

1+m+mi3 o= 1l+m+mi3
Less than or equals.
True

LIStE2e © LAEeieds Strings are compared by lexi-

e cographic (dictionary) order.

Note that any empty container evaluates to False in a Boolean expression. Examples
include empty strings ("), lists ([]), and dictionaries ({}).

|$ Statements

Python if statements provide a way to execute a block of code only if some condition is
True.

if statement

kif onconditionop:
oncode nto nexecute nwhen ncondition n+nb+bpTrueo
onfollowing ncodeo

Note that:

e (condition) is a Boolean expression, which must evaluate to True or False.
e (condition) must be followed by a colon, :.

e The block of code to execute if (condition) is True starts on the next line, and must
be indented.

e The convention in Python is that code blocks are indented with 4 spaces.

26

CHAPTER 2. PROGRAMMING PYTHON 2.13. IF STATEMENTS

e The block of code to execute is finished by de-indenting back to the previous level.

k+knfrom n+nnmath k+knimport o
kif npi o nep: The block of code following
kprintp(1+s+s2Pi is bigger than el!p) the if statement only executes
if the condition is met.
Pi is bigger than e!

An else statement can be added after an if statement is complete. This will be followed
by the code to execute if the condition is False.

if-else statement

kif onconditionop:
oncode nto nexecute nwhen ncondition n+nb+bpTrueo

kelsep:
oncode nto nexecute nwhen ncondition n+nb+bpFalseo

onfollowing ncodeo
The following example illustrates an if-else statement.

nxp, ny o= l+m+mi2o**1+m+mi3p, l+m+mi3o**1+m+mi2

kif nx o nyp:
kprintp(l+s+s2x yp) The block of code following
kelsep: the else statement executes if
kprintp(l+s+s2x = yp) the condition is not met.
x <y

Multiple elif statements (short for else-if) can be added to create a series of conditions
that are tested in turn until one succeeds. Each elif must also be followed by a condition
and a colon.

elif statement

kif oncondition l+m+milop:

oncode nto nexecute nwhen ncondition l+m+mil n+nb+bpTrueo
kelif oncondition l+m+mi2op:

oncode nto nexecute nwhen ncondition l+m+mi2 n+nb+bpTrueo

kelsep:
oncode nto nexecute kif nneither ncondition o+owis n+nb+bpTrueo

onfollowing ncodeo

The following example illustrates a series of conditions being tested.

27

CHAPTER 2. PROGRAMMING PYTHON 2.14. CONDITIONAL EXPRESSIONS

nscore o= 1+m+mi88
kif nscore o= 1+m+mi90p:
kprintp(1l+s+s2Ap)
kelif nscore o= 1+m+mi80p:
kprintp(1+s+s2Bp)
kelif nscore o= 1l+m+mi70p:
kprintp(1+s+s2Cp)
kelif nscore o= 1+m+mi60p:
kprintp(1l+s+s2Dp)
kelsep:
kprintp(1l+s+s2Fp)

Only the first two conditions
are tested - the rest are
skipped since the second con-
dition is True.

Conditional Expressions

It often happens that we want to assign a variable name some value if a condition is True,
and another value if a condition is False. Using an if statement, we would have:

kif onconditionop:

nx o= ontruevalueo
kelsep:

nx o= onfalsevalueo

Python provides an elegant way to do the same thing in a single line using a conditional
expression.

Conditional expression

nx o= ontruevalueo kif onconditiono kelse onfalsevalueo

An example is given below.

nx o= l+m+mi2?2

nparity o= l+s+s20dd kif nx o l+mtmi2 kelsh isiiHefeft 2 returms the
kprintp(nxp, l+s+s2hasp, nparityp 1+s+32prerq,€m er when x is divided by
’ ’ ’ % IPy nonzero value evalu-

22 has even parity ates as True.

For Loops

Python for loops provide a way to iterate (loop) over the items in a list, string, tuple, or
any other iterable object, executing a block of code on each pass through the loop.

28

CHAPTER 2. PROGRAMMING PYTHON 2.15. FOR LOOPS

for loop

kfor oniteration nvariablep(nsp)o o+owin oniterableop:
oncode nto nexecute neach ntimeo
onfollowing ncodeo

Note that:

e The for statement must be followed by a colon, :.

e One or more iteration variables are bound to the values in (iterable) on successive
passes through the loop.

e The block of code to execute each time through the loop starts on the next line, and
must be indented.

e This block of code is finished by de-indenting back to the previous level.

Sequence objects, such as strings, lists and tuples, can be iterated over as follows.

kfor ni o+owin p[l+m+mi2p, l+m+midp, l+m+mi6p]:

kprintp(nip) Iterate over the elements of a

list. The iteration variable i

2 gets bound to each element in
4 turn.

6

kfor nchar o+owin l+s+s2abcp:
kprintp(ncharp) Iterate over the characters in a
string. The iteration variable
a char gets bound to each char-
acter in turn.

kfor nip, nchar o+owin n+nbenumeratep(l+s+s2abcp):

kprintp(nip, ncharp) enumerate allows an iteration
variable to be bound to the in-
dex of each item, as well as to
the item itself.

N — O
o T p

The range function generates integers in a given range. It is often used inside a for loop
to iterate over some sequence of integers.

e The start, stop and step parameters to range are similar to those used to slice
lists and strings.

e Integers are only generated by range as needed, rather than as a list.

29

CHAPTER 2. PROGRAMMING PYTHON

2.15. FOR LOOPS

kfor ni o+owin n+nbrangep(1+m+mi3p) :

kprintp(nip) range(n) generates n consec-
0 utive integers, starting at 0
1 and ending at n - 1.
2

nteens o= nt+nbrangep(l+m+mil3p, l+m+mi20p)

range(start, sto enerates
kprintp(n+nblistp(nteensp)) ge(P) &

consecutive integers, from

[13, 14, 15, 16, 17, 18, 19] start to stop - 1.

nevens o= n+nbrangep(l+m+miOp, l+m+mi9p, lﬁnh-lémjt%}al)d step argument to

kprintp(n+nblistp(nevensp)) range specifies the increment

[0, 2, 4, 6, 8] from one integer to the next.

kfor ni o+owin n+nbrangep(l+m+miSp, l+m+miOp, ol+m+milp):
kprintp(nip)

range can also count back-
wards using a negative step
size.

=N W O

ntotal o= 1l+m+miO
kfor ni o+owin n+nbrangep(l+m+milp, l+m+mi6p):
ntotal o+= ni

. Sum the numbers from 1 to 5.
kprintp(ntotalp)

15

n+nbsump (n+nbrangep (1+m+milp, l+m+mi6p)) A, iher (simpler) way to sum

15 the numbers in a given range.

Dictionary elements consist of key:value pairs. When iterated over, variables can be bound

to

30

the key, the value, or both.

nmydict o= pl+s+s2xp:l+m+milp, l+s+s2yp:l+m+mi2p, l+s+s2zp:l+m+mi3p

Leteit Elsyy OVOELL DujesleiEp: Iteration over a dictionary

kprintp (nkeyp) binds to the key (note that or-
y der is not preserved in a dictio-
" nary).
4

CHAPTER 2. PROGRAMMING PYTHON 2.16. WHILE LOOPS

kfor nvalue o+owin nmydicto.nvaluesp():

kprintp (nvaluep) Use values to iterate over the
5 dictionary values rather than
1 the keys.
3

kfor nkeyp, nvalue o+owin nmydicto.nitemsp():

kprintp(nkeyp, nvaluep) Use items to iterate over the

dictionary keys and values to-
gether.

N X<
w = N

We can also iterate in parallel over multiple lists of equal length by using zip. This
generates a sequence of tuples, with one element of each tuple drawn from each list.

ncourses o= p[l+m+mil4lp, 1l+m+mil42p, 1+m+mi337p]
zip rses, -ranks) generates
nranks o= p[l+s+s2goodp, l+s+s2betterp, 1+s estIp]
. . a sequence of tuples. Each
nzipped o= n+nbzipp(ncoursesp, nranksp)

. : . tuple contains one course and
+
sy el R e pipCelo)) one rank, with the tuples in

[(141, "good"), (142, "better") the same order as the list el-
(337, "best")] ements.

kfor ncoursep, nrank o+owin nzippedp:

kprintp(ncoursep, nrankp) Multiple iteration variables can

be bound at each iteration of

141
good a loop.

142 better
337 best!

While Loops
Python while loops execute a block of code repeatedly as long as some condition is met.

while loop

kwhile onconditionop:
oncode nto nexecute nrepeatedlyo
onfollowing ncodeo

Note that for the loop to terminate, the code must change some part of the (condition)
so that it eventually returns False.

31

CHAPTER 2. PROGRAMMING PYTHON 2.17. BREAK AND CONTINUE

ni o= l+m+mi3

kwhile ni o l+m+miOp: The variable i is printed while
kprintp(nip) it remains greater than Zzero.
ni o= l+m+mil The code inside the loop must
change the value of i to ensure
3 that the loop eventually termi-
2 nates.
1

Break and Continue

Sometimes we need to end a loop early, either by ending just the current iteration, or by
quitting the whole loop. The statements break and continue provide a way to do this.

e To end the loop completely and jump to the following code, use the break statement.

e To end the current iteration and skip to the next item in the loop, use the continue
statement. This can often help to avoid nested if-else statements.

nvowels o= l+s+s2aeiou
kfor nchar o+owin l+s+s2bewgfiagfp:

kif nchar o+owin nvowelsp: The for loop is terminated by
kprintp(1+s+s2First vowel isp, nchhreak once the first vowel is
kbreak found.

First vowel is e

ntotal o= 1+m+miO
kfor nchar o+owin l+s+s2bewgfiagfp:

kif nchar o+owin nvowelsp: Skip over the vowels using

kcontinue . .
. continue, and just count the
ntotal o+= 1+m+mil
consonants.

kprintp(ntotalp, l+s+s2consonants foundp)

6 consonants found

Comprehensions

Often we want to create a container by modifying and filtering the elements of some other
container. Comprehensions provide an elegant way to do this, similar to mathematical
set-builder notation. For list comprehensions, the syntax is:

List comprehension

plonexpressiono kfor onvariableso o+owin oncontainero kif onconditionop]

32

CHAPTER 2. PROGRAMMING PYTHON 2.19. GENERATOR EXPRESSIONS

The code in (expression) is evaluated for each item in the (container), and the result
becomes an element of the new list. The (condition) does not have to be present but, if
it is, only elements which satisfy the condition become incorporated into the new list.

io**]1+m+mi i o+owi + +m+mi
plnio**1+m+mi2 kfor ni o+owin n nbrangep(lilg*lglég);va/uated for every

[0, 1, 4, 9, 16] item 4 in the list.

p[nd kfor nd o+owin n+nbrangep (l+m+milp, 1+b}wsds) okif -lemAmefenoentd o== 1l+m+miOp]
passing the test 6 7 d == 0
(1, 2, 3, 6] are included.

We can also use a dictionary comprehension to create a dictionary without needing to
repeatedly add key:value pairs.

Dictionary comprehension

pnkeyp:nvalue kfor onvariableso o+owin oncontainero kif onconditionop

The following example creates a dictionary from the elements of a list.

pnip:nio**1l+m+mi2 kfor ni o+owin n+nbrangegi@ateratdgtionary from a list.
Note the key:value pairs and
{0:0, 1:1, 2:4, 3:9} surrounding curly brackets.

Generator Expressions

We often want to iterate over the elements of some sequence, but don't need to save the
sequence. In these cases, a list comprehension is an unnecessary overhead since the list
is created and saved in memory for a single use. A more efficient alternative is to use a
“generator expression”.

e Generator expressions are used like lists inside for loops.

e They don't create the entire sequence up front, so memory doesn’t need to be
allocated for all the elements.

e Instead, the current element is saved, and the next one is produced only when
requested by the loop.

Generator expressions have almost the same syntax as a list comprehension, but use
parentheses instead of square brackets.

Generator expression

p(onexpressiono kfor onvariableso o+owin oncontainero kif onconditionop)

An example is given below.

33

CHAPTER 2. PROGRAMMING PYTHON 2.20. FUNCTIONS

nsquares o= p(nio**1+m+mi2 kfor ni o+owin n+nbrangep(l+m+milp, l+m+midp))
kfor ns o+owin nsquaresp:
kprintp (nsp) The elements of squares are
generated as needed, not
saved up front.

© e

Functions

Functions provide a way to reuse a block of code by giving it a name. The code can then
be executed just by calling the function name, with the option of passing in additional
data to be used inside the function. The variables used to identify this additional data are
the function parameters, and the particular values passed in when the function is called
are the function arguments.

e Functions take a list of required arguments, identified by position.

e Functions can take keyword arguments, identified by name. These can also be
assigned default values in the function definition to use if no values are passed in.

e Functions can return one or more values using the return statement. Note that
functions do not have to return a value - they could just perform some action
instead. A function stops executing as soon as a return statement is encountered.

e An optional documentation string can be added at the start of the function (before
the code) to describe what the function does. This string is usually enclosed in triple
quotes.

Functions are defined in Python using the def statement, with the syntax:

def statement

kdef errn+nfnameo p(onparametersop):
l+s+s2documentation string
oncodeo

The arguments to a function can be specified by position, keyword, or some combination
of both. Some examples using just positional arguments are as follows.

kdef n+nfsquarep(nxp):
kreturn nxo**l+m+mi2

. . The function exits as soon as
kprintp(nsquarep (1l+m+mi3p))

the return statement is called

9

34

CHAPTER 2. PROGRAMMING PYTHON 2.20. FUNCTIONS

kdef n+nfmultiplyp(nxp, nyp):
l+s+sdReturn the product xy
kreturn nxo*ny

kprintp(nmultiplyp(l+m+mi3p, l+m+mi2p))

Parameters are bound to input
data in the order given. The
documentation string is placed
after the colon and before the

6 code

kdef n+nfminmaxp(ndatap):

kreturn n+nbminp(ndatap), n+nbmaxp(ndam§3/)“ le values are returned as
kprintp (nminmaxp([1+m+milp, 1l+m+mi3p, L+m+ns Lp1 1+m+mi2p, 1+m+milOp]))

(1, 10)

Using keyword arguments allows default values to be assigned. This is particularly useful
when a function can be called with many different options, and avoids having to call
functions with a long list of arguments.

e Keyword arguments are specified using key=default in place of a positional argu-
ment.

e Using keyword instead of positional arguments means we don't need to remember
the order of arguments, and allows the defaults to be used most of the time.

e Positional and keyword arguments can be used in the same function, as long as the
positional arguments come first.

kdef n+nfcloseenoughp(nxp, nyp, ntoleranceo=.l+m+milp)

kreturn n+nbabsp(nx o nyp) o= ntolerandde tolerance argument is 0.1
by default.

ncloseenoughp(l+m+milp, l+m+mf1l.05p) The default tolerance of 0.1 is

used in this case.
True

ncloseenoughp (l+m+milp, l+m+mfl.05p, ntolexgncgear, ks 7@99&&) is over-
ridden by the value of 0.01.

False

If the number of arguments is not known in advance, functions can be defined to take a
variable number of positional arguments and/or a variable number of keyword arguments.
We are unlikely to be using these options ourselves, although they occur frequently in the
documentation for Matplotlib.

e The positional arguments are usually specified as *args and are available as a tuple.
Individual positional arguments can then be accessed by indexing into the tuple by

position.

35

CHAPTER 2. PROGRAMMING PYTHON 2.21. ERROR HANDLING WITH TRY-EXCEPT

e The keyword arguments are usually specified as **kwargs and are available as a

dictionary. Individual keyword arguments can then be accessed by indexing into this
dictionary by key.

We may on occasion need to use a simple function in a single place, and not want to
have to define and name a separate function for this purpose. In this case we can define
an anonymous or lambda function just in the place where it is needed. The syntax for a
lambda function is:

lambda statement

klambda onargumentso p: oncodeo

The lambda statement returns an unnamed function which takes the arguments given
before the colon, and returns the result of executing the code after the colon. Typical
uses for lambda functions are where one function needs to be passed in as an argument
to a different function.

nages o= p[l+m+mi21p, l+m+mil9p, l+m+mi98p]7-he key argument to sorted
nnames o= p[l+s+s2Brucep, l+s+s2Sheilap, 17, ;s[?sAgl&er e data based on
ndata o= n+nbzipp(nagesp, nnamesp) the first list.. Using a lambda
n+nbsortedp(ndatap, nkeyo=klambda nx p: nxm:,}g- Jﬁljlrgggr?s not having to

define a separate function for

1 "Sheila" 21 "B " . .
[(19, "Sheila"), (21, "Bruce"), (98, this simple task.

"Adam")]

Error Handlina with Try-Except

If an invalid operation is attempted when running code then an error is usually gener-
ated. Examples include dividing by zero, indexing past the end of a sequence, creating a
floating point number that is too large, or adding two arrays of different sizes. In these
circumstances, the code typically breaks at the point of the invalid operation.

A try-except statement can be used to handle errors more deliberately than having the
code break. This allows us to first try to execute some code that we're not sure will work,
and then execute some other code if it doesn't.

try-except statement

ktryp:
oncode nto ktry nto nexecuteo
kexceptp:
oncode nto nexecute kif nan nerror o+owis ngeneratedo

Errors typically have a type associated with them, which specifies the kind of error that has
occurred. Examples include ZeroDivisionError, IndexError, OverflowError, and ValueError.
The “except” part of a try-except statement can be specialized to handle these different
kinds of error.

36

CHAPTER 2. PROGRAMMING PYTHON 2.22. READING AND WRITING FILES

try-except statement with named error types

ktryp:
oncode nto ktry nto nexecuteo
kexcept nErrorTypep:
oncode nto nexecute kif nan nerror o+owis ngeneratedo

The following example shows how to gracefully handle an error resulting from division by
zero.

kfor ni o+owin n+nbrangep(ol+m+mi2p,1+m+mi%):

: . . e number 10 is being di-
kprintp(l+minillo/nip) vided by a sequence ofé;nte-

5.0 gers, one of which happens to
-10.0 be zero. Without error han-

Traceback (most recent call last): dling, th? code breaks when
File "(stdin)", line 2, in (module) tﬁe z€ro /.s.encoum:“’er.ed a{nda
ZeroDivisionError: division by zero ZeroDivisionError” is raised.

kfor ni o+owin n+nbrangep(ol+m+mi2p,l+m+mi3p) :
ktryp:
kprintp(1+m+milOo/nip)
kexcept ntneZeroDivisionErrorp: Using a try-except statement
kprintp(l+s+s2Cant divide by zero!R) pandle the ZeroDivision-

Error allows the loop to run to

~5.0 completion without breaking.

-10.0

Can’t divide by zero!
10.0

5.0

R.eadina and Wiriting Files

Several reports for this class will involve reading and analyzing data that has been stored
in a file. This typically involves three steps:

e Open the file using the open function. This returns a file handle - an object we then
use to access the text that the file contains.

e Process the file, either line-by-line, or as a single text string.

e Close the file. This is done using the close function.
It is possible to read in the entire contents of a file in one go using the functions read
and readlines. However, we may not need to read the entire contents into memory if we

are dealing with a large file and just want to extract some information from the text. In
this case, it is preferable to iterate over the lines of text that the file contains.

37

CHAPTER 2. PROGRAMMING PYTHON

2.22. READING AND WRITING FILES

The following examples assume that a file named " firstnames.txt” has been created in
the directory that Python was started in. This file contains the three lines:

" firstnames.txt"”

Leonard
Penny
Sheldon

nf o= n+nbopenp(l+s+s2firstnames.txtp)

kfor nline o+owin nfp:
kprintp(nlinep,)

Leonard
Penny
Sheldon

nfo.nclosep()

nf o= n+nbopenp(l+s+s2firstnames.txtp)
nfirstnames o= nfo.nreadp()
nfo.nclosep()

nfirstnames

"Leonard\nPenny\nSheldon\n"

kprintp(nfirstnamesp)

Leonard
Penny
Sheldon

nf o= n+nbopenp(l+s+s2firstnames.txtp)
ndata o= nfo.nreadlinesp()
nfo.nclosep()

ndata

["Leonard\n", "Penny\n", "Sheldon\n"]

Open "firstnames.txt” for
reading using open.

The lines of an open file
can be iterated over in a for
loop. Note the use of a "
in print (line,), since each
line already ends with a new

line.

Close
close.

"firstnames.txt” using

read reads in the whole file
as a single string. The new-
lines at the end of each line
are shown as “\n" characters.

Printing a string causes the
newline characters “\n" to be
outputted as new lines.

readlines reads in the whole
file as a list, with each line as
a separate string.

Files can also be opened for writing using the "w" option to open.

38

CHAPTER 2. PROGRAMMING PYTHON 2.23. COMMENTS

ndata o= p[l+s+s2Hofstadterp, l+s+s27p, l+s+s2Cooperp]
noutputfile o= n+nbopenp(l+s+s2names.txtp, VWate- 26 string in the data

kfor nname o+owin ndatap: list to a separate line in the
noutputfileo.nwritep(nname o+ l+s+s21+§serVate-gbph new lines are
noutputfileo.nclosep() not automatically included, so

they need to be added.

nf o= n+nbopenp(l+s+s2names.txtp)

nlastnames o= nfo.nreadp()

nfo.nclosep()

kprintp(nlastnamesp) Check that the "names.txt”
file has been written correctly.

Hofstadter
?

Cooper

Comments

Comments are text that is included in the code but not executed. They are used to
document and explain what the code is doing. Python allows two forms of comment.

39

e A hash symbol # means that the rest of the line is a comment, and is not to be
executed.

e A documentation string is surrounded by triple quotes
quotes is ignored.

Everything inside the

c+cl This is a singleline comment
No need to comment a com-

ment.

l+s+sdThis is a documentation string.

NumPy

NumPy (Numerical Python) is the fundamental package for scientific computing with
Python. It defines a new kind of container - the ndarray (usually just referred to as
an array) - that supports fast and efficient computation. NumPy also defines the basic
routines for accessing and manipulating these arrays.

Arrays have the following properties (among others):

e A shape, which is a tuple of integers. The number of integers is the number of
dimensions in the array, and the integers specify the size of each dimension.

e A dtype (data-type), which specifies the type of the objects stored in the array.

In NumPy, the dimensions of an array are referred to as axes. An example of an array
with dtype int and shape ((4, 5)) is shown below. The first axis has four elements, each
of which is a one-dimensional array with 5 elements.

[0o 1 2 3 4
9

[]
[5 6 7 8]
[10 11 12 13 14 |
[]

15 16 17 18 19 |]

The main differences between NumPy arrays and Python lists are:

e The objects in a NumPy array must all be of the same type - booleans, integers,
floats, complex numbers or strings.

e The size of an array is fixed at creation, and can't be changed later.
e Arrays can be multi-dimensional.

e Mathematical operations can be applied directly to arrays. When this is done they
are applied elementwise to the array, generating another array as output. This is
much faster than iterating over a list.

e Indexing for arrays is more powerful than that for lists, and includes indexing using
integer and boolean arrays.

e Slicing an array produces a view of the original array, not a copy. Modifying this
view will change the original array.

NumPy is well documented online, with a standard tutorial and good introductory tutorial
available.

40

http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://www.engr.ucsb.edu/~shell/che210d/numpy.pdf

CHAPTER 3. NUMPY 3.1. ARRAY CREATION

Array Creation

NumPy arrays can be created:

e From a list. The elements of the list need to all be of the same type, or of a kind
that can all be cast to the same type. For example, a list consisting of both integers
and floats will generate an array of floats, since the integers can all be converted to

floats.

e According to a given shape. The array will be initialized differently depending on the
function used.

e From another array. The new array will be of the same shape as the existing array,
and could either be a copy, or initialized with some other values.

e As a result of an operation on other arrays. The standard mathematical operators
can all be applied directly to arrays. The result is an array of the same shape where
the operation has been performed separately on corresponding elements.

The following functions are the main ones we use in this class.

array
linspace
arange
empty
zeros
ones
empty_like
zeros_like
ones_like

copy
meshgrid

Create an array from a list.

Return an array of evenly spaced numbers over a specified interval.

Return an array of evenly spaced integers within a given interval.

Return an a new array of a given shape and type, without initializing entries.
Return an a new array of a given shape and type, filled with zeros.

Return an a new array of a given shape and type, filled with ones.

Return a new array with the same shape and type as a given array.

Return an array of zeros with the same shape and type as a given array.
Return an array of ones with the same shape and type as a given array.
Return an array copy of the given object.

Returns a pair of 2D x and y grid arrays from 1D x and y coordinate arrays.

These functions are illustrated below.

k+knfrom n+nnnumpy k+knimport o*
nx o= narrayp([l+m+milp, l+m+mi2p, 1l+m+mi3pivay(object) creates an array
kprintp (nxp) from a list - note that arrays

[1 2 3]

are printed without commas.

nx o= narrayp([l+m+milp, l+m+mi2p, 1+m+mi3B;lr,ayn(<(i)gyé3&o=gﬂ;1pbel}locarié'gt)es

kprintp (nxp)

[1. 2.

41

an array of type dtype - the

3.] integers are now cast to floats.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html#numpy.arange
http://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty
http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html#numpy.zeros
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html#numpy.ones
http://docs.scipy.org/doc/numpy/reference/generated/numpy.empty_like.html#numpy.empty_like
http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros_like.html#numpy.zeros_like
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones_like.html#numpy.ones_like
http://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html#numpy.copy
http://docs.scipy.org/doc/numpy/reference/generated/numpy.meshgrid.html

CHAPTER 3. NUMPY 3.1. ARRAY CREATION

nx o= nlinspacep(l+m+miOp, l+m+milp, 1+m+mii?|32)ace(start

t ’
kprintp (nxp) stop, num)

returns num equally spaced
0. 0.20.40.60.81.] points, including endpoints.

nx o= narangep (1+m+mi5p)

- arange returns an array of
kprintp (nxp)

evenly spaced values within a
[0 12 3 4] given interval.

The functions empty, zeros and ones all take a shape argument and create an array of
that shape, initialized as appropriate.

nx o= nemptyp((l+m+mi3p, l+m+mi2p))

gpeinlEp(age) empty(shape) returns an ar-
[[6.93946206e-310 6.93946206e-310] ;";/y dOf izape bShape' initially
[6.36598737e-314 6.36598737e-314] yiied with garbage.
[6.36598737e-314 0.00000000e+000]]

= +m+mi +m+mi
253 O AT QR oy k), zeros(shape) returns an array

kprintp (nxp) of shape shape filled with ze-
[[0. 0. 0.] ros - note the default type is
[0. 0. 0.]] float.

nx o= nonesp((l+m+mi2p, 1l+m+mi3p), ndtypeog -E%?s]ﬁla?e) dtype) returns an

kprintp (nxp) array of shape shape filled with
[[11 1] ones - using dtype:int casts
[11 1]] the elements to type int.

Arrays can be created directly from other arrays using empty_like, zeros_like, ones_like
and copy.

nx o= narangep(l+m+mi3p, ndtypeo=n+nbfloatp)
kprintp (nxp) Create an array of floats using

arange.
(0. 1. 2.]

ny o= nemptylikep (nxp)

kprintp(nyp) y has the same shape as z, but

[0.00000000e+000 6.51913678e+091 is initially filled with garbage.

6.95022185e-310]

42

CHAPTER 3. NUMPY 3.1. ARRAY CREATION

ny o= nzeroslikep(nxp)
kprintp (nyp) y has the same shape as z, but

is initialized with zeros.
[0. 0. 0.]

ny o= noneslikep(nxp)
kprintp (nyp) y has the same shape as z, but

is initialized with ones.
[1. 1. 1.]

ny o= ncopyp (nxp)

kprintp (nyp) y is a copy of T - changing vy
will not change z.

(0. 1. 2.]

The function meshgrid(x, y) creates two-dimensional arrays from one-dimensional x- and
y-coordinate axes. One array contains the x-coordinates of all the points in the xy-plane
defined by these axes, and the other contains the y-coordinates.

Meshgrid

o o o
[= =
[\ [\ [\
w W W

> meshgrid
’)/0 Yo| Yo YO‘
])h Yi|¥1 Y1\
IY2 Y2| Y2 Y2\

An example is shown below.

k+knfrom n+nnnumpy k+knimport o*
nx o= narangep(l+m+midp)

ny o= narangep(l+m+mi3p)

nXp, nY o= nmeshgridp(nxp, nyp)

meshgrid creates 2D x- and
y- coordinate arrays from 1D
x- and y- coordinate arrays.

43

CHAPTER 3. NUMPY 3.2. ARRAY PROPERTIES

kprintp (nXp)
X is a 2D array containing just
[[0 12 3] the x-coordinates of points in
[0 1 2 3] the xy plane.
[0 1 2 3]]
kprintp(nYp)
Y is a 2D array containing just
([0 0 0 0] the y-coordinates of points in
(111 1] the xy plane.
[2 2 2 2]]

The function meshgrid is often used when we want to apply a function of two variables
to points in the x-y plane. The following example uses the arrays X and Y above.

kdef n+nfdistancep(nxp, nyp):

kreturn n+nbroundp (nsqrtp(nxo**1l+m+mi?2 95 I%Zﬁé‘?%ﬁma“i‘&%?.?;e Iﬂhrrcll-gmiiip)

the distance of a point (x, y)

A e e eEp D, D)) from the origin, rounded to 3

[[0. 1. 2. 3.] ;lecimg/ places by the around
[1. 1.414 2.236 3.162] unction.
[2. 2.236 2.828 3.606]]

Array Properties
The properties of an array can be accessed as follows.

nx o= narangep (l+m+mi6p)

n+nbtypep (nxp) x is of type numpy.ndarray.

numpy .ndarray

nxo.ndtype dtype returns the element

dtype("int64") type - a 64-bit integer.

nxo.nshape
P x is a I-dimensional array with

6.) 6 elements in the first axis.

It is possible to create an array from the elements of an existing array, but with the
properties changed. The number of dimensions and size of each dimension can be changed
using reshape (as long as the total number of elements is the same), and the dtype can
be changed using astype.

44

CHAPTER 3. NUMPY

3.3. ARRAY OPERATIONS

nx o= narangep(1+m+m16p)o.nreshapep((1+m+m}ga1al}éfmc+ljg3§é)$)3 view of an

kprintp (nxp)

[[0 1 2]
[3 4 5]]

ny o= nxo.nastypep(n+nbfloatp)

kprintp (nyp)
[[0. 1. 2.]
[3. 4. 5.]1]

Array Operations

array with the same number
of elements, but a different
shape.

astype casts the integers in x
to floats in y. This creates a
new array - modifying it will
not alter the original.

Array arithmetic is done on an element-by-element basis. Operations are applied to every
element of an array, with each result becoming an element in a new array.

45

k+knfrom n+nnnumpy k+knimport o*

nx o= narangep(l+m+midp)
kprintp (nxp)

[0 12 3]
kprintp(nx o+ l+m+milp)
[1 2 3 4]
kprintp(nx ox l+m+mi2p)
[0 2 4 6]
kprintp(nx o** l+m+mi2p)

[0 14 9]

Create an array of consecutive
integers using arange.

1 is added to every element of
the array z.

Every element of the array z is
multiplied by 2.

Every element of the array z is
squared.

ny o= narrayp([l+m+mi3p, l+m+mi2p, l+m+mib5p, l+m+milp])

kprintp (nxp)
kprintp (nyp)
kprintp(nx o+ nyp)

[0 12 3]
[325 1]
[3 37 4]

Create a second array

The elements of = are added
to the corresponding elements
of y on an element-by-element
basis.

CHAPTER 3. NUMPY 3.3. ARRAY OPERATIONS

kprintp (nxo**nyp) Exponentiation is done using
corresponding elements of the
[0 132 3] arrays = and y.

Comparison operators and other Boolean expressions are also applied on an element-by-
element basis. The Boolean expression is applied to every element of the array, with each
result becoming an element in a new boolean array.

nx o= narangep(l+m+mi5p)

kprintp (nxp) The Boolean expression is
kprintp(nx o 1+m+mi2 o== 1+m+miOp) evaluated for each element

separately, resulting in an ar-
[0 12 3 4] ray of booleans.

[True False True False True]

nx o= narangep(l+m+midp)
ny o= narrayp([l+m+mi3p, l+m+mi2p, l+m+mib5p, l+m+milp])
kprintp (nxp)
kprintp (nyp)
kprintp(nx o nyp)

The comparison is done on an
elementwise basis between ele-
ments of arrays x amd y. The

[0 12 3] result is an array of booleans.

[3 25 1]
[True True True False]

NumPy contains vectorized versions of all the basic mathematical functions. Note that
they need to be imported before we can use them. Some examples are given below.

nx o= narangep (1+m+mi3p)

kprintp (nxp) Create an array.
[0 1 2]
kprintp(nsinp(nxp)) sin is applied to each element,

[0. 0.84147098 0.90929743] to create a new array.

gprstinip(acsggp (i) exp is the exponential opera-

[1. 2.71828183 7.3890561] tor.

nx o= nrandomo.nrandintp(l+m+mib5p, nsizeo=p§&a-8-ﬁq1.jrg3d]rﬁp+rpm')’g an

kprintp (nxp) array of a given size filled

ith / I inte-

[[1 4 3] W;is frrz;dgm i)\//ezerzzte;/ inte
[2 2 3]] g g ge.

46

CHAPTER 3. NUMPY

3.4. ARRAY INDEXING AND SLICING

kprintp (nxo.

14

kprintp (nxo.
kprintp (nxo.

[1 2 3]
[1 2]

kprintp(nxo.
15

kprintp(nxo.

[3 6 6]

nminp (), nxo.nmaxp())

nminp (naxiso=1+m+miOp))
nminp (naxiso=l+m+milp))

nsump())

nsump (naxiso=1+m+miOp))

Array Indexing and Slicing

min and max calculate the
minimum and maximum val-
ues across the entire array.

The axis argument finds each
minimum along a given axis.
The resulting array is the
shape of the original array, but
with the given axis removed.

sum sums all the elements of
an array.

Providing the axis argument
sums along the given axis.

Arrays can be indexed and sliced using square brackets in the same way as lists.

47

e An index or start:stop:step filter needs to be provided for each axis, separated

by commas.

e Indexing is zero-based, as it is with lists.

e Slicing an array produces a view of the original array, not a copy. Modifying this
view will change the original array.

k+knfrom n+nnnumpy k+knimport o*
nx o= narangep(l+m+mi20p)o.nreshapep((l+m+midp, 1l+m+mi5p))

kprintp (nxp)

[0 1 2 3 4]
[6 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]]

kprintp (nxp [1+m+milp, l1+m+mi2p])

7

kprintp(nxp[l+m+milp,:])

667 8 9]

reshape provides a fast way to
create a 2D array from a 1D
array.

Indexing is done into each axis
in order - row 1, column 2.

Slicing can be used to select
every element of the first axis.

CHAPTER 3. NUMPY 3.5. INDEXING WITH INTEGER ARRAYS

Slicing can also be used to se-
lect the first element of every
axis.

kprintp(nxp[:,l+m+milp])

[1 6 11 16]

kprintp (nxp[1+m+milp:1+m+mi3p, 1+m+milp:l+%m@g%8%%.landé?uahg‘1'3

then slice columns 1, 2 and 3

L6 7 & using 1:4.

[11 12 13]]

Indexina with Intecer Arrays

Although slicing can be used to return a subset of elements from an array, its use is
restricted to either selecting consecutive elements, or to selecting elements that are sep-
arated by the same fixed amount. We sometimes want to select instead some arbitrary
subset of an array, possibly even selecting the same element more than once. Integer array

indexing provides a way to do this.

48

e The index is itself a NumPy array of integers.

e Each integer in the index array selects a corresponding element from the target array.

e The result is an array of the same shape as the indexing array.

nx o= narangep (l+m+mi9p) o**1+m+mi?2
kprintp (nxp)

[0 1 4 9 16 25 36 49 64]

nindex o= narrayp([l+m+milp, l+m+mi3p])
kprintp(nxp[nindexp])

[1 9]

nindex o= narrayp([[l+m+mi2p, l+m+mi3p],

kprintp(nindexp)
[[2 3]
(7 2]]

kprintp (nxp [nindexp])

([4 9]
[49 4]]

First create the array using
arange, then square each el-
ement.

An array is returned contain-
ing elements from the first ar-
ray, selected according to the
integers in the second array.

he indexing array contajns in-
%gg};mt]h@ ’arleﬂLlléénc} %"Baﬁn dex
into the target array. Note
that the same elements (2, in
this case) can be selected more

than once.

When indexing using an inte-
ger array, the returned array
has the same shape as the in-
dexing array.

CHAPTER 3. NUMPY 3.6. INDEXING WITH BOOLEAN ARRAYS

Indexina with Boolean Arrays

We can also index using arrays of booleans. In this case, the indexing array acts like a
mask, filtering out only the elements in the target array that correspond to True values
in the indexing array.

nx o= narangep(l+m+mi5p)
nmask o= narrayp([n+nb+bpTruep, n+nb+bpTruep, n+nb+bpFalsep, n+nb+bpFalsep, n+nb

kpr}ntp(nxp) Only True elements in the
kprintp(nxp [nnaskp]) mask are selected.

[0 12 3 4]

[0 1 4]

A common use of this technique is to select the elements of an array that satisfy some
condition. This can be done by first applying the condition to the array to generate an
array of booleans, then using the resulting array as an index. The result is that only
elements for which the condition holds true are selected.

nx o= narangep (l+m+mi20p) index3 and indexb5 are
nindex3 o= p(nx o l+m+mi3 o== 1+m+miOp) boolean arrays containing

nindexb5 o= p(nX o 1+m+mib5 o== 1+m+m10p) True elements fOI’ the inte—
gers that are divisible by 3 and

5 respectively.

kprintp (nxp [nindex3p]) Select just the elements of x

[0 3 6 912 15 18] that are divisible by 3.

kprintp (nxp [nindex5p]) Select just the elements of x

[0 5 10 15] that are divisible by 5.

] ,] , The function logical or per-
kprintp(nxp[nlogicalorp(nindex3p, n1ndex5p}3')ms an elementwise “or”
The result is the integers di-

0O 3 5 6 9 10 12 15 18 .. .
L] visible by either 3 or 5.

The logical operators not, or and and do not get applied elementwise when
applied to NumPy arrays. The functions logical_not, logical_or and logi-
cal_and need to be used instead.

49

Matplotlig

Matplotlib is a 2D plotting library for Python. It can be used to generate graphs, his-
tograms, bar charts, contour plots, polar plots, scatter plots, and many other kinds of
mathematical graphics. The “pyplot” interface provides a MATLAB-like interface for sim-
ple plotting, and is the main one we will be using in class. The online reference provides
a full description of the available functions. A good tutorial is also available online.

The following commands are the main ones used for creating and formatting graphs.

plot Plot lines and/or markers.
show Display a figure.
title Set a title for the graph.

xlabel /ylabel ~ Set labels for the x and y axes.

xlim /ylim Get or set the range of x and y values to be displayed.

xticks/yticks Get or set the locations and labels for the tick marks on the x and y axes.
subplot Plot multiple graphs in one figure.

figure Create a new figure.

fill_between Fill the area between two curves.

legend Put a legend on the graph.

Colors, line styles, and marker styles can all be set to create customized graphs. These
are usually specified as strings, with the most frequently used options as follows.

Style options Colors
n- solid line "b" blue
"--" dashed line "g" green
n point marker "r" red
"0" circle marker "c" cyan
s square marker "m"” magenta
"4+" plus marker "y" yellow
"X x marker "k" black

X
"D" diamond marker w"' white

50

http://matplotlib.org/api/pyplot_summary.html
http://scipy-lectures.github.io/intro/matplotlib/matplotlib.html
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.title
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.xlabel
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.ylabel
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.xlim
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.ylim
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.xticks
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.yticks
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subplot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.figure
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.fill_between
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend

CHAPTER 4. MATPLOTLIB 4.1. BASIC PLOTTING

Basic Plottina

Functions can be graphed using a call to plot(x, y), followed by a call to show. Note
that:

e The x parameter contains the x-coordinates of the points to plot, and the y parameter
contains the y-coordinates.

e We need to import the required NumPy and Pylab functions for array manipulation
and plotting. If using Jupyter Notebook, this can also be done using the IPython

magic %pylab . In this case, the call to show is done for us automatically when the
cell is executed.

e The default plotting behavior is to connect the points with a blue line.
The following example plots the exponential function in the range [0, 5].

Plotting an Exponential Function

k+knfrom n+nnnumpy k+knimport o* ctcl Import everything from numpy
k+knimport n+nnpylab k+knas n+nnpl ctcl Import plotting functions from pylab
nx o= nlinspacep(l+m+miOp, l+m+mi5p) ctcl Create array of equally spaced values
nplo.nplotp(nxp, nexpp(nxp)) c+cl Plot the exponential function
nplo.nshowp () c+cl Finally, show the figure

160

140

120

100

80

60

40

20

51

CHAPTER 4. MATPLOTLIB 4.2. A MORE COMPLEX PLOTTING EXAMPLE

A More Complex Plottina Example

A range of options are available for customizing plots. These are illustrated in the example
below, which plots a sine and cosine curve on the same graph. Note that:

52

e The third argument to plot can be used to set colors, line types and marker types.

e Plot can be called multiple times, followed by a single call to show.

Plotting Two Graphs on a Single Figure

k+knfrom n+nnnumpy k+knimport o* c+tcl Imports linspace, sin, cos

k+knimport n+nnpylab k+knas n+nnpl ctcl Import plotting functions

nx o= nlinspacep(l+m+miOp, l+m+mi2o*npip, l+m+mi50p) ctcl Plot 50 points on tt

nplo.nfigurep(nfigsizeo=p(l+m+milOp,l+m+mi7p)) ctcl Set the size of the figure

nplo.nplotp(nxp, nsinp(nxp), nlabelo=l+s+slsinep) c+cl Default style is a blue line

nplo.nplotp(nxp, ncosp(nxp), l+s+slrop, nlabelo=l+s+slcosinep) c+cl Use ro for red circles

nplo.nxlabelp(l+s+slthetap) ctcl Label the xaxis

nplo.nxlimp(1l+m+miOp, l+m+mi2o*npip) c+cl Limit xaxis to this range

nticks o= p[nio*npio/l+m+mi2 kfor ni o+owin n+nbrangep(l+m+mi5p)] ctcl Locations of tic

nlabels o= p[l+s+sirOp,l+s+sirpi/2p, l+s+slrpip, c+cl Labels for the xaxis ticks
l+s+s1r3pi/2p, l+s+slr2pip] c+tcl these are LaTeX strings

nplo.nxticksp(nticksp, nlabelsp, nsizeo=l+s+sllargep) ctcl Add the xticks and labels

nplo.ntitlep(l+s+s1Sine and Cosinep) ctcl Add a title

nplo.nlegendp() ctcl Legend uses the plot labels

nplo.nshowp () c+cl Finally, show the figure

/

Sine and Cosine

= v
— sine
e e cosine

0.0f

) °

/

[) [}

-1.0 ! ®on®
0

72 ™ 372 2

CHAPTER 4. MATPLOTLIB 4.3. BAR PLOTS

Bar Plots

The function bar is used to create bar plots.

o Bars are described by their height, width, and position of the left and bottom edges.
e The width argument can be used to make bars thinner or thicker.

e The face color and edge color of the bars can be specified independently.

The following example shows a bar plot with the face color set to "c¢” (cyan) and edge
color set to "b" (blue). Labels are positioned at the centers of the bars.

Bar Plot

kt+knimport n+nnpylab k+knas n+nnpl ctcl Import plotting functions
ngrades o= p[l+s+slAp, 1l+s+s1Bp, l+s+s1Cp, l+s+s1Dp, l+s+siFp] ctcl Used to label the be
nfreqs o= p[l+m+mi30p, 1l+m+mi35p, l+m+mi20p, l+m+miiOp, l+m+mi5p] c+cl Bar height
nwidth o= 1+m+mf0.8 ctcl Relative width of each bar

nticks o= plnwidtho/l+m+mi2 o+ ni kfor ni o+owin n+nbrangep(l+m+mibp)] c+cl Ticks in center c
nplo.nbarp(n+nbrangep (1+m+mi5p) , nfreqsp, nfco=1l+s+slcp, neco=l+s+slbp) c+cl fc/ec are face/e

nplo.nxticksp(nticksp, ngradesp) ctcl Place labels for the bars
nplo.nylimp(1+m+miOp, l+m+mi4Op) ctcl Set the space at the top
nplo.ntitlep(l+s+siGrade distributionp) ctcl Add a title
nplo.nxlabelp(l+s+slGradep) c+cl Add a label for the xaxis
nplo.nylabelp(l+s+siFrequency ()p) ctcl Add a label for the yaxis
nplo.nshowp () ctcl Finally, show the figure

G

40 Grade d|§tr|but|on

~ Frequency (%)

=
)
o
w

C D

Grade<\

53

CHAPTER 4. MATPLOTLIB 4.4. POLAR PLOTS

Polar Plots

The function polar is used to create polar plots. These plot radius against angle in polar
coordinates.

e The first argument to polar is an array of angles, and the second argument the
corresponding radii.

e Colors, line types and marker types are specified in the same way as plot.

e Polar can be called multiple times, followed by a single call to show.

The following example shows a polar plot with the marker style to "d" (diamond) and the
color set to "m" (magenta).

Plotting in Polar Coordinates

k+knfrom n+nnnumpy k+knimport o* ctcl Import everything from numpy
kt+knimport n+nnpylab k+knas n+nnpl ctcl Import plotting functions from pylab

ntheta o= nlinspacep(l+m+miOp, l+m+mi2o*npip, 1l+m+milOOp) c+cl Create array of equally spacec
nr o= l+m+mi2 o+ ncosp(l+m+miS5o*nthetap) ctcl Generate radius as a function of ang]

nplo.npolarp(nthetap, nrp, nmarkero=l+s+sldp, nlso=l+s+siNonep, ncoloro=1l+s+simp)
nplo.ntitlep(l+s+siPolar plotp) ctcl Add the title
nplo.nshowp () ct+cl Finally, show the figure

Pol%plot

180°

54

CHAPTER 4. MATPLOTLIB 4.5. HISTOGRAMS

Histoarams

The function hist is used to plot histograms. These group numerical data into “bins”,
usually of equal width, in order to show how the data is distributed.

e Each bin covers a range of values, with the height of each bin indicating the number
of points falling in that range.

e The first argument is an array or sequence of arrays.
e The bins argument specifies the number of bins to use.

e The range argument specifies the range of values to include.

The following example plots a histogram of 1000 samples drawn from a uniform probability
distribution over [0, 1).

Plotting a Histogram

k+knfrom n+nnnumpy k+knimport ox* c+cl Make random.rand available
k+knimport n+nnpylab k+knas n+nnpl c+cl Import plotting functions

nx o= nrandomo.nrandp (1+m+mil000p) c+tcl 1000 random values in [0, 1)
nplo.nhistp(nxp, nbinso=1+m+mi20p, n+nbrangeo=p(l+m+miOp,l+m+milp), nfco=1l+s+sigp) c+cl Create
nplo.ntitlep(l+s+s1Uniform distributionp) ctcl Add a title
nplo.nxlabelp(1l+s+siValuep) ctcl Add a label for the xaxis
nplo.nylabelp(l+s+siFrequencyp) c+tcl Add a label for the yaxis

nplo.nshowp () ct+cl Finally, show the figure

4/

Uniform distribution

70

I
o

w
o

T~ Frequency

=
]
(o
®

N

=)

0.6

Value«—_(yjapel

55

CHAPTER 4. MATPLOTLIB 4.6. PIE CHARTS

Pie Charts

The function pie is used to create pie charts. These are a type of graph in which a circle
is divided into wedges that each represent a proportion of the whole.

e The first argument to pie is a sequence of values used for the wedge sizes.
e The labels argument is a sequence of strings providing the labels for each wedge.

e The shadow argument is a boolean specifying whether to draw a shadow beneath
the pie.

The following example shows a pie chart with shadow set to True .

Plotting a Pie Chart

k+knfrom n+nnnumpy k+knimport ox* ctcl Import everything from numpy
kt+knimport n+nnpylab k+knas n+nnpl ctcl Import plotting functions from pyl
npercentages o= p[l+m+mi55p, l+m+mi25p, l+m+milOp, l+m+mib5p, l+m+mi5p] c+tcl Wedge sizes
nlabels o= p[l+s+slAp, l+s+s1Bp, l+s+siCp, l+s+sl1Dp, l+s+siFp] ctcl Sequence of labels for
nplo.naxesp(naspecto=1l+m+milp) ct+cl Aspect ration = 1 for a true circle

nplo.npiep(npercentagesp, nlabelso=nlabelsp, nshadowo=n+nb+bpTruep)
nplo.ntitlep(l+s+s1MTH 337 Grade Distributionp) c+cl Add a title
nplo.nshowp () c+cl Finally, show the figure

title
MTH 337 Grade Distribution<—

A<§‘\§\\§‘\§‘§““*-~

labels

|

[shadow=True]

56

CHAPTER 4. MATPLOTLIB 4.7. CONTOUR PLOTS

Contour Plots

The functions contour and contourf are used for contour plots and filled contour plots
respectively. These are projections of a graph surface onto a plane, with the contours
showing the level curves of the graph.

e The first two arguments are one dimensional arrays representing the x- and y-
cooordinates of the points to plot.

e The third coordinate is a two dimensional array representing the z-coordinates.
e Contour levels are automatically set, although they can be customized.

e A colorbar can be added to display the level curves.

The following examples are of a filled and unfilled contour plot of the two-dimensional
Gaussian function, f(xz,y) = e~ @ +v°),

Filled and Unfilled Contour Plots

k+knimport n+nnpylab k+knas n+nnpl c+cl Import plotting functions
k+knfrom n+nnnumpy k+knimport o* c+cl Import numpy

nx o= nlinspacep(ol+m+mi2p,l+m+mi2p) ctcl Locations of xcoordinates
ny o= nlinspacep(ol+m+mi2p,l+m+mi2p) ctcl Locations of ycoordinates
nXXp, nYY o= nmeshgridp(nxp, nyp) ctcl meshgrid returns two 2D arrays

nz o= nexpp (op(nXXo**1l+m+mi2 o+ nYYo**1+m+mi2p)) ctcl z is a 2D Gaussian
nplo.nfigurep(nfigsizeo=p(l+m+mildp,l+m+mibp)) ctcl Set the figure dimensions
nplo.nsubplotp(l+s+s1121p) c+tcl First subplot, 1 row, 2 columns
nplo.ncontourp(nxp, nyp, nzp) ct+cl Contour plot
nplo.ntitlep(l+s+siContour plotp) ctcl Title added to first subplot
nplo.ncolorbarp() ctcl Color bar added to first subplot
nplo.nsubplotp(l+s+s1122p) ctcl Second subplot
nplo.ncontourfp(nxp, nyp, nzp) c+cl Filled contour plot
nplo.ntitlep(l+s+siFilled contour plotp) c+cl Title added to second subplot
nplo.ncolorbarp() ctcl Color bar added to second subplot
nplo.nshowp () ct+cl Finally, show the figure

Contour plot Filled contour plot

2.0 — 0.90 2.0 I1.05
1.5¢ 1 1.5 0.90
0.75
1.0} 1 1.0
40.75
0.5} 1 0.5
1060 {0.60
0.0f 1 0.0
10.45
—-0.5}][04 -0.5
0.30
-1.0f 1 -1.0
—0.30
—1.5¢ 1 -1.5 0.15
-2.0 : LJ0.15 -2 0.00

. 0
-2.0 -15 -1.0 -0.5 0.0 05 1.0 15 2.0 -2.0 -15-1.0 -05 0.0 05 1.0 15 2.0

57

CHAPTER 4. MATPLOTLIB 4.8. MULTIPLE PLOTS

Multiple Plots

The function subplot is used to plot multiple graphs on a single figure. This divides a
figure into a grid of rows and columns, with plotting done in the currently active subplot.

e Calls to subplot specify the number of rows, number of columns, and subplot number.
e Subplots are numbered from left to right, row by row, starting with 1 in the top left.
e All plotting is done in the location specified in the most recent call to subplot.

e If there are less than 10 rows, columns and subplots, subplot can be called with a
string argument. For example, subplot(2, 3, 4) is the same as subplot("234").

The example below uses 2 rows and 3 columns. The “subplot” calls displayed on the
figure show which call corresponds to each grid location.

Displaying Multiple Plots with subplot

kt+knimport n+nnpylab k+knas n+nnpl ctcl Import plotting functions
nfigo=nplo.nfigurep(nfigsizeo=p(l+m+mi8p,l+m+mibp)) ctcl Set the figure dimensions
nnrowso=l+m+mi2 ctcl Number of rows
nncolso=1+m+mi3 ctcl Number of columns
kfor ni o+owin n+nbrangep(nnrowso*nncolsp):
nplo.nsubplotp(nnrowsp,nncolsp,nio+l+m+milp) ctcl Subplot numbering starts at 1

5 5 5

4 4 4r 1 4r g

3F 41 3F {1 3F 8

ol [subplot(2,3,1)] | 5l [subplot(2,3,2)] | 27[subplot(2,3,3)] |

1r 4 1F 1 1F 8

0 ! ! ! ! 0 ! ! ! ! 0 ! ! ! !

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

5 5 5

4 4 4r 1 4r .

3f 41 3f 1 3r R

,| [subplot(2,3,4)] | | (subplot(2,3,5)] | | (subplot(2,3,6)]

1F 4 1F 1 1F 8

0 ! ! ! ! ! ! ! ! ! ! ! !

0 0
0o 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

58

CHAPTER 4. MATPLOTLIB 4.9. FORMATTING TEXT

Formatting Text

The function text is used to add a text string to a plot at a given position.

e The first three positional arguments specify the x-position, y-position, and text string.
e The fontsize argument specifies the size of the font to use.

e The fontstyle argument specifies the style of font to use ('normal’, 'italic’ etc).

e The fontweight argument specifies how heavy the font should be ('normal’, 'bold").
e The family argument specifies the font family to use ('serif’, 'sans-serif’ etc).

e The color argument specifies the color of the text.

These options can be combined together (for example, to specify text that is bold, red,
italic and 14-point). The example below illustrates the use of these options.

59

Formatting Text

nsizes o= p[l+m+milOp,l+m+mil2p,l+m+mildp,l+m+mil6p,l+m+mil8p]
kfor nsizeposp, nsize o+owin n+nbenumeratep(nsizesp):
ntextp(l+m+miOp, nsizeposp, l+s+s2Font size = o.nformatp(nsizep), nfontsizeo=nsizep)

nstyles o= p[l+s+slnormalp, l+s+slitalicp, l+s+slobliquep]
kfor nstyleposp, nstyle o+owin n+nbenumeratep(nstylesp):
ntextp(l+m+milp, nstyleposp, l+s+s2Style = o.nformatp(nstylep), nfontstyleo=nstylep)

nfamilies o= p[l+s+slserifp, l+s+slsansserifp, l+s+slmonospacep]
kfor nfamilyposp, nfamily o+owin n+nbenumeratep(nfamiliesp):
ntextp(l+m+mi2p, nfamilyposp, l+s+s2Family = o.nformatp(nfamilyp), nfamilyo=nfamilyp)

nweights o= p[l+s+slnormalp, l+s+slboldp]
kfor nweightposp, nweight o+owin nt+nbenumeratep(nweightsp):
ntextp(l+m+mi3p, nweightposp, l+s+s2Weight = o.nformatp(nweightp), nfontweighto=nweightp)

ncolors o= p[l+s+sirp, l+s+slgp, l+s+slbp, l+s+slyp, l+s+slcp]
kfor ncolorposp, ncolor o+owin n+nbenumeratep(ncolorsp) :
ntextp(l+m+midp, ncolorposp, l+s+s2Color = o.nformatp(ncolorp), ncoloro=ncolorp)

Font size = 18 Color = ¢

Font size = 16

Font size = 14 Style = oblique Family = monospace Color=b
Font size = 12 Style = italic Family = sans-serif Weight = bold Color=g
Font size = 10 Style = normal Family = serif Weight = normal Color =r

CHAPTER 4. MATPLOTLIB 4.10. FORMATTING MATHEMATICAL EXPRESSIONS

Formattina Mathematical Expressions

IXTEX provides a way to format mathematical expressions in Matplotlib graphs in a similar
way to Jupyter Notebook Markdown cells.

e Mathematical expressions are identified using r"$(formula)$" .

e The syntax for (formula) is the same as that described in section 1.4.3 on IATEX.

e These expressions can be used anywhere a string is used, such as titles, axis and tick
labels, and legends.

The example below illustrates several examples of mathematical expressions using IATEX.

Formatting Mathematical Expressions with IATEX

nx o= narangep(l+m+milp,l+m+miiOp)

nyl o= ncumsump(l+m+milo/nxp) ctcl cumsum calculates the cumulative sum
ny2 o= ncumsump (l+m+milo/p(nxo**1+m+mi2p))

nwidth o= 1+m+mf0.4

nbarp(nxp, nylp, nwidtho=nwidthp, nfco=l+s+slcp,nlabelo=l+s+slrsumi=1n fraclip)
nbarp(nxo+nwidthp, ny2p, nwidtho=nwidthp, nfco=l+s+slyp, nlabelo=l+s+slrsumi=1n fracli2p)
nticks o= nx o+ nwidth ctcl Shift the xticks to center on the bars
nxlabels o= p[n+nbstrp(nvalp) kfor nval o+owin nxp] c+cl Labels must be strings
nxticksp(nticksp, nxlabelsp)

nticks o= p[l+m+milp, npio**1l+m+mi2o/l+m+mi6p]

nylabels o= p[l+s+sirlp, l+s+slrpi2/6p] c+cl Note that pi renders as a symbol
nyticksp(nticksp, nylabelsp)

nxlabelp(l+s+sirnp)

nlegendp(nloco=1+s+slupper leftp)

ntitlep(l+s+siPartial sum of pseries for p = 1, 2p)

Partial sum of p-series forp =1, 2

60

Additional Topics

Loadina Nlumerical Files

We often need to load files containing numerical data into a NumPy array for further
processing and display. Such data files typically consist of:

e Header information. This describes what the data represents and how it is formatted.

e A set of rows of numerical data. Each row contains the same number of values,
separated by some string such as a comma or tab.

The NumPy function numpy.loadtxt can be used to load such data. This returns a NumPy
array, where each row corresponds to a line in the data file. The first argument to this
function is the data file name. Some of the optional keyword arguments are shown below.

e dtype. This is the data type of values in the array, which are floats by default.

e delimiter. This is the string used to separate values in each row. By default, any
whitespace such as spaces or tabs are considered delimiters.

e skiprows. This is the number of rows to ignore at the start of the file before reading
in data. It is usually used to skip over the header information, and defaults to O.

The example shown below uses a file called “weather.dat”, which contains the following:

Day High-Temp Low-Temp
1 77 56
2 79 62

k+knfrom n+nnnumpy k+knimport nloadtxt
Import the loadtxt function.

ndata o= nloadtxtp(l+s+s2weather.datp, ndtxggg=%-élb.intgt,her dat” file

. © : Wweé
nskiprowso=l+m+milp) skipping the first row, and cre-

kprintp(ndatap) ating a 2 x 3 array of integers.
([177 56) For Z;)ats, Zhe dty;e argument
[279 6211 would not be used.

61

http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html

CHAPTER 5. ADDITIONAL TOPICS 5.2. IMAGES

IMaaes

Matplotlib provides functions for saving, reading, and displaying images. These images
are either 2- or 3-dimensional NumPy arrays. In both cases, the first two axes of the array
correspond to the rows and columns of the image. The third axis corresponds to the color
of the pixel at each (column, row) coordinate.

e For a 2D array, the array values are floats in the range [0, 1]. These represent the
luminance (brightness) of a grayscale image from black (0) to white (1).

e For a 3D array, the third axis can have either 3 or 4 elements. In both cases, the
first three elements correspond to the red, green, and blue components of the pixel
color. These can be either floats in the range [0, 1], or 8-bit integers of type 'uint8'.
A fourth element corresponds to an “alpha” value representing transparency.

The main functions we use are:

imread Read an image file into an array.
imsave Save an image to file.

imshow Display an image array.

The following example creates an image as a 3D NumPy array of floats. The red, green
and blue color components of the image are then set directly using array slicing.

Image Files: Creating a NumPy Image Array

nimg o= nzerosp((l+m+mil00p, 1l+m+mil0O0p, l+m+mi3p)) c+cl Create an image array of 100 rows

nimgp[:1+m+mi60p, : 1+m+mi60p, 1+m+miOp] o= l+m+mfl. ctcl Set the topleft corner to red.
nimgp [1+m+mi40p: ,1+m+mi4O0p:,l+m+milp] o= l+m+mf1l. c+tcl Set the lowerright corner to g
nimgp [1+m+mi20p:1+m+mi80p,1+m+mi20p:1+m+mi80p, l+m+mi2p] o= l+m+mfl. ctcl Set the center =

nimsavep (l+s+s2squares.pngp, nimgp) ctcl Save the img array to the squares.png file
nimg2 o= nimreadp(l+s+s2squares.pngp) c+cl Read the file back to the img2 array
nimshowp (nimg2p) c+cl Display the image

62

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imread
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imsave
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imshow

CHAPTER 5. ADDITIONAL TOPICS 5.3. ANIMATION

Animation

An animation consists of a sequence of frames which are displayed one after the other.
Animation using Matplotlib essentially involves updating the data associated with some
drawn object or objects (such as points or lines), and redrawing these objects. Producing
an animation therefore involves the following steps:

e Set up the variables and data structures relating to the animation.
e Draw the first frame.

e Repeatedly update the frame with new data.

Animations are generated using FuncAnimation from the matplotlib.animation module.
This takes the following required arguments:

e fig. This is the figure in which the animation is to be drawn. It can be obtained

using either the Matplotlib figure or subplots functions.

e func. This specifies the function to call to perform a single step of the animation. It

should take a single argument which is the frame number (an integer). The frame
number is used to update the values of drawn objects such as points or lines. If the
blit keyword argument is True , this function should return a tuple of the modified
objects that need to be redrawn.

FuncAnimation also takes the following keyword arguments.

frames. An integer specifying the number of frames to generate.

init_func. This specifies the function which is called once at the start to draw the
background that is common to all frames. If the blit keyword argument is True
, this function should also return a tuple of the modified objects that need to be
redrawn.

interval. This argument specifies the time (in ms) to wait between drawing successive
frames.

blit. If True , the animation only redraws the parts of the plot which have changed.
This can help ensure that successive frames are displayed quickly.

repeat. If True (the default), the animation will repeat from the beginning once it
is finished.

The following example for Jupyter Notebook animates a point circling the origin with
constant angular velocity. The animate function is defined to update the position of the
point based on the frame number.

63

http://matplotlib.org/api/animation_api.html#matplotlib.animation.FuncAnimation
http://matplotlib.org/api/animation_api.html
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.figure
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subplots

CHAPTER 5. ADDITIONAL TOPICS 5.3. ANIMATION

Animation: A Point Circling the Origin

onpylab c+tcl Note pylab, not pylab inline
k+knfrom n+nnmatplotlib k+knimport nanimation

nomega o= 0.l+m+mo02 ctcl Angular velocity

nfigp, nax o= nsubplotsp(nfigsizeo=p(l+m+midp,l+m+midp)) c+cl Get the figure axes for the pl
naxo.nsetaspectp(l+s+slequalp) ctcl Make the axes have the same scale

npointp, o= nplotp([], p[], l+s+slrop, nmso=1+m+milOp) c+cl point is the object drawn by plot
nxlimp(ol+m+mfl.5p,l+m+mfl.5p) ctcl note that plot returns a tuple
nylimp(ol+m+mf1l.5p,l+m+mfl.5p) ctcl Set limits for the entire animation

ctcl Initialization function. This is called once to plot the background.
kdef n+nfinitp():

npointo.nsetdatap([], p[1)

kreturn npointp, ctcl Return a tuple of the modified objects

ctcl Animation function. This is called once per animation step.
ctcl The integer i is the frame number.
kdef n+nfanimatep(nip):
nx o= ncosp(nio*nomegap)
ny o= nsinp(nio*nomegap)
npointo.nsetdatap(nxp, nyp) ctcl Update the x, y coordinates of the point
kreturn npointp, ctcl Return a tuple of the modified objects

ctcl Start the animator with a call to FuncAnimation
nanimationo.nFuncAnimationp(nfigp, nanimatep, ninitfunco=ninitp, nframeso=1+m+mil00p, ninterve

Some frames from this animation are shown below.

15 T T T T T 15 T T T T T 15 T T T T T 15

10 1.0 10 1.0 °
0.5 05} 0.5 0.5
0.0 [] 0.0+ 0.0 0.0
-0.5 -05F -0.5 -0.5

-1.0 -1.0F -1.0 -1.0

=15 -1.5 -1.5 -1.5
-15 -1.0 -0.5 00 05 10 15 -15 -1.0 -05 00 05 10 15 -1.5 -1.0 -05 00 05 1.0 15 -15 -1.0 -05 00 05 10 15

Note that in Jupyter Notebook the IPython magic we need to use is %pylab rather than
%pylab inline. Inline graphs in Jupyter Notebook are static, meaning that once drawn,
they cannot be updated. Using %pylab generates graphs in a separate window, where the
updated data can be displayed.

64

CHAPTER 5. ADDITIONAL TOPICS 5.4. RANDOM NUMBER GENERATION

R.andom Numper Generation

NumPy provides a library of functions for random number generation in the random
module. These return either a sample, or an array of samples of a given size, drawn from
a given probability distribution. The main functions we use are:

random.rand Samples are drawn from a uniform distribution over [0, 1).
random.randint Samples are integers drawn from a given range.
random.randn ~ Samples are drawn from the “standard normal” distribution.
random.normal Samples are drawn from a normal (Gaussian) distribution.

random.choice Samples are drawn from a given list or 1D array.

The following examples illustrate the use of these functions.

k+knfrom n+nnnumpy k+knimport o*

) Use random.rand to gener-
kprintp(nrandomo.nrandp())

ate a single number uniformly

0.723812203628 drawn from the interval [0, 1).

kprintp(nrandomo.nrandp (1+m+mi3p)) Use random.rand to generate
an array of 3 random numbers
[0.74654564 0.58764797 0.15557362] drawn from [0, 1).

kprintp(nrandomo.nrandp (1+m+mi2p, 1+m+mi3p) . random.rand to generate

a 2 x 3 array of random num-

[[0.65382707 0.71701863 0.5738609] bers drawn from [0, 1).

[0.22064692 0.57487732 0.5710538]]

kprintp(nrandomo.nrandintp (1+m+mi7p)) Use random.randint to gen-
erate an integer drawn from
3 {0, ..., 6}.

kprintp(nrandomo.nrandintp (1+m+mib5p, 1+m+miQR NSi7e0RP i 2B ,g'Le-IHI_l+mi4p)))
erate a 2 x 4 array of integers

[[5 55 8] drawn from {5, 6, 7, 8}.

[7 8 7 6]]

Use random.randn to gener-
ate an array of samples drawn
from the ‘standard” normal
distribution.

kprintp(nrandomo.nrandnp (1+m+mi3p))

[0.47481788 -0.7690172 0.42338774]

Use random normal to gen-
kprintp (nrandomo.nnormalp (1+m+mi100p, l+m+pil5p)) sample drawn from a

normal distribution with p =

111.676554337 100, 0 = 15.

65

http://docs.scipy.org/doc/numpy/reference/routines.random.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html#numpy.random.rand
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html#numpy.random.randint
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html#numpy.random.randn
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html#numpy.random.normal
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.random.choice.html#numpy.random.choice

CHAPTER 5. ADDITIONAL TOPICS 5.5. SOUND FILES

Sound Files

Sound is a vibration that propagates through a medium such as air as a wave of pressure
and displacement. Recording devices such as microphones convert this wave to an elec-
trical signal. This signal is then sampled at regular intervals and converted to a sequence
of numbers, which correspond to the wave amplitude at given times.

The WAV file format is a standard for storing such audio data without compression. WAV
files contain two main pieces of information:

e The rate at which the wave has been sampled, usually 44,100 times per second.

e The audio data, usually with 16 bits used per sample. This allows 2! = 65,536
different amplitude levels to be represented.

The module scipy.io.wavfile provides functions to read and write such files.
scipy.io.wavfile.read Read a WAV file, returning the sample rate and the data.

scipy.io.wavfile.write Write a NumPy array as a WAV file.

The following example creates and saves a WAV file with a single frequency at middle C,
then plots the first 1000 samples of the data.

WAV File: Middle C

kt+knfrom n+nnnumpy k+knimport nlinspace
kt+knfrom n+nnscipy.io k+knimport nwavfile
k+knfrom n+nnpylab k+knimport nplotp, nshow

nrate o= 1+m+mi44100 c+cl Number of samples/second
nend o= 1l+m+mil0 c+tcl The file is 10 seconds long
ntime o= nlinspacep(l+m+miOp, nendp, nrateo*nendo+l+m+milp) ctcl Time intervals are 1/rat
nfreq o= 1l+m+mf261.625565 ctcl Frequency of middle C
ndata o= nsinp(l+m+mi2o*npio*nfreqo*ntimep) ctcl Generate the sine wave
nwavfileo.nwritep(l+s+s2middleC.wavp, nratep, ndatap) c+cl Write the array to a WAV file
nplotp(ntimep[:1+m+mi1000p], ndatap[:1+m+mi1000p]) ctcl Plot the first 1000 samples
nshowp () c+cl Finally, show the figure
10
05 8
0.0 f |
05} 8
-1.0
0.000 0.005 0.010 0.015 0.020 0.025

66

http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.read.html#scipy.io.wavfile.read
http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.write.html#scipy.io.wavfile.write

CHAPTER 5. ADDITIONAL TOPICS 5.6. LINEAR PROGRAMMING

Linear Proaramming

Linear programming problems are a special class of optimization problem. They involve
finding the maximum (or minimum) of some linear objective function f(x) of a vector of
variables x = (x1,x2, ..., x,), subject to a set of linear equality and inequality constraints.

Since the objective function and constraints are linear, we can represent the problem as:

Maximize c’'x, where the vector ¢ contains the coefficients of the objective function,
subject to A, * x < by, where A, is a matrix and b, a vector,
and A, * x = by, where A, is a matrix and b, a vector.

An example of such a problem would be: x = {z1,25}. Maximize f(x) = 2x; + 323

subject to the inequality constraints (i) 0 < xy < 80, (i) 22 > 0, (iii) 21 +x2 < 100, and
(IV) T+ 2.’1?2 < 160.

This example is graphed below, showing the level curves of f(x).

Maximize 2z, + 3z,

s

e
. T80 -
"lﬁﬂ'x“
~ 140~
-\.“ H“Eﬂ'k'_ ‘-“
'\-\.x ‘,__]qgﬂ""

w,
"

-

et

e

k.

-y

- g - Feasibleregion

L
B0 mh - ~
S

The function scipy.optimize.linprog implements the “simplex algorithm” we discuss in class
to solve this problem. The arguments to this function are the values ¢, A3, b,;, A, and

67

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

CHAPTER 5. ADDITIONAL TOPICS 5.6. LINEAR PROGRAMMING

b., given above. An optional bounds argument represents the range of permissible values
that the variables can take, with None used to indicate no limit.

Applying linprog to this problem is done as shown below.

Linear Programming: Finding the Maximum Value

nc o= narrayp([ol+m+mi2p, ol+m+mi3p]) ctcl Negative coefficients of f(x)

nAub o= narrayp([[l+m+milp, l+m+milp], p[l+m+milp, 1+m+mi2pl]) c+cl Matrix of the inequality c
nbub o= narrayp([l+m+mil00p, l+m+mii160p]) ctcl Vector of the inequality upper bounds
nbounds o= p[(l+m+miOp, l+m+mi80p), p(l+m+miOp, n+nb+bpNonep)] c+cl Each tuple is a (lower, t
nresult o= nlinprogp(ncp, nAubo=nAubp, nbubo=nbubp, nboundso=nboundsp)

kprintp(nresulto.nxp) ctcl The x field of the result holds the solution

This yields the correct solution for x1 and x5, as seen in the graph above:

pl 1+m+mf40. 1+m+mf60.p]

Note that linprog finds the minimum of f(x). To find the maximum, the
negative of the c coefficient values needs to be used instead.

68

Proaramming Style

This chapter contains some tips on how to make programs easier to read and understand.
Programs are written first and foremost to be understood by human beings, not by com-
puters. ldeally, it should be possible a year from now for you to pick up the code that
you're writing today and still understand what you were doing and why. (It should also
be possible for the instructor to understand it a week from now...)

Choosina Good Variarle Nlames

Good variable names make reading and debugging a program much easier. Well chosen
names are easy to decipher, and make the intent clear without additional comments.

e A variable name should fully and accurately describe the data it represents. As an
example, date may be ambiguous whereas current_date is not. A good technique
is to state in words what the variable represents, and use that for the name.

e Names that are too short don’'t convey enough meaning. For example, using d for
date or cd for current date is almost meaningless. Research shows that programs
with variable names that are about 9 to 15 characters long are easiest to understand
and debug.

e Variable names should be problem-oriented, refering to the problem domain, not how
the problem is being solved. For example, planet_velocity refers to the problem,
but vector_3d refers to how this information is being represented.

e Loop indices are often given short, simple names such as i, j and k. This is okay
here, since these variables are just used in the loop, then thrown away.

e If loops are nested, longer index names such as row and column can help avoid
confusion.

e Boolean variables should have names that imply either True or False. For example,
prime_found implies that either a prime has been found, or it hasn't.

e Boolean variables should be positive. For example, use prime_found rather than
prime_not_found, since negative names are difficult to read (particularly if they are
negated).

e Named constants should be in uppercase and refer to what the constant represents
rather than the value it has. For example, if you want to use the same color blue
for the font in every title, then define the color in one place as TITLE_FONT_COLOR
rather than FONT_BLUE. If you later decide to have red rather than blue titles, just
redefine TITLE_FONT_COLOR and it keeps the same meaning.

69

CHAPTER 6. PROGRAMMING STYLE 6.2. CHOOSING GOOD FUNCTION NAMES

Choosina Good Function Names

The recommended style for naming functions in Python is to use all lowercase letters,
separated by underscores as necessary. As with variable names, good function names can
help make the intent of the code much easier to decipher.

e For procedures (functions that do something and don't return a value), use a verb
followed by an object. An example would be plot_prime_distribution.

e For functions that return values, use a description of what the returned value repre-
sents. An example would be miles_to_kilometers.

e Don't use generic names such as calculate_stuff or numbered functions such
as functionl. These don't tell you what the function does, and make the code
difficult to follow.

e Describe everything that the function does, and make the function name as long as
is necessary to do so. If the function name is too long, it may be a sign that the
function itself is trying to do too much. In this case, the solution is to use shorter
functions which perform just one task.

No "Maaic Numpers”

Magic numbers are numbers such as 168 or 9.81 that appear in a program without
explanation. The problem with such numbers is that the meaning is unclear from just
reading the number itself.

e Numbers should be replaced with named constants which are defined in one place,
close to the start of your code file.

e Named constants make code more readable. It's a lot easier to understand what
HOURS_PER_WEEK is referring to than the number 168.

e If a number needs to change, named constants allow this change to be done in one

place easily and reliably.

Comments

It's not necessary to comment every line of code, and “obvious” comments which just
repeat what the code does should be avoided. For example, the endline comment in the
following code is redundant and does nothing to explain what the code is for.

nx o+= l+m+mil c+cl Add 1 to x
Good comments serve two main purposes:
e “Intent” comments explain the purpose of the code. They operate at the level of the
problem (why the code was written) - rather than at the programming-language level

(how the code operates). Intent is often one of the hardest things to understand
when reading code written by another programmer.

70

https://www.python.org/dev/peps/pep-0008/#naming-conventions

CHAPTER 6. PROGRAMMING STYLE 6.5. ERRORS AND DEBUGGING

e “Summary” comments distill several lines of code into one or two sentences. These
can be scanned faster than the code itself to quickly understand what the code is
doing. For example, suppose you are creating several different graphs for a report. A
summary comment before each plot and its associated set of formatting commands
can describe which figure in the report the code is producing.

Endline comments are those at the end of a line, after the code. They are best avoided
for a number of reasons.

e Endline comments are short by necessity as they need to fit into the space remaining
on a line. This means that they tend to be cryptic and uninformative.

e Endline comments are difficult to keep aligned (particularly as the code changes),
and if they're not aligned they become messy and interfere with the visual structure
of the code.

A final note is to get in the habit of documenting code files. At the top of every file,
include a block comment describing the contents of the file, the author, and the date the
file was created. An example would be:

Sample File Header

c+tcl MTH 337: Intro to Scientific and Mathematical Computing, Fall 2016
c+tcl Report 1: Primitive Pythagorean Triples
ct+cl Created by Adam Cunningham 8/31/2016

Errors and Deruaaing
The following suggestions may help to reduce errors.

e Test each function completely as you go.

e In the initial stages of learning Python, test each few lines of code before moving on
to the next.

e Add “print” statements inside a function to print out the intermediate values of a
calculation. This can be used to check that a function is working as required, and
can always be commented out afterwards.

In the event of an error being generated, IPython will typically give as much information
as possible about the error. If this information is not sufficient, the %debug magic will
start the IPython debugger. This lets the current values of variables inside a function be
examined, and allows code to be stepped through one line at a time.

71

Further Reading

The following books may prove useful for further study or reference.

e L. Felipe Martins. IPython Notebook Essentials. Packt Publishing Ltd, Birmingham.
2014.

A fairly short introduction to using NumPy and Matplotlib in Jupyter Notebooks.
This is not a Python tutorial, although there is a brief review of Python in the
appendix.

e Steve McConnell. Code Complete: A Practical Handbook of Software Construction,
Second Edition. Microsoft Press. 2004.

A general guide to code writing and software construction, this book focuses on
questions of software design rather than any specific language. More useful to an
intermediate-level programmer who wants to improve their skills. No references to
Python.

e Bruce E. Shapiro. Scientific Computation: Python Hacking for Math Junkies. Sher-
wood Forest Books, Los Angeles. 2015.
A tutorial for Python, NumPy and Matplotlib that also covers many of the same
scientific and mathematical topics as this class.

e John M. Stewart. Python for Scientists. Cambridge University Press, Cambridge.
2014.

A good introduction to Python, NumPy, Matplotlib and three-dimensional graph-
ics. Extensive treatment of numerical solutions to ordinary, stochastic, and partial
differential equations.

72

INndex

%%timeit magic, 7

ETEX, 9, 60
abs, 11
and, 49
animate, 63

animation, 63
arange, 42, 45, 48
around, 44

array creation, 41
astype, 44, 45

bar, 53

bar plots, 53

Boolean expressions, 26
Boolean type, 12
break, 32

close, 37, 38

comments, 39, 70
complex numbers, 10
conditional expressions, 28
continue, 32

contour, 57

contour plots, 57
contourf, 57

copy, 42

def, 34

dictionaries, 24

dictionary comprehensions, 33
difference, 24

dir, 19

dtype, 40

dtype, 44

elif, 27
else, 27
empty, 42

73

empty like, 42
enumerate, 29
exp, 46

filled contour plots, 57
floats, 10

for, 28, 29, 32, 33, 38
format, 14, 15
function names, 70
functions, 34

generator expressions, 33

hist, 55
histograms, 55

if, 26-28

if-else, 27

imag, 11
import, 18
integers, 10
intersection, 24
IPython magics, 7
items, 31

Jupyter Notebook, 5

lambda, 36

len, 20

line styles, 50

linear programming, 67
linprog, 68

list comprehensions, 32
lists, 19

loadtxt, 61
logical_and, 49
logical_not, 49
logical _or, 49

magic numbers, 70

CHAPTER 7. FURTHER READING

Markdown, 8
marker styles, 50
math, 19
Matplotlib, 50
max, 22, 47
meshgrid, 43, 44
min, 22, 47
modules, 18

not, 49
NumPy, 40

ones, 42
ones_like, 42
open, 37, 38
or, 49

pie, 56

pie chart, 56

plot, 54

polar, 54

polar plots, 54

print, 13
programming style, 69

random numbers, 65
random.normal, 65
random.rand, 65
random.randint, 46, 65
random.randn, 65
range, 29, 30

read, 37, 38

74

readlines, 37, 38
real, 11

reshape, 44, 45, 47
return, 34

scipy.io.wavfile, 66
sets, 23

shape, 40

show, 51

sin, 46

sorted, 36

sound, 66

strings, 12
subplot, 58

sum, 47
symmetric_difference, 24

text, 59
try-except, 36, 37
tuples, 22

type casting, 16

union, 24

values, 31
variable names, 17, 69

WAV files, 66
while, 31

zeros, 42
zeros_like, 42
zip, 31

	Getting Started
	Course Description
	Install Python
	Weekly Reports
	Presenting and Interpreting Results

	Jupyter Notebook
	Magics
	Markdown
	LaTeX

	Programming Python
	Numbers
	Booleans
	Strings
	Formatting Strings
	Type Conversions
	Variable Names
	Modules
	Lists
	Tuples
	Sets
	Dictionaries
	Boolean Expressions
	If Statements
	Conditional Expressions
	For Loops
	While Loops
	Break and Continue
	Comprehensions
	Generator Expressions
	Functions
	Error Handling with Try-Except
	Reading and Writing Files
	Comments

	NumPy
	Array Creation
	Array Properties
	Array Operations
	Array Indexing and Slicing
	Indexing with Integer Arrays
	Indexing with Boolean Arrays

	Matplotlib
	Basic Plotting
	A More Complex Plotting Example
	Bar Plots
	Polar Plots
	Histograms
	Pie Charts
	Contour Plots
	Multiple Plots
	Formatting Text
	Formatting Mathematical Expressions

	Additional Topics
	Loading Numerical Files
	Images
	Animation
	Random Number Generation
	Sound Files
	Linear Programming

	Programming Style
	Choosing Good Variable Names
	Choosing Good Function Names
	No ``Magic Numbers''
	Comments
	Errors and Debugging

	Further Reading
	Index

