# MTH 131: Mathematical Analysis for Management, Fall 2017

# Midterm 2

Name: \_\_\_\_\_

Student Number: \_\_\_\_\_

Answer the questions in the spaces provided on the question sheets.

# Show all of your work.

If you run out of room for an answer, continue on the back of the page.

You are allowed to use a non-graphing calculator.

You are allowed a one page formula sheet.

| Page   | Points | Score |
|--------|--------|-------|
| 3      | 10     |       |
| 4      | 9      |       |
| 5      | 7      |       |
| 6      | 9      |       |
| 7      | 8      |       |
| 8      | 9      |       |
| 9      | 5      |       |
| 10     | 11     |       |
| 11     | 12     |       |
| 12     | 6      |       |
| 13     | 6      |       |
| 14     | 8      |       |
| Total: | 100    |       |

1. If \$3000 is invested at 8.3% compounded continuously, graph the amount in the account as [2] a function of time for a period of 10 years.

Choose the correct graph.

# Full solution:

Choose the graph with a y-intercept of \$3000 that shows exponential growth.



[4]

[4]

- 2. Recently, a certain bank offered a 5-year CD that earns 6.51% compounded continuously.
  - (a) If \$10,000 is invested in this CD, how much will it be worth in 5 years?

Full solution:  

$$A = Pe^{rt}$$
  $P = 10,000, r = 0.0651, t = 5$   
 $= 10000e^{0.0651(5)}$   
 $= 83112.69$ 

Approximately \$ \_\_\_\_\_ **13847.23** (Round to the nearest cent)

(b) How long will it take for the account to be worth \$25,000?

# Full solution:

 $A = Pe^{rt} \qquad A = 25,000, P = 10,000, r = 0.0651$   $25000 = 10000e^{0.0651t}$   $\frac{25000}{10000} = e^{0.0651t}$   $2.5 = e^{0.0651t}$   $\ln(2.5) = 0.0651t$   $t = \ln(2.5)/0.0651$ = 14.08

Approximately \_\_\_\_\_\_ years (Round to two decimal places as needed).

3. Find 
$$f'(x)$$
 for  $f(x) = 7e^x - \frac{1}{x^8} + 5\ln x$ .

# Full solution: $f'(x) = \frac{d}{dx}(7e^x - \frac{1}{x^8} + 5\ln x) = 7\frac{d}{dx}e^x - \frac{d}{dx}x^{-8} + 5\frac{d}{dx}\ln x = 7e^x + \frac{8}{x^9} + \frac{5}{x}$

$$f'(x) = \underline{7e^x + 8/x^9 + 5/x}$$
Find  $\frac{dy}{dy}$  for  $x = 4\log x$ 

4. Find  $\frac{dy}{dx}$  for  $y = 4 \log_3 x$ .

# Full solution:

$$\frac{d}{dx}\log_b x = \frac{1}{x\ln b},$$
 so  $\frac{d}{dx}4\log_3 x = 4\frac{1}{x\ln 3} = \frac{4}{x\ln 3}$ 

$$\frac{dy}{dx} = \underline{4/(x\ln 3)}$$

5. Find 
$$\frac{dy}{dx}$$
 for  $y = 23^x$ .

# Full solution: $\frac{d}{dx}b^x = b^x \ln b$ , so $\frac{d}{dx}23^x = 23^x \ln 23$

$$\frac{dy}{dx} = \underline{\qquad \qquad 23^x \ln 23}$$

6. Find f'(x) for  $f(x) = 12x^2e^x$ .

# Full solution:

By product rule,

$$\frac{d}{dx}(12x^2)(e^x) = 12x^2\frac{d}{dx}(e^x) + e^x\frac{d}{dx}(12x^2) = 12x^2(e^x) + e^x(24x) = 12xe^x(x+2)$$

$$f'(x) = \underline{12x^2e^x + 24xe^x}$$

[3]

[2]

[2]

[2]

7. Use the quotient rule to find the derivative of  $y = \frac{6x^2 + 5}{x^2 + 4}$ 

#### **Full solution:**

By quotient rule,

$$\frac{d}{dx}\frac{6x^2+5}{x^2+4} = \frac{(x^2+4)\frac{d}{dx}(6x^2+5) - (6x^2+5)\frac{d}{dx}(x^2+4)}{(x^2+4)^2}$$
$$= \frac{(x^2+4)(12x) - (6x^2+5)(2x)}{(x^2+4)^2}$$
$$= \frac{(12x^3+48x) - (18x^3+10x)}{(x^2+4)^2}$$
$$= \frac{38x}{(x^2+4)^2}$$

$$y' = \underline{38x/(x^2+4)^2}$$

8. Find f'(x) for  $f(x) = (5 - 8\sqrt{x})^{10}$ .

# Full solution: By general power rule, $\frac{d}{dx}[u(x)]^n = n[u(x)]^{n-1}u'(x)$ . Let $u(x) = 5 - 8\sqrt{x}$ , so $u'(x) = \frac{d}{dx}(5 - 8x^{1/2} = -4x^{-1/2})$ , and: $\frac{d}{dx}(5 - 8\sqrt{x})^{10} = 10(5 - 8\sqrt{x})^9(-4x^{-1/2}) = -40(5 - 8\sqrt{x})^9/\sqrt{x}$

$$f'(x) = -40(5 - 8\sqrt{x})^9 / \sqrt{x}$$

9. Find f'(x) for  $f(x) = 7\ln(5+6x^2)$ .

# Full solution:

By chain rule, 
$$\frac{d}{dx} \ln[f(x)] = \frac{1}{f(x)} f'(x)$$
. Let  $f(x) = 5 + 6x^2$ , so:  
 $\frac{d}{dx} 7 \ln(5 + 6x^2) = 7 \frac{1}{5 + 6x^2} \frac{d}{dx} (5 + 6x^2) = \frac{7}{5 + 6x^2} (12x) = \frac{84x}{5 + 6x^2}$ 

$$f'(x) = \underline{\qquad 84x/(5+6x^2)}$$

[2]

[2]

- 10. For  $f(x) = \frac{1}{6}e^{2x^3 9x^2 + 12x + 1}$ :
  - (a) Find f'(x).

Full solution: By chain rule,  $\frac{d}{dx}e^{f(x)} = e^{f(x)}f'(x)$ . Let  $f(x) = 2x^3 - 9x^2 + 12x + 1$ , so  $\frac{d}{dx}\frac{1}{6}e^{2x^3 - 9x^2 + 12x + 1} = \frac{1}{6}e^{2x^3 - 9x^2 + 12x + 1}\frac{d}{dx}(2x^3 - 9x^2 + 12x + 1)$  $= \frac{1}{6}e^{2x^3 - 9x^2 + 12x + 1}(6x^2 - 18x + 12)$  $= (x^2 - 3x + 2)e^{2x^3 - 9x^2 + 12x + 1}$  $= (x - 1)(x - 2)e^{2x^3 - 9x^2 + 12x + 1}$ 

 $f'(x) = \underline{(x^2 - 3x + 2)e^{2x^3 - 9x^2 + 12x + 1}}$ 

(b) Find the equation of the tangent line to the graph of f when x = 0

# Full solution:

$$f(0) = \frac{1}{6}e^{2(0)^3 - 9(0)^2 + 12(0) + 1} = e/6$$
  
$$f'(0) = ((0)^2 - 3(0) + 2)e^{2(0)^3 - 9(0)^2 + 12(0) + 1} = 2e$$

Plugging into the slope-intercept form y = mx + b with m = 2e, b = e/6, yields

$$y = 2ex + e/6$$

 $y = \underline{\qquad \qquad y = 2ex + e/6}$ 

(c) Find the value(s) of x where the tangent line is horizontal.

#### Full solution:

The tangent line is horizontal when f'(x) = 0, so  $(x - 1)(x - 2)e^{2x^3 - 9x^2 + 12x + 1} = 0$ , Since  $e^{2x^3 - 9x^2 + 12x + 1} > 0$  for all x, this means (x - 1)(x - 2) = 0, so x = 1 or x = 2.

 $\sqrt{}$  The tangent line is horizontal at x = \_\_\_\_\_1, 2\_\_\_\_

- The tangent line is never horizontal.
- 11. If it is possible to solve for y in terms of x, do so:  $4x + 6y = e^y$ .

#### Full solution:

Can't be done.

○ y = \_\_\_\_\_

 $\sqrt{}$  It is impossible to solve the equation for y in terms of x.

[2]

[2]

[3]

- 12. For the equation  $y^2 + 4y + 5x = 0$ :
  - (a) Use implicit differentiation to find y'.

#### Full solution:

Differentiate each term with respect to x, using the chain rule for  $y^2$ :

$$\frac{d}{dx}(y^2 + 4y + 5x) = \frac{d}{dy}(y^2)\frac{dy}{dx} + 4\frac{dy}{dx} + 5\frac{d}{dx}x = 2yy' + 4y' + 5 = 0$$

Solve for y':

$$2yy' + 4y' + 5 = 0 \Rightarrow (2y+4)y' = -5 \Rightarrow y' = \frac{-5}{2y+4}$$

 $y' = \underline{-5/(2y+4)}$ 

(b) Evaluate y' at the point (-1, 1).

#### Full solution:

$$\frac{-5}{2y+4} = \frac{-5}{2(1)+4} = -\frac{5}{6}$$

y'(-1,1) = -5/6

13. Assume that x = x(t) and y = y(t). Find  $\frac{dx}{dt}$  using the following information:

$$x^{2} + y^{2} = 5.8; \frac{dy}{dt} = -2$$
 when  $x = -1.8$  and  $y = 1.6$ .

# Full solution:

Differentiate each term with respect to t, using the chain rule for  $x^2$  and  $y^2$ :

$$\frac{d}{dx}(x^2)\frac{dx}{dt} + \frac{d}{dy}(y^2)\frac{dy}{dt} = 0 \Rightarrow 2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$$

Find dx/dt when dy/dt = -2, x = -1.8, and y = 1.6:

$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0 \Rightarrow 2(-1.8)\frac{dx}{dt} + 2(1.6)(-2) = 0 \Rightarrow \frac{dx}{dt} = -3.2/1.8 = -\frac{16}{9} = 1.\overline{7}$$

 $\frac{dx}{dt} = \underline{\qquad -16/9 = 1.\overline{7}}$ 

[4]

[1]

[3]

- 14. For f(x) = 195 + 54x:
  - (a) Find the percentage rate of change of f(x).

#### **Full solution:**

The percentage rate of change of f(x) is

$$100f'(x)/f(x) = 100\frac{54}{195 + 54x} = \frac{5400}{195 + 54x}$$

The percentage rate of change is 5400/(195+54x)

(b) Evaluate the percentage rate of change of f(x) when x = 5.

Full solution:

$$\frac{5400}{195+54x} = \frac{5400}{195+54(5)} = \frac{5400}{465} = 11.6\%$$

The percentage rate of change when x = 5 is \_\_\_\_\_\_%. (Round to 1 decimal place)

- 15. Using the price-demand equation x = f(p) = 15,000 650p:
  - (a) Find E(p), the elasticity of demand.

#### **Full solution:**

$$E(p) = -\frac{pf'(p)}{f(p)} = -\frac{p(-650)}{15000 - 650p} = \frac{13p}{300 - 13p}$$

$$E(p) = \underline{13p/(300 - 13p)}$$

(b) Evaluate E(p) when p = 20.

#### **Full solution:**

$$E(20) = \frac{13(20)}{300 - 13(20)} = \frac{260}{40} = 6.5$$

E(20) =\_\_\_\_6.5

(c) Is the demand inelastic, elastic, or have unit elasticity when p = 20?

#### Full solution:

Demand is inelastic if 0 < E(p) < 1, elastic if E(p) > 1, and unit if E(p) = 1.

○ Inelastic

 $\sqrt{}$  Elastic

○ Unit elasticity

[3]

[1]

[3]

[1]

[1]

(d) If prices are increased when p = 20, will revenues increase, decrease, or stay the same?

[1]

#### Full solution:

When demand is elastic, price increases cause revenues to decrease.

- Revenues will increase
- $\sqrt{}$  Revenues will decrease
- $\bigcirc$  Revenues will stay the same
- 16. f(x) is continuous on  $(-\infty, \infty)$  and has critical numbers at x = a, b, c, and d. Use the sign chart below for f'(x) to determine whether f has a local maximum, a local minimum, or neither at each critical number.



17. Find the intervals on which f(x) is increasing, the intervals on which f(x) is decreasing, and the local extrema for  $f(x) = -3x^2 - 24x - 20$ .

Type your answers using interval notation, and use a comma to separate answers as needed.

(a) Where is f(x) increasing?

# Full solution:

The function is increasing when f'(x) > 0. Since f'(x) = -6x - 24 = -6(x + 4), then:

$$f'(x) > 0 \Rightarrow -6(x+4) > 0 \Rightarrow x+4 < 0 \Rightarrow x < -4$$

- $\sqrt{}$  The function is increasing on \_\_\_\_\_( $-\infty$ , -4)\_\_\_\_\_
- $\bigcirc$  There is no solution.
- (b) Where is f(x) decreasing?

# Full solution:

The function is decreasing when f'(x) < 0:

$$f'(x) < 0 \Rightarrow -6(x+4) < 0 \Rightarrow x+4 > 0 \Rightarrow x > -4$$

- $\sqrt{}$  The function is decreasing on \_\_\_\_\_(-4,  $\infty$ )\_\_\_\_\_
- $\bigcirc$  There is no solution.
- (c) Which statement is true regarding the local extrema?

# Full solution:

The function changes increasing  $\rightarrow$  decreasing at x = -4, so this is a local maximum.

- $\bigcirc$  The function has a local minimum at x =\_\_\_\_\_
- $\sqrt{}$  The function has a local maximum at x =\_\_\_\_\_4
- $\bigcirc$  The function has no local extrema.
- 18. Find the second derivative for the function  $f(x) = 2x^3 + 3\ln x + e^x$ .

#### Full solution:

$$f(x) = 2x^{3} + 3\ln x + e^{x}$$
  

$$f'(x) = 6x^{2} + \frac{3}{x} + e^{x}$$
  

$$f''(x) = 12x - \frac{3}{x^{2}} + e^{x}$$
  

$$= 6x^{2} + 3x^{-1} + e^{x}$$
  

$$= 12x - 3x^{-2} + e^{x}$$

$$f''(x) = \underline{12x - 3/x^2 + e^x}$$

[3]

[2]

[3]

[3]

- 19. For the function  $f(x) = x^3 3x^2 + 3x 1$ , find the intervals on which the graph of f is concave upward, the intervals on which the graph of f is concave downward, and the inflection points.
  - (a) For what interval(s) of x is the graph of f concave upward?

#### Full solution:

Concavity depends on the sign of the second derivative:

$$f(x) = x^3 - 3x^2 + 3x - 1 \qquad \Rightarrow f'(x) = 3x^2 - 6x + 3 \qquad \Rightarrow f''(x) = 6x - 6 = 6(x - 1)$$

[3]

[3]

f''(x) > 0 when x > 1, so the graph of f is concave upward for x > 1.

- $\sqrt{}$  The graph is concave upward on the interval(s) \_\_\_\_\_ (1,  $\infty$ )
- The graph is never concave upward.
- (b) For what interval(s) of x is the graph of f concave downward?

#### Full solution:

f''(x) < 0 for x < 1, so the graph of f is concave downward for x < 1.

- $\sqrt{}$  The graph is concave downward on the interval(s) \_\_\_\_\_ ( $-\infty$ , 1) \_\_\_\_
- The graph is never concave downward.
- (c) Determine the x-coordinates of any inflection points of the graph of f(x). Use a comma [2] to separate your answers.

#### Full solution:

Concavity changes when x = 1, so there is an inflection point when x = 1.

- $\sqrt{}$  There are inflection points at x =\_\_\_\_\_1
- $\bigcirc$  There are no inflection points.

20. Use L'Hôpital's rule to find the limit  $\lim_{x\to 9} \frac{x^2 - x - 72}{x - 9}$ . Use  $-\infty$  and  $\infty$  when appropriate. [4]

#### Full solution:

$$\lim_{x \to 9} x^2 - x - 72 = 9^2 - 9 - 72 = 0 \quad \text{and} \quad \lim_{x \to 0} x - 9 = 9 - 9 = 0$$

So, L'Hôpital's rule applies:

$$\lim_{x \to 0} \lim_{x \to 9} \frac{x^2 - x - 72}{x - 9} \stackrel{\text{L'Hôp}}{=} \lim_{x \to 9} \frac{\frac{d}{dx}(x^2 - x - 72)}{\frac{d}{dx}(x - 9)} = \lim_{x \to 9} \frac{2x - 1}{1} = \frac{2(9) - 1}{1} = 17$$

$$\sqrt{\lim_{x \to 9} \frac{x^2 - x - 72}{x - 9}} = -17$$

O The limit does not exist.

21. Use L'Hôpital's rule to find the limit  $\lim_{x\to 0} \frac{e^{3x}-1}{2x}$ . Use  $-\infty$  and  $\infty$  when appropriate.

#### **Full solution:**

$$\lim_{x \to 0} e^{3x} - 1 = e^{3(0)} - 1 = 0 \quad \text{and} \quad \lim_{x \to 0} 2x = 2(0) = 0$$

So, L'Hôpital's rule applies:

$$\lim_{x \to 0} \frac{e^{3x} - 1}{2x} \stackrel{\text{L'Hôp}}{=} \lim_{x \to 0} \frac{\frac{d}{dx}(e^{3x} - 1)}{\frac{d}{dx}(2x)} = \lim_{x \to 0} \frac{3e^{3x}}{2} = \frac{3e^0}{2} = \frac{3}{2}$$

$$\sqrt{\lim_{x \to 0} \frac{e^{3x} - 1}{2x}} =$$
\_\_\_\_\_3/2

- $\bigcirc$  The limit does not exist.
- 22. Refer to the graph shown below. Find the absolute minimum and the absolute maximum over the interval [7, 12]. Round to the nearest integer.



(a) Identify the absolute minimum.

#### Full solution:

From the graph, the smallest value of f(x) over [7, 12] is when f(x) = 0 and x = 12.

- $\sqrt{}$  The absolute minimum is <u>0</u> at x = <u>12</u>
- $\bigcirc$  There is no absolute minimum.

[2]

[4]

(b) Identify the absolute maximum.

# Full solution: From the graph, the largest value of f(x) over [7, 12] is when f(x) = 5 and x = 9.

- $\sqrt{}$  The absolute maximum is <u>5</u> at x = 9
- $\bigcirc$  There is no absolute maximum.
- 23. Find the absolute maximum and absolute minimum values of the function  $f(x) = x^2 10x 8$  over the interval [1, 8], and indicate the x-values at which they occur.
  - (a) Identify the absolute maximum.

# Full solution:

The absolute maximum and absolute minimum values will occur either at critical points of f or at endpoints of the closed interval [0, 7]. We have:

$$f(x) = x^2 - 10x - 8 \quad \Rightarrow f'(x) = 2x - 10 = 2(x - 5)$$

The only critical point is at x = 5. Check the value the function at this point and the endpoints:

x 1 5 8 f(x) -17 -33 -24

From the table, the maximum value of f is when x = 1.

The absolute maximum value is \_\_\_\_\_ at x =\_\_\_\_\_ 1

(b) Identify the absolute minimum.

# Full solution:

From the table, the minimum value of f is when x = 5.

The absolute minimum value is \_\_\_\_\_3 at  $x = ___5$ 

[2]

[2]

24. A wall is to be built to enclose a rectangular area of 300 square feet. The wall along three sides is to be built of brick that costs \$4 per foot. The fourth wall is to be built of wood that costs \$2 per foot. Find the dimensions of the rectangle that will allow for the least expensive wall to be built, and the total cost of the wall.

#### Full solution:

1. Let the side made of wood costing \$2 per foot be x, and the other side be y. Then:

Area 
$$= xy = 300 \quad \Rightarrow y = \frac{300}{x} \quad x > 0, \quad y > 0$$

and we want to minimize the total cost:

Cost = 
$$2x + 4x + 4y + 4y = 6x + 8y = 6x + 8\frac{300}{x} = 6x + \frac{2400}{x} = C(x)$$

2. Find the critical points of C(x):

$$C'(x) = 6 - \frac{2400}{x^2}$$
 so  $C'(x) = 0 \Rightarrow x^2 = \frac{2400}{6} = 400 \Rightarrow x = 20$ 

3. By the second-derivative test:

$$C''(x) = \frac{d}{dx} \left( 6 - 2400x^{-2} \right) = -2400(-2)x^{-3} = \frac{24800}{x^3}$$

Since C''(x) > 0 for all x > 0, the function C(x) has an absolute minimum when x = 20 and y = 300/20 = 15.

- 4. The wood side is therefore 20 ft and the other side is 15 ft.
- 5. The total cost of the wall is  $C(20) = 6(20) + \frac{2400}{20} = 120 + 120 = \$240.$
- (a) The wall made of wood is \_\_\_\_\_\_ ft long and the other side is \_\_\_\_\_\_ [6] ft long.

[2]

(b) The total cost of the wall is \$ \_\_\_\_\_ 240