MTH 131: Mathematical Analysis for Management, Fall 2017

Midterm 3 Answer Key

Name: _____

Student Number: _____

Answer the questions in the spaces provided on the question sheets.

Show all of your work.

If you run out of room for an answer, continue on the back of the page.

You are allowed to use a non-graphing calculator.

You are allowed a one page formula sheet.

Page	Points	Score
3	12	
4	15	
5	10	
6	20	
7	14	
8	9	
9	9	
10	11	
11	10	
Total:	110	

1. Find the following indefinite integral: $\int 10x^4 dx$

Full solution:

$$\int 10x^4 \, dx = 10 \int x^4 \, dx = 10 \frac{x^5}{5} + C = 2x^5 + C$$

 $\int 10x^4 \, dx = \underline{2x^5 + C} \quad \text{(Use } C \text{ as the arbitrary constant.)}$

2. Find the following indefinite integral: $\int 15e^u du$

Full solution:

$$\int 15e^u \, dx = 15 \int e^u \, du = 15e^u + C$$

$$\int 15e^u \, du = \underline{15e^u + C} \qquad \text{(Use } C \text{ as the arbitrary constant.)}$$

3. Find the following indefinite integral: $\int 5x(3-x) dx$

Full solution:

$$\int 5x(3-x)\,dx = \int (15x-5x^2)\,dx = \frac{15x^2}{2} - \frac{5x^3}{3} + C$$

$$\int 5x(3-x) dx = \underline{15x^2/2 - 5x^3/3 + C}$$
 (Use C as the arbitrary constant.)

4. Find the equation of the curve that passes through (2, 3) if its slope is given by the following [4] equation:

$$\frac{dy}{dx} = 2x - 6$$

Full solution:

$$y = \int (2x - 6) \, dx = x^2 - 6x + C$$
$$y(2) = 3 = 2^2 - 6(2) + C = -8 + C \Rightarrow C = 11$$
$$\Rightarrow x(t) = x^2 - 6x + 11$$

 $y(x) = _ x^2 - 6x + 11$

[2]

[4]

[2]

5. Find the indefinite integral: $\int (8x-3)^{-4} dx$

Full solution:

Use the method of substitution: $u = 8x - 3 \Rightarrow du = 8 dx \Rightarrow dx = \frac{du}{8}$. Then:

$$\int (8x-3)^{-4} dx = \int u^{-4} \frac{du}{8} = \frac{1}{8} \int u^{-4} du = \frac{1}{8} \frac{u^{-3}}{-3} + C = -\frac{u^{-3}}{24} + C = -\frac{1}{24u^3} + C$$
$$= -\frac{1}{24(8x-3)^3} + C$$

$$\int (8x-3)^{-4} dx = -\frac{1}{24(8x-3)^3 + C}$$
 (Use *C* as the arbitrary constant.)

6. Find the indefinite integral: $\int x^{12} e^{x^{13}} dx$

Full solution:

Use the method of substitution: $u = x^{13} \Rightarrow du = 13x^{12} dx \Rightarrow x^{12} dx = \frac{du}{13}$. Then:

$$\int x^{12} e^{x^{13}} dx = \frac{1}{13} \int e^u du = \frac{1}{13} e^e + C = \frac{1}{13} e^{x^{13}} + C$$

$$\int x^{12} e^{x^{13}} dx = \underline{e^{x^{13}}/13 + C} \quad \text{(Use } C \text{ as the arbitrary constant.)}$$

7. Find the indefinite integral: $\int \frac{(\ln x)^6}{x} dx$

Full solution:

Use the method of substitution: $u = \ln x \Rightarrow du = 1/x \, dx$. Then:

$$\int \frac{(\ln x)^6}{x} \, dx = \int u^6 \, du = \frac{u^7}{7} + C = \frac{(\ln x)^7}{7} + C$$

$$\int \frac{(\ln x)^6}{x} dx = \underline{(\ln x)^7 / 7 + C}$$
 (Use *C* as the arbitrary constant.)

[5]

[5]

[5]

8. Find the general solution for the first-order differential equation: $\frac{dy}{dx} = \frac{13}{x}$.

Full solution:

$$\frac{dy}{dx} = \frac{13}{x} \Rightarrow y = \int \frac{13}{x} \, dx = 13 \ln|x| + C$$

y = 13 ln |x| + C (Use C as the arbitrary constant.)

9. Find the amount A in an account after t years given the following conditions:

$$\frac{dA}{dt} = 0.02A;$$
 $A(0) = 4000$

Full solution:

This is an exponential growth equation: $A_0 = 4000, r = 0.02 \Rightarrow A(t) = A_0 e^{rt} = 4000 e^{0.02t}$.

 $A(t) = 4000e^{0.02t}$

10. Calculate the definite integral below by referring to the figure with the indicated areas.

$$\int_{a}^{c} f(x) \, dx$$

Full solution:

The definite integral is the area under the graph of the function in the interval [a, c], which is the area A - B + C = 3.872.

 $\int_{a}^{c} f(x) dx =$ **3.872** (Write the numerical value.)

[2]

[5]

[3]

11. Evaluate the integral: $\int_0^4 (3x^2+3) dx$.

Full solution:

$$\int_{0}^{4} (3x^{2} + 3) \, dx = (x^{3} + 3x) \Big|_{0}^{4} = (4^{3} + 3(4)) - (0^{3} + 3(0)) = 76 - 0 = 76$$

$$\int_{0}^{4} (3x^{2} + 3) \, dx = -76$$

12. Evaluate the integral:
$$\int_7^7 (x^2 - 7x + 2)^{13} dx$$

Full solution:

The limits of integration are the same, so the result is zero.

$$\int_{7}^{7} \left(x^2 - 7x + 2 \right)^{13} \, dx = _ _ 0$$

13. Calculate the definite integral: $\int_4^7 \frac{1}{x-1} dx$

Full solution:

$$\int_{4}^{7} \frac{1}{x-1} \, dx = \ln|x-1| \Big|_{4}^{7} = \ln 6 - \ln 3 = \ln 2$$

$$\int_{4}^{7} \frac{1}{x-1} \, dx = \underline{\qquad \text{In } 2 = 0.693}$$

14. Find the area bounded by the curves $f(x) = x^2 - 3x$ and g(x) = 2x + 6.

Full solution:

Set
$$f(x) = g(x)$$
 and solve for x :
 $x^2 - 3x = 2x + 6 \Rightarrow x^2 - 5x - 6 = 0 = (x + 1)(x - 6) \Rightarrow x = -1, 6$

 $f(x) \leq g(x)$ on [-1, 6], so the area is:

$$A = \int_{-1}^{6} [g(x) - f(x)] dx = \int_{-1}^{6} (2x + 6) - (x^2 - 3x) dx = \int_{-1}^{6} 5x + 6 - x^2 dx$$
$$= \left(\frac{5x^2}{2} + 6x - \frac{x^3}{3}\right) \Big|_{-1}^{6} = \left(\frac{5(6^2)}{2} + 6(6) - \frac{6^3}{3}\right) - \left(\frac{5((-1)^2)}{2} + 6(-1) - \frac{(-1)^3}{3}\right)$$
$$= 54 - (-3.167) = 57.167$$

The area, calculated to three decimal places, is ______ square units.

[5]

[8]

[2]

[5]

15. Find the future value at 6% interest, compounded continuously for 7 years, of the continuous [6] income stream with rate of flow:

$$f(t) = 800e^{-0.02t}$$

Full solution:

The future value is given by:

$$e^{rT} \int_0^T f(t) e^{-rt} dt = e^{0.06(7)} \int_0^7 800 e^{-0.02t} e^{-0.06t} dt = e^{0.06(7)} \int_0^7 800 e^{-0.08t} dt$$
$$= 800 e^{0.42} \left(\frac{e^{-0.08t}}{-0.08}\right) \Big|_0^7 = 800 e^{0.42} \left(\frac{e^{-0.56} - e^0}{-0.08}\right) = 6526.03$$

The future value is ______ **\$6526** (Round to the nearest dollar.)

16. Find the consumers' surplus at a price level of $\bar{p} = \$110$ for the price-demand equation below: [6]

$$p = D(x) = 500 - 0.04x$$

Full solution:

$$\bar{p} = \$110 = 500 - 0.04\bar{x} \Rightarrow \bar{x} = \frac{500 - 110}{0.4} = 9750$$

The consumers' surplus is then:

$$CS = \int_0^{\bar{x}} [D(x) - \bar{p}] dx = \int_0^{9750} [500 - 0.04x - 110] dx = \int_0^{9750} [390 - 0.04x] dx$$
$$= (390x - 0.02x^2) \Big|_0^{9750} = (390(9750) - 0.02(9750^2) = 1,901,250)$$

The consumers' surplus is ______ (Round to the nearest dollar.) 17. Find the value g(-1,1) of the function $g(x,y) = \frac{20}{x^2 + 3y}$. [2]

Full solution:

$$g(-1,1) = \frac{20}{(-1)^2 + 3(1)} = \frac{20}{4} = 5$$

- $\sqrt{g(-1,1)} =$ ____5
- \bigcirc The function g(-1,1) is undefined.

18. The productivity of a certain country with the utilization of x units of labor and y units of capital is given approximately by the function $f(x,y) = 100x^{0.74}y^{0.26}$. Find $f_x(x,y)$ and $f_y(x,y)$

Full solution:

$$f_x(x,y) = 100(0.74)x^{0.74-1}y^{0.26} = 74x^{-0.26}y^{0.26}$$
(a) $f_x(x,y) = \underline{74x^{-0.26}y^{0.26}}$
[2]
Full solution:

$$f_y(x,y) = 100x^{0.74}(0.26)y^{0.26-1} = 26x^{0.74}y^{-0.74}$$
[2]
Find $f_x(x,y)$ and $f_y(x,y)$, and explain why $f(x,y)$ has no local extrema:

$$f(x,y) = 5x + 7y + 8$$

Full solution:

19.

	Full solution: $f_x(x, y) = 5 + 0 + 0 = 5$		
(a)	$f_x(x,y) = $ 5	[2]	
	Full solution: $f_y(x,y) = 0 + 7 + 0 = 7$		
(b) (c)	$f_y(x,y) =$ 7 Choose the best explanation below for the reason that $f(x,y)$ has no local extrema.	[2] [1]	
	Full solution: The function has no critical points, since $f_x(x,y)$ and $f_y(x,y)$ are non-zero for all (x,y) .		
	○ The functions $f_x(x, y)$ and $f_y(x, y)$ have no local extrema. ○ The second derivative test fails because $AC - B^2 = 0$. ○ The functions $f_x(x, y)$ and $f_y(x, y)$ are never equal to each other. √ The functions $f_x(x, y)$ and $f_y(x, y)$ are non-zero for all (x, y) .		

20. Find the critical points of the following function, then use the second derivative test to determine if the critical points are local extrema.

$$f(x,y) = -3x^2 + 2xy - 2y^2 + 14x + 2y + 10$$

(a) Find the critical points of f(x, y). Use a comma to separate answers as needed.

Full solution:

The critical points are where $f_x(x,y) = 0$ and $f_y(x,y) = 0$:

$$f_x(x,y) = -6x + 2y + 14 = 0$$
 and $f_y(x,y) = 2x - 4y + 2 = 0$

These are two linear equations in two variables, so we need to find where they intersect. Add $2f_x$ to f_y to eliminate y:

$$2f_x + f_y = 0 = 2(-6x + 2y + 14) + (2x - 4y + 2)$$

= -12x + 4y + 28 + 2x - 4y + 2
= -10x + 30 \Rightarrow x = 3
$$f_x(x, y) = -6x + 2y + 14 = 0 \Rightarrow y = 2$$

So, the function has a single critical point at (3, 2)

The function f(x, y) has critical points at _____ (3, 2) Use the second derivative test to determine if the critical points are local extrema.

Full solution:

Applying the second-derivative test:

$$A = f_{xx}(x, y) = -6$$

$$B = f_{xy}(x, y) = 2$$

$$C = f_{yy}(x, y) = -4$$

$$AC - B^{2} = (-6)(-4) - 2^{2} = 20 > 0 \text{ for all } (x, y)$$

Since A = -6 < 0, any critical points are local maxima by the second derivative test.

(b)	Find the location of local minima.	[1]
	\bigcirc The function has local minima at	
	The function has no local minima.	
(c)	Find the location of local maxima.	[1]
	The function has local maxima at(3, 2)	
	○ The function has no local maxima.	
(d)	Find the location of any saddle points.	[1]

F: 1.1 1 ... C I

() The function has saddle points at _____

[6]

$\sqrt{}$ The function has no saddle points.

- (e) Find the location of any critical points where the second-derivative test fails. [1]
 - \bigcirc The second-derivative test fails at ____

$\sqrt{}$ The second derivative test does not fail for any of the critical points.

21. Use the method of Lagrange Multipliers to minimize $f(x, y) = x^2 + y^2$ subject to 2x + 4y = 30 [10]

Full solution:

The constraint is g(x, y) = 2x + 4y - 30 = 0. Form the function:

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y) = x^{2} + y^{2} + \lambda(2x + 4y - 30)$$

The critical points of this function are where:

$$F_x = 2x + 2\lambda = 0 \Rightarrow \lambda = -x$$

$$F_y = 2y + 4\lambda = 0 \Rightarrow \lambda = -y/2$$

$$F_\lambda = 2x + 4y - 30 = 0$$

So, -x = -y/2, therefore y = 2x. Substituting into $F_{\lambda} = 0$ yields $2x + 4(2x) - 30 = 10x - 30 = 0 \Rightarrow x = 3, y = 6$. The maximum value is then $f(3, 6) = 3^2 + 6^2 = 45$.

x = _____ **3**____

Full solution:

y = _____6

Full solution:

The value of f at the minimum is _____ 45

EXTRA CREDIT QUESTION

22. Find the Gini index of income concentration for the Lorenz curve with equation:

$$f(x) = xe^{x-1}$$

[10]

Full solution:

The Gini index is:

$$GI = 2\int_0^1 [x - f(x)] \, dx = 2\int_0^1 [x - xe^{x-1}] \, dx = 2\int_0^1 x \, dx - 2\int_0^1 xe^{x-1} \, dx$$

Integrate by parts to find an antiderivative for the second integral:

$$u = x \Rightarrow du = dx$$
 and $dv = e^{x-1} dx \Rightarrow v = e^{x-1}$

Use the integration by parts formula:

$$\int u \, dv = uv - \int v \, du = xe^{x-1} - \int e^{x-1} \, dx = xe^{x-1} - e^{x-1}$$

Now evaluate the definite integral using the antiderivative above:

$$2\int_{0}^{1} x \, dx - 2\int_{0}^{1} x e^{x-1} \, dx = 2\frac{x^{2}}{2}\Big|_{0}^{1} - 2\left(xe^{x-1} - e^{x-1}\right)\Big|_{0}^{1}$$
$$= 2\left(\frac{1^{2}}{2} - \frac{0^{2}}{2}\right) - 2\left[\left(e^{0} - e^{0}\right) - \left(0 - e^{-1}\right)\right]$$
$$= 2(1/2) - 2(e^{-1})$$
$$= 1 - \frac{2}{e}$$
$$\approx 0.264$$

The Gini index is _____ 0.264