
MTH 337

Introduction to

Scientific and Mathematical Computing

Fall 2015

Instructor: Adam Cunningham

University at Buffalo
Department of Mathematics

Contents

1 Getting Started 4

1.1 Course Description . 4

1.2 Install Python . 4

1.3 Install LibreOffice . 5

1.4 Weekly Reports . 5

1.4.1 Graphics . 6

1.4.2 Fonts . 6

1.4.3 Using Styles . 6

1.5 IPython Notebook . 6

1.5.1 Magics . 8

1.5.2 Markdown . 9

1.5.3 LaTeX . 9

2 Programming Python 10

2.1 Numbers . 10

2.2 Booleans . 11

2.3 Strings . 11

2.4 Type Conversions . 13

2.5 Variable Names . 14

2.6 Modules . 15

2.7 Lists . 17

2.8 Tuples . 19

2.9 Sets . 20

2.10 Dictionaries . 21

2.11 Boolean Expressions . 22

2.12 If Statements . 23

2.13 For Loops . 25

2.14 While Loops . 27

2.15 Break and Continue . 27

2.16 Comprehensions . 28

2.17 Functions . 28

2.18 Reading and Writing Files . 31

2.19 Comments . 32

2

3 NumPy 33

3.1 Array Creation . 34

3.2 Array Properties . 36

3.3 Array Operations . 37

3.4 Accessing Arrays . 39

4 Matplotlib 41

4.1 Basic Plotting . 42

4.2 A More Complex Plotting Example . 43

4.3 Bar Plots . 44

4.4 Histograms . 45

4.5 Contour Plots . 46

4.6 Multiple Plots . 47

4.7 Formatting Mathematical Expressions . 48

5 Additional Topics 49

5.1 Loading Numerical Files . 49

5.2 Animation . 50

5.3 Images . 52

5.4 Random Number Generation . 53

5.5 Sound Files . 54

5.6 Linear Programming . 55

6 Programming Style 56

6.1 Choosing Good Variable Names . 56

6.2 Choosing Good Function Names . 57

6.3 No “Magic Numbers” . 57

6.4 Comments . 57

6.5 Errors and Debugging . 58

7 Further Reading 59

3

1 Getting Started

1.1 Course Description

This course covers the following areas:

� Programming using Python, the scientific computing package NumPy, and the plot-
ting library Matplotlib.

� Scientific computing methods used in number theory, random number generation,
initial value problems, dynamical systems, root-finding, linear regression and opti-
mization.

� Using computers to explore topics in the mathematical and natural sciences.

� Presentation of experiments, observations and conclusions in the form of written
reports.

1.2 Install Python

We will be using Python 2.7. It is recommended that you use the Anaconda distribution,
which is available free on Windows, Mac and Linux and contains all the packages we need
(NumPy, SciPy, IPython, Matplotlib).

4

https://store.continuum.io/cshop/anaconda/

CHAPTER 1. GETTING STARTED 1.3. INSTALL LIBREOFFICE

1.3 Install LibreOffice

Weekly reports must be written using LibreOffice Writer. LibreOffice is a free, cross-
platform suite of applications including the word processor Writer, which is similar to
Microsoft Word.

1.4 Weekly Reports

Reports will be submitted every week on UBlearns as a file “〈lastname〉〈number〉.odt”
(e.g. “cunningham01.odt”). The final report will be a pdf compilation of all the weekly
reports, including a title page and table of contents.

Reports usually need to include:

� An introduction. The topic should explained in a way that would be comprehensible
to another member of the class.

� A clear statement of the specific question or task.

� A description of the approach used to tackle the question or task.

� Clearly presented results, including appropriate diagrams and plots.

� An interpretation of the results.

� An appropriate conclusion.

� If appropriate, a list of references to books, articles and websites consulted.

� A complete listing of the Python code used to generate all figures and data used in
the report. This should be presented in a way that can be directly copied, pasted,
and run by the instructor.

Extra credit will be assigned for extra or unusual work or insight.

5

https://www.libreoffice.org/

CHAPTER 1. GETTING STARTED 1.5. IPYTHON NOTEBOOK

1.4.1 Graphics

Reports are graphics-intensive, and will contain a lot of embedded images. Plots made
with Matplotlib can be saved as .png (Portable Network Graphics) files, then embedded
in a LibreOffice document using Insert → Image → From File. Make sure that Insert
as Link is not checked (this should be the default anyway). Reports are submitted on
UBlearns as a single document, so they should contain no dependencies on other files.

Graphs should be labelled in a way that makes the content of the graph clear. They
should include the following information (at a minimum):

� Labels for the x- and y-axes, specifying the units when displaying quantities.

� A legend below the graph. Although graphs can be given a title when the graph is
created, this information then becomes part of the graph and can’t be changed later.
Adding this information later using LibreOffice means that the font and style will be
consistent across the report, and the description can be easily changed.

� A number for the legend, which can be used to refer to the graph in the report.

1.4.2 Fonts

Feel free to change the default fonts to suit your own tastes. However:

� Try not to mix up too many different fonts in one document. A good rule of thumb
is to limit the number of different fonts to two or three.

� Titles, subtitles etc can be a different font to the body text.

� Use a fixed-width font such as Courier for computer code. Indenting matters in
Python, and is an intrinsic part of the language. Using a fixed-width font ensures
that code blocks that are supposed to line up actually do line up on the screen.

1.4.3 Using Styles

Any changes to fonts, font sizes etc should be done by modifying existing styles or creating
new ones. This will keep a consistent look across the whole report, save the work of
repeated font changes, and allow changes to a style to be made in just one place.

� Modify the built-in styles using Format→ Styles and Formatting, then right click
Modify on the style.

� Create a new style (e.g. for Python code) using Format→ Styles and Formatting,
then right click New on the style you want to inherit from.

1.5 IPython Notebook

The development enviroment we will be using is IPython notebook. This provides:

� An interactive environment for writing and running code.

� A way to integrate code, text and graphics in a single document.

6

https://ipython.org/ipython-doc/3/notebook/index.html

CHAPTER 1. GETTING STARTED 1.5. IPYTHON NOTEBOOK

A new IPython notebook opens in a web browser, and looks as follows:

Title bar

Menu bar

Tool bar

Cell

The notebook consists of:

� A Title bar, containing the name of the notebook.

� A Menu bar, containing all the functions available in the notebook.

� A Tool bar, for easy access to the most commonly-used functions.

� A list of cells, containing code or text, and the results of executing the code.

The menu bar and tool bar contain the following functions.

Open, save, and modify notebooks

Edit, move, and select cells

Toggle header and toolbar

Insert new cells into notebook

Run cells and set cell type

Interrupt or restart Python

Help with Python and libraries

Save book

Open cell

Cut cell

Copy cell

Paste cell

Insert cell above

Insert cell below

Run cell

Halt cell

Set celltype

Cell toolbar

7

CHAPTER 1. GETTING STARTED 1.5. IPYTHON NOTEBOOK

Code and text are entered in cells, which come in three important types:

� Code cells, which contain Python code.

– Click on a cell with the mouse to start entering code.

– Enter adds a new line in the cell, without executing the code.

– Shift-Enter (or clicking the “Play” button in the toolbar, or Cell → Run
in the menubar) executes the code in the cell and moves the cursor to the next
cell.

– Tab brings up help for the function the cursor is currently in.

� Markdown cells contain text formatted using the Markdown language, and mathe-
matical formulas defined using LaTeX math syntax.

� Heading cells contain headings to organize the notebook.

The type can be selected by either using the “Cell Type” pull-down menu in the
toolbar, or Cell → Cell Type in the menubar.

1.5.1 Magics

Magics are instructions to IPython that perform specialized tasks. They are entered and
executed in code cells, and prefaced by “%” for a line magic (which just applies to one
line) or “%%” for a cell magic (which applies to the whole cell). The main ones we will
be using are:

� %pylab inline imports numpy and matplotlib (making the functions and variables

in these modules available to us), with plots drawn inline (in the notebook itself).

� %pylab imports numpy and matplotlib, with plots drawn in separate windows so
they can be resized and saved.

� %run 〈file〉 executes the Python commands in 〈file〉.

� %timeit 〈code〉 records the time it takes to run a line of Python code.

� %%timeit records the time it takes to run all the Python code in a cell.

An example of timing code execution using %%timeit is as follows,

Python Code Explanation

In [1]: %%timeit x = range(10000)

max(x)

1000 loops, best of 3: 382 µs per

loop

The first line “x =
range(10000)” is run once
but not timed. The “max(x)”
code is timed

8

https://ipython.org/ipython-doc/dev/interactive/magics.html

CHAPTER 1. GETTING STARTED 1.5. IPYTHON NOTEBOOK

1.5.2 Markdown

Text can be added to IPython notebooks using Markdown cells. Markdown is a language
that can be used to specify formatted text such as italic and bold text, lists, hyperlinks,
tables and images. Some examples are shown below.

Markdown How it prints

An h1 header

============
An h1 header

An h2 header

An h2 header

italic italic

bold bold

This is a bullet list

* First item

* Second item

This is a bullet list

� First item

� Second item

This is an enumerated list

1. First item

2. Second item

This is an enumerated list

1. First item

2. Second item

A horizontal line

A horizontal line

1.5.3 LaTeX

Mathematical expressions in Markdown cells are specified using the typesetting language

LaTeX. These expressions are identified using: $〈formula〉$ for an inline formula (one

displayed within a line of text), or codebox$$〈formula〉$$ for a larger formula displayed
on a separate line. Some of the most useful options are shown below.

〈formula〉 How it prints

x^2 x2

x_1 x1

\frac{1}{2} 1
2

\alpha, \beta, \omega α, β, ω

\sum_{i = 1}^n
∑n

i=1

\int_a^b
∫ b

a

\sqrt{a + b}
√
a+ b

\bar{x} x̄

(x + y)^2 (x+ y)2

\{1, 2, \ldots, n\} {1, 2, . . . , n}

9

2 Programming Python

Python is a flexible and powerful high-level language that is well suited to scientific and
mathematical computing. It has been designed with a clear and expressive syntax with a
focus on ensuring that code is readable.

2.1 Numbers

The basic numerical types used in Python are:

� Integers.

� Floats (reals).

� Complex numbers (pairs of floats).

Python will automatically convert numbers from one type to another when appropriate.
For example, adding two integers yields an integer, but adding an integer and a float yields
a float. The main arithmetic operations are +, -, *, /, **, and %, illustrated below.

Python Code Explanation

In [1]: 3 + 2

5

Addition

In [2]: 3 - 2

1

Subtraction

In [3]: 3 * 2

6

Multiplication

In [4]: 3 / 2

1

Integer division (truncates -
the remainder is discarded)

In [5]: 3. / 2

1.5

Float division (a decimal point
turns an integer into a float)

In [6]: 3**2

9

Exponentiation (not 3^2)

In [7]: 26 % 5

1

Remainder (modulo division)

In [8]: abs(-88)

88

abs returns the absolute value

10

CHAPTER 2. PROGRAMMING PYTHON 2.2. BOOLEANS

In [9]: 1 + 2j

(1+2j)

Generate a complex number
(j is used instead of i)

In [10]: complex(1, 2)

(1+2j)

Another way to generate a
complex number

In [11]: (1+2j).real

1.0

real returns the real part of a
complex number

In [12]: (1+2j).imag

1.0

imag returns the imaginary
part of a complex number

In [13]: abs(3+4j)

5.0

abs returns the modulus when
applied to a complex number

Operations are evaluated in standard order - Parentheses, Exponentiation, Multiplication,
Division, Addition, Subtraction. To avoid possible ambiguity, use parentheses to make
the order of evaluation clear.

2.2 Booleans

Python also has a Boolean type, which only takes the values True or False. These also
work like numbers, where True has the value 1 and False the value 0.

Python Code Explanation

In [1]: True or False

True

Logical disjunction

In [2]: True and False

False

Logical conjunction

In [3]: not True

False

Logical negation

In [4]: True + 41

42

True has the numerical value
1.

In [5]: False * 41

0

False has the numerical
value 0.

2.3 Strings

Strings are sequences of characters. They are identified by surrounding quote marks.

� To generate a string, enclose a sequence of characters in either single ('') or double
(””) quotes (Python doesn’t care which).

� A single character in Python is just a one-element string.

11

CHAPTER 2. PROGRAMMING PYTHON 2.3. STRINGS

� Python strings are immutable - once defined, they can’t be changed. They can of
course still be copied or operated on to create new strings.

Python Code Explanation

In [1]: print "abc"

abc

print outputs text to the
screen (discarding the quotes)

In [2]: "abc" + "def"

"abcdef"

Adding two strings makes a
new string by concatenation

In [3]: "abc"*3

"abcabcabc"

Multiplying a string by an in-
teger repeats the string

In [4]: print "I love 'MTH 337'!"

I love 'MTH 337'!

Embedding quote marks
within a string

A ”\” within a string is used to specify special characters such as newlines and tabs.

Python Code Explanation

In [1]: string1 = "abc \ndef"
print string1

abc

def

The ”\n” character specifies
a newline

In [2]: string2 = "abc \tdef"
print string2

abc def

The ”\t” character specifies a
tab

Strings elements are accessed using square brackets, [].

� Indexing obtains characters from the string using a single integer to identify the
position of the character.

� Slicing obtains a substring using start:stop:step to identify which characters to
select.

� Indexing and slicing is zero-based - the first character is at position 0.

� Indexing and slicing is “up to but not including” the stop position.

� A “:” can be used to select all characters either before or after a given position.

Python Code Explanation

In [1]: "abcde"[1]

"b"

Indexing returns the character
at index 1 (indices start at 0,
not 1)

12

CHAPTER 2. PROGRAMMING PYTHON 2.4. TYPE CONVERSIONS

In [2]: "abcde"[-1]

"e"

Negative indices count back-
wards from the end of the
string

In [3]: "abcde"[1:4]

"bcd"

Slicing a string from position
1 up to (but not including)
position 4

In [4]: "abcde"[2:]

"cde"

Select all characters from po-
sition 2 to the end of the
string

In [5]: "abcde"[:2]

"ab"

Select all characters from the
start of the string up to (but
not including) position 2

In [6]: "abcde"[::2]

"ace"

Select every second character
from the whole string

In [7]: "abcdefg"[1:5:2]

"bd"

Select every second character
from positions 1 up to 5

In [8]: "abcde"[::-1]

"edcba"

Reversing a string by reading
it backwards

Strings can be formatted using the format function. This allows “replacement fields”
surrounded by curly brackets {} in a string to be replaced by some other data.

Python Code Explanation

In [1]: "{} {}".format("a", "b")

"a b"

“Replacement fields” {} are
filled in order by format

In [2]: "1st: {0}, 2nd: {1}".format(3,4)
"1st: 3, 2nd: 4"

The arguments to format can
also be identified by position,
starting at 0

2.4 Type Conversions

Objects can be explicitly converted from one type to another, as long as the conversion
makes sense. This is called type casting.

� Ints can be cast to floats, and both ints and floats can be cast to complex numbers.

� Complex numbers can’t be converted to ints or floats.

� Strings can be cast to numerical types, but only if the string represents a valid
number.

Casting is done using the functions bool, int, float, complex, and str.

13

CHAPTER 2. PROGRAMMING PYTHON 2.5. VARIABLE NAMES

Python Code Explanation

In [1]: bool(1)

True

Convert integer to boolean

In [2]: bool(42)

True

Any nonzero value counts as
True

In [3]: bool(0)

False

Zero equates to False

In [4]: bool("")

False

An empty string is also False

In [5]: int(2.99)

2

Convert float to integer (the
decimal part is discarded)

In [6]: int("22")

22

Convert string to int

In [7]: float("4.567")

4.567

Convert string to float

In [8]: complex("1+2j")

(1+2j)

Convert string to complex

In [9]: float(10)

10.0

Convert integer to float

In [10]: complex(10)

(10+0j)

Convert integer to complex
number

In [11]: str(True)

"True"

Convert boolean to string

In [12]: str(1)

"1"

Convert integer 1 to string
”1”

In [13]: str(1.234)

"1.234"

Convert float to string

2.5 Variable Names

Variable names can be used to refer to objects in Python. They:

� Must start with either a letter or an underscore.

� Are case sensitive. So value, VALUE, and Value all refer to different variables.

� Are assigned a value using “=”. The variable name goes to the left of the “=”, and
the value to assign on the right.

14

CHAPTER 2. PROGRAMMING PYTHON 2.6. MODULES

Python Code Explanation

In [1]: x = 5

print x

5

Assign x the value 5 (note
that “=” is used for assign-
ment, not “==”)

In [2]: y = x + 3

print y

8

Assign y the value of x + 3

In [3]: course = "MTH 337"

print course

MTH 337

course is a string (printed
without quotes)

In [4]: a, b = 2, 3

print a, b

2 3

Multiple variables can be as-
signed at the same time

In [5]: a, b = b, a

print a, b

3 2

Values of a and b are swapped
(the right hand side is evalu-
ated before the assignment)

In [6]: z = 3

z += 2

print z

5

Same as z = z + 2

In [7]: z -= 1

print z

4

Same as z = z - 1

In [8]: z *= 3

print z

12

Same as z = z * 3

In [9]: z /= 2

print z

6

Same as z = z / 2

In [10]: z %= 5

print z

1

Same as z = z % 5

2.6 Modules

A module is a file containing Python definitions and statements. These allow us to
use code created by other developers, and greatly extend what we can do with Python.
Since many different modules are available, it is possible that the same names are used
by different developers. We therefore need a way to identify which module a particular

15

CHAPTER 2. PROGRAMMING PYTHON 2.6. MODULES

variable or function came from.

The import statement is used to make the variables and functions in a module available
for use. We can either:

� Import everything from a module for immediate use.

� Import only certain named variables and functions from a module.

� Import everything from a module, but require that variable and function names be
prefaced by either the module name or some alias.

Python Code Explanation

In [1]: from math import pi

print pi

3.14159265359

pi is now a variable name that
we can use, but not the rest of
the math module

In [2]: from math import *

print e

2.71828182846

Everything in the math mod-
ule is now available

In [3]: import numpy

print numpy.arcsin(1)

1.57079632679

Everything in numpy can be
used, prefaced by “numpy”

In [4]: import numpy as np

print np.cos(0)

1.0

Everything in numpy can be
used, prefaced by the alias
“np”

If we want to know what a module contains, we can use the dir function. This returns a
list of all the variable and function names in the module.

Python Code Explanation

In [1]: import math

print dir(math)

[" doc ", " name ", " package ",

"acos", "acosh", "asin", "asinh",

"atan", "atan2", "atanh", "ceil",

"copysign", "cos", "cosh",

"degrees", "e", "erf", "erfc",

"exp", "expm1", "fabs", "factorial",

"floor", "fmod", "frexp", "fsum",

"gamma", "hypot", "isinf", "isnan",

"ldexp", "lgamma", "log", "log10",

"log1p", "modf", "pi", "pow",

"radians", "sin", "sinh", "sqrt",

"tan", "tanh", "trunc"]

The math module contains
all the standard mathematical
functions

16

CHAPTER 2. PROGRAMMING PYTHON 2.7. LISTS

2.7 Lists

List are a type of container - they contain a number of other objects. A list is an ordered
sequence of objects, identified by surrounding square brackets, [].

� To generate a list, enclose a sequence of objects (separated by commas) in square
brackets.

� List elements can be of any type, and can be of different types within the same list.

� Lists are mutable - once created, elements can be added, replaced or deleted.

Python Code Explanation

In [1]: mylist = [1, "a", 6.58]

print mylist

[1, "a", 6.58]

Use square brackets to create
a list

In [2]: len(mylist)

3

len returns the number of el-
ements in a list

In [3]: list1 = [1, 2, 3]

list2 = [4, 5, 6]

list1 + list2

[1, 2, 3, 4, 5, 6]

Adding two lists makes a new
list by concatenation

In [4]: list1 * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

Multiplying a list by an integer
repeats the list

In [5]: list3 = []

print list3

[]

list3 is an empty list

In [6]: list4 = list()

print list4

[]

Another way to create an
empty list

Lists can be indexed and sliced in the same way as strings, using square brackets.

Python Code Explanation

In [1]: primes = [2, 3, 5, 7, 11, 13, 17]

primes[1]

3

Access the element at index 1
(indexing starts with 0)

In [2]: primes[3:]

[7, 11, 13, 17]

List slicing, start at position
3, through to the end

In [3]: primes[:3]

[2, 3, 5]

List slicing, start at the begin-
ning, end at position 2

17

CHAPTER 2. PROGRAMMING PYTHON 2.7. LISTS

In [4]: primes[2:5]

[5, 7, 11]

List slicing, start at position
2, end at position 4

In [5]: primes[::-1]

[17, 13, 11, 7, 5, 3, 2]

One way to reverse a list

The range function generates a list of integers in a given range. The start, stop and
step parameters to range are similar to those used to slice lists and strings.

Python Code Explanation

In [1]: numbers = range(5)

print numbers

[0, 1, 2, 3, 4]

range(n) creates a list of n
consecutive integers, starting
at 0

In [2]: teens = range(13, 20)

print teens

[13, 14, 15, 16, 17, 18, 19]

range(start, stop) creates a
list of consecutive integers,
from start to stop - 1

In [3]: evens = range(0, 9, 2)

print evens

[0, 2, 4, 6, 8]

The third step argument to
range specifies the increment
from one integer to the next

In [4]: range(10, 0, -1)

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

range can also count back-
wards using a negative step
size

List elements can be changed, added, and deleted, modifying an existing list.

Python Code Explanation

In [1]: mylist = ["a", "b"]

mylist.append("c")

print mylist

["a", "b", "c"]

append adds an element to
the end of a list

In [2]: del(mylist[1])

print mylist

["a", "c"]

del deletes an element from a
list

In [3]: mylist.insert(1, "d")

print mylist

["a", "d", "c"]

insert inserts an element at a
given position

In [4]: mylist[1] = "e"

print mylist

["a", "e", "c"]

List elements can be changed
by assigning a new element at
a given index

18

CHAPTER 2. PROGRAMMING PYTHON 2.8. TUPLES

Lists can be sorted and reversed.

Python Code Explanation

In [1]: letters = ["a", "b", "c"]

letters.reverse()

print mylist

["c", "b", "a"]

reverse changing an existing
list, reversing the order of el-
ements

In [2]: numbers = [2, 10, 3, 26, 5]

print sorted(numbers)

[2, 3, 5, 10, 26]

sorted returns a sorted list,
but does not modify the ex-
isting list

In [3]: numbers.sort()

print numbers

[2, 3, 5, 10, 26]

sort sorts a list in place, mod-
ifying the existing list

In [4]: sorted(numbers, reverse=True)

[26, 10, 5, 3, 2]

The reverse keyword is used
to sort in descending order

The min and max functions find the smallest and largest items in a list.

Python Code Explanation

In [1]: numbers = [2, 10, 3, 26, 5]

print min(numbers), max(numbers)

2 26

min and max find the small-
est and largest items

2.8 Tuples

Tuples are containers like lists, with the difference being that they are immutable - once
defined, elements cannot be changed or added. Tuples are identified by surrounding
standard parentheses, ().

� To generate a tuple, enclose a sequence of objects (separated by commas) in standard
parentheses.

� Tuple indexing and slicing works in the same way as for lists and strings.

� It is an error to try to change a tuple element once the tuple has been created.

Tuples are simpler and more efficient than lists in terms of memory use and performance,
and are often preferred for “temporary” variables that will not need to be modified.

Python Code Explanation

In [1]: tuple1 = ("a", "b", "c")

print tuple1

("a", "b", "c")

Create a tuple using standard
parentheses

19

CHAPTER 2. PROGRAMMING PYTHON 2.9. SETS

In [2]: tuple1[2]

"c"

Elements can be indexed just
like lists or strings

In [3]: tuple1[1:]

("b", "c")

Slicing works the same way as
for lists or strings

Any comma-separated sequence of values defines a tuple, which can be used to assign
values to multiple variables at a time.

Python Code Explanation

In [1]: tuple2 = 1, 2, 3

print tuple2

(1, 2, 3)

A comma-separated sequence
of values defines a tuple

In [2]: (x, y) = (10, 20)

print "x =", x

print "y =", y

x = 10

y = 20

The variables on the left-hand
side are assigned to the values
on the right

In [3]: a, b = (2, 4)

print a, b

2 4

The parentheses are not
strictly necessary, and can be
discarded

2.9 Sets

Sets are containers with the same meaning they do in mathematics - unordered collections
of items with no duplicates. Sets are identified by surrounding curly brackets, {}.

� To generate a set, enclose a sequence of objects (separated by commas) in curly
brackets.

� Duplicates will be removed when creating a set or operating on existing sets.

� Sets can be used instead of lists when we know that each element is unique and
immutable (unchanging).

Python Code Explanation

In [1]: myset = {1, 2, 3}
print myset

set([1, 2, 3])

Sets are created using curly
brackets

In [2]: myset = set([1, 2, 3, 2])

print myset

set([1, 2, 3])

Creating a set from a list
(note that duplicates are re-
moved)

20

CHAPTER 2. PROGRAMMING PYTHON 2.10. DICTIONARIES

In [3]: print set()

set([])

set([]) creates an empty set

The standard mathematical operations for sets are all built into Python.

Python Code Explanation

In [1]: set1 = {1, 2, 3}
set2 = {3, 4, 5}

Create 2 sets

In [2]: 1 in set1

True

in tests for set membership

In [3]: set1 | set2

{1, 2, 3, 4, 5}
Set union (the union operator
can also be used)

In [4]: set1 & set2

{3}
Set intersection (can also use
the intersection operator)

In [5]: set1 - set2

{1, 2}
Set difference (can also use
the difference operator)

In [6]: set1 ^ set2

{1, 2, 4, 5}
Symmetric difference (can
also use the symmet-
ric difference operator)

In [7]: set1 <= set2

False

Test if one set is a subset of
another (can also use the is-
subset operator)

2.10 Dictionaries

Dictionaries are containers where items are accessed by a key. This makes them different
from sequence type objects such as strings, lists, and tuples, where items are accessed by
position.

� To generate a dictionary, enclose a sequence of key:value pairs (separated by
commas) in curly brackets.

� The key can be any immutable object - a number, string, or tuple.

� New dictionary elements can be added, and existing ones can be changed, by using
an assignment statement.

� It is an error to attempt to access a dictionary using a key that does not exist. This
can be avoided by using the get method, which returns a default value if the key is
not found.

� Order is not preserved in a dictionary, so printing a dictionary will not necessarily
print items in the same order that they were added.

21

CHAPTER 2. PROGRAMMING PYTHON 2.11. BOOLEAN EXPRESSIONS

Python Code Explanation

In [1]: dict1 = {"x":1, "y":2, "z":3}
print dict1

{"x":1, "y":2, "z":3}

Note the colon in the
key:value pairs

In [2]: dict1["y"]

2

Dictionary values are accessed
using the keys

In [3]: dict1["y"] = 10

print mydict

{"x":1, "y":10, "z":3}

Dictionary values can be
changed using the “=” as-
signment operator

In [4]: dict1["w"] = 0

print mydict

{"x":1, "y":10, "z":3, "w":0}

New key:value pairs can be
assigned using the “=” as-
signment operator

In [5]: dict1.get("a") get returns None if the key
does not exist

In [6]: dict1.get("a", 42)

42

get can also return a default
value

In [7]: dict2 = {}
print dict2

{}

Creating an empty dictionary

In [8]: dict3 = dict()

print dict3

{}

Another way to create an
empty dictionary

2.11 Boolean Expressions

Boolean expressions are statements that either evaluate to True or False. An important
use of these expressions is for tests in conditional code that only executes if some condition
is met. Examples of Boolean expressions include the standard comparison operators below.

Python Code Explanation

In [1]: 5 == 5

True

Check for equality

In [2]: 5 != 5

False

Check for inequality

In [3]: 3 < 2

False

Less than

22

CHAPTER 2. PROGRAMMING PYTHON 2.12. IF STATEMENTS

In [4]: 3 <= 3

True

Less than or equals

In [5]: "a" < "b"

True

Strings are compared by lexi-
cographic (dictionary) order

Note that any empty container evaluates to False in a Boolean expression. Examples
include empty strings (””), lists ([]), and dictionaries ({}).

2.12 If Statements

Python if statements provide a way to execute a block of code only if some condition is
True. The syntax is:

i f <c o n d i t i o n >:
<code to e x e c u t e when c o n d i t i o n True>

< f o l l o w i n g code>

Note that:

� 〈condition〉 is a Boolean expression, which must evaluate to True or False.

� 〈condition〉 must be followed by a colon, :.

� The block of code to execute if 〈condition〉 is True starts on the next line, and
must be indented. The convention in Python is that code blocks are indented with
4 spaces.

� This block of code is finished by de-indenting back to the previous level.

Python Code Explanation

In [1]: from math import *

if pi > e:

print "Pi is bigger than e!"

Pi is bigger than e!

The block of code following
the if statement only executes
if the condition is met

An else statement can be added after an if statement is complete. This will be followed
by the code to execute if the condition is False. The syntax is:

i f <c o n d i t i o n >:
<code to e x e c u t e when c o n d i t i o n True>

e l s e :
<code to e x e c u t e when c o n d i t i o n F a l s e>

< f o l l o w i n g code>

The following example illustrates an if-else statement.

23

CHAPTER 2. PROGRAMMING PYTHON 2.12. IF STATEMENTS

Python Code Explanation

In [1]: x, y = 2**3, 3**2

if x < y:

print "x < y"

else:

print "x >= y"

x < y

The block of code following
the else statement executes if
the condition is not met

Multiple elif statements (short for else-if) can be added to create a series of conditions
that are tested in turn until one succeeds. Each elif must also be followed by a condition
and a colon. The syntax is:

i f <c o n d i t i o n 1>:
<code to e x e c u t e when c o n d i t i o n 1 True>

e l i f <c o n d i t i o n 2>:
<code to e x e c u t e when c o n d i t i o n 2 True>

e l s e :
<code to e x e c u t e i f n e i t h e r c o n d i t i o n i s True>

< f o l l o w i n g code>

Python Code Explanation

In [1]: score = 88

if score >= 90:

print "A"

elif score >= 80:

print "B"

elif score >= 70:

print "C"

elif score >= 60:

print "D"

else:

print "F"

B

Only the first two conditions
are tested - the rest are
skipped since the second con-
dition is True

It often happens that we want to assign a variable some value if a condition is True, and
another value if a condition is False. Using an if statement, we would have:

i f <c o n d i t i o n >:
x = <t r u e v a l u e>

e l s e :
x = < f a l s e v a l u e >

Python provides an elegant way to do this in a single line using a conditional expression.
This has the following syntax.

24

CHAPTER 2. PROGRAMMING PYTHON 2.13. FOR LOOPS

x = <t r u e v a l u e> i f <c o n d i t i o n> e l s e < f a l s e v a l u e >

An example is given below.

Python Code Explanation

In [1]: x = 22

parity = "odd" if x % 2 else "even"

print x, "has", parity, "parity"

22 has even parity

Note that x % 2 returns the
remainder when x is divided
by 2. Any nonzero value eval-
uates as True

2.13 For Loops

Python for loops provide a way to iterate (loop) over the items in a list, string, tuple, or
any other iterable object, executing a block of code on each pass through the loop. The
syntax is:

f o r < i t e r a t i o n v a r i a b l e (s)> i n < i t e r a b l e >:
<code to e x e c u t e each time>

< f o l l o w i n g code>

Note that:

� The for statement must be followed by a colon, :.

� One or more iteration variables are bound to the values in 〈iterable〉 on successive
passes through the loop.

� The block of code to execute each time through the loop starts on the next line, and
must be indented.

� This block of code is finished by de-indenting back to the previous level.

Sequence objects, such as strings, lists and tuples, can be iterated over as follows.

Python Code Explanation

In [1]: for i in [2, 4, 6]:

print(i)

2

4

6

Iterate over the elements of
a list. The iteration variable
i gets bound to each item in
turn

In [2]: for char in "abc":

print char

a

b

c

Iterate over the characters in
a string. The iteration vari-
able char gets bound to each
character in turn

25

CHAPTER 2. PROGRAMMING PYTHON 2.13. FOR LOOPS

In [3]: for i, char in enumerate("abc"):

print i, char

0 a

1 b

2 c

enumerate allows an itera-
tion variable to be bound to
the index of each item, as well
as to the item itself

In [4]: total = 0

for i in xrange(1, 6):

total += i

print total

15

Sum the numbers from 1 to
5. xrange works like range
in for loops, but doesn’t gen-
erate a list first

Dictionaries elements consist of key:value pairs. When iterated over, variables can be
bound to the key, the value, or both.

Python Code Explanation

In [1]: mydict = {"x":1, "y":2, "z":3}
for key in mydict:

print key

y

x

z

Iteration over a dictionary
binds to the key (note that or-
der is not preserved in a dic-
tionary)

In [2]: for value in mydict.itervalues():

print value

2

1

3

Use itervalues to iterate over
the dictionary values rather
than the keys

In [3]: for key, val in mydict.iteritems():

print key, val

y 2

x 1

z 3

Use iteritems to iterate over
the dictionary keys and values
together

The function zip can be used to iterate in parallel over multiple lists of equal length. This
returns a list of tuples, with one element of each tuple drawn from each list.

Python Code Explanation

In [1]: courses = [141, 142, 337]

ranks = ["good", "better", "best!"]

zipped = zip(courses, ranks)

print zipped

[(141, "good"), (142, "better"),

(337, "best")]

zip(courses, ranks) creates a
list of tuples. Each tuple con-
tains one course and one rank,
with the tuples in the same or-
der as the list elements

26

CHAPTER 2. PROGRAMMING PYTHON 2.14. WHILE LOOPS

In [2]: for c, r in zipped:

print c, r

141 good

142 better

337 best!

Multiple iteration variables
can be bound at each itera-
tion of a loop

2.14 While Loops

Python while loops execute a block of code repeatedly as long as some condition is met.
The syntax is:

w h i l e <c o n d i t i o n >:
<code to e x e c u t e r e p e a t e d l y>

< f o l l o w i n g code>

Note that for the loop to terminate, the code must change some part of the condition so
that it eventually returns False.

Python Code Explanation

In [1]: i = 3

while i > 0:

print i

i -= 1

3

2

1

i is printed while it remains
greater than zero. The code
must change the value of i to
ensure that the loop eventu-
ally terminates

2.15 Break and Continue

Sometimes we need to end a loop early, either by ending just the current iteration, or by
quitting the whole loop. The statements break and continue provide a way to do this.

� To end the loop completely and jump to the following code, use the break statement.

� To end the current iteration and skip to the next item in the loop, use the continue
statement. This can often help to avoid nested if-else statements.

Python Code Explanation

In [1]: vowels = "aeiou"

for char in "bewgfiagf":

if char in vowels:

print "First vowel is", char

break

First vowel is e

The for loop is terminated by
break once the first vowel is
found

27

CHAPTER 2. PROGRAMMING PYTHON 2.16. COMPREHENSIONS

In [2]: total = 0

for char in "bewgfiagf":

if char in vowels:

continue

total += 1

print total, "consonants found"

6 consonants found

Skip over the vowels using
continue, and just count the
consonants

2.16 Comprehensions

Often we want to create a container by modifying and filtering the elements of some other
container. Comprehensions provide an elegant way to do this, similar to mathematical
set-builder notation. For lists, the syntax is:

[< e x p r e s s i o n> f o r <v a r i a b l e s > i n <c o n t a i n e r> i f <c o n d i t i o n >]

The code in 〈expression〉 is evaluated for each item in the 〈container〉, and the result
becomes an element of the new list. The 〈condition〉 does not have to be present but, if
it is, only elements which satisfy the condition become incorporated into the new list.

Python Code Explanation

In [1]: [i**2 for i in range(5)]

[0, 1, 4, 9, 16]

i**2 is evaluated for every
item i in the list

In [2]: [d for d in range(1,7) if 6 % d ==

0]

[1, 2, 3, 6]

Divisors of 6 - only elements
passing the test 6 % d == 0

are included

We can also use a dictionary comprehension to create a dictionary without needing to
repeatedly add key:value pairs.

Python Code Explanation

In [1]: {i:i**2 for i in range(4)}
{0:0, 1:1, 2:4, 3:9}

Create a dictionary from a list.
Note the key:value pairs and
surrounding curly brackets

2.17 Functions

Functions provide a way to reuse a block of code by giving it a name. The code can then
be executed just by calling the function name, with the option of passing in additional
data to be used inside the function. The variables used to identify this additional data are
the function parameters, and the particular values passed in when the function is called
are the function arguments.

28

CHAPTER 2. PROGRAMMING PYTHON 2.17. FUNCTIONS

� Functions take a list of required arguments, identified by position.

� Functions can take keyword arguments, identified by name. These can also be
assigned default values in the function definition to use if no values are passed in.

� Functions can return one or more values using the return statement. Note that
functions do not have to return a value - they could just perform some action
instead. A function stops executing as soon as a return statement is encountered.

� An optional documentation string can be added at the start of the function (before
the code) to describe what the function does. This string is usually enclosed in triple
quotes.

Functions are defined in Python using the def statement, with the syntax:

d e f <name> (<p a r a m e t e r s >) :
<documentat ion s t r i n g >
<code>

The arguments to a function can be specified by position, keyword, or some combination
of both. Some examples using just positional arguments are as follows.

Python Code Explanation

In [1]: def square(x):

return x**2

print square(3)

9

The function exits as soon as
the return statement is called

In [2]: def multiply(x, y):

"""Return the product xy"""

return x*y

print multiply(3, 2)

6

Parameters are bound to in-
put data in the order given.
The documentation string is
placed after the colon and be-
fore the code

In [3]: def minmax(data):

return min(data), max(data)

print minmax([1, 3, 7, 2, 10])

(1, 10)

Multiple values are returned
as a tuple

Using keyword arguments allows default values to be assigned. This is particularly useful
when a function can be called with many different options, and avoids having to call
functions with a long list of arguments.

� Keyword arguments are specified using key=default in place of a positional argu-
ment.

� Using keyword instead of positional arguments means we don’t need to remember
the order of arguments, and allows the defaults to be used most of the time.

29

CHAPTER 2. PROGRAMMING PYTHON 2.17. FUNCTIONS

� Positional and keyword arguments can be used in the same function, as long as the
positional arguments come first.

Python Code Explanation

In [1]: def close enough(x, y, tolerance=.1)

return abs(x - y) <= tolerance

The tolerance argument is 0.1
by default

In [2]: close enough(1, 1.05)

True

The default tolerance of 0.1 is
used in this case

In [3]: close enough(1, 1.05, tolerance=.01)

False

The default tolerance is over-
ridden by the value of 0.01

If the number of arguments is not known in advance, functions can be defined to take a
variable number of positional arguments and/or a variable number of keyword arguments.
We are unlikely to be using these options ourselves, although they occur frequently in the
documentation for Matplotlib.

� The positional arguments are usually specified as *args and are available as a tuple.
Individual positional arguments can then be accessed by indexing into the tuple by
position.

� The keyword arguments are usually specified as **kwargs and are available as a
dictionary. Individual keyword arguments can then be accessed by indexing into this
dictionary by key.

We may on occasion need to use a simple function in a single place, and not want to
have to define and name a separate function for this purpose. In this case we can define
an anonymous or lambda function just in the place where it is needed. The syntax for a
lambda function is:

lambda <arguments> : <code>

The lambda statement returns an unnamed function which takes the arguments given
before the colon, and returns the result of executing the code after the colon. Typical
uses for lambda functions are where one function needs to be passed in as an argument
to a different function.

Python Code Explanation

In [1]: ages = [21, 19, 150]

names = ["Bruce", "Sheila", "Adam"]

data = zip(ages, names)

sorted(data, key=lambda x : x[0])

[(19, "Sheila"), (21, "Bruce"),

(150, "Adam")]

The key argument to sorted
lets us sort the data based on
the first list. Using a lambda
function means not having to
define a separate function for
this simple task

30

CHAPTER 2. PROGRAMMING PYTHON 2.18. READING AND WRITING FILES

2.18 Reading and Writing Files

Several reports for this class will involves reading and analyzing data that has been stored
in a file. This typically involves three steps:

� Open the file using the open function. This returns a file handle - an object we then
use to access the text that the file contains.

� Process the file, either line-by-line, or as a single text string.

� Close the file. This is done using the close function.

It is possible to read in the entire contents of a file in one go using the functions read
and readlines. However, we may not read to read the entire contents into memory if we
are dealing with a large file and just want to extract some information from the text. In
this case, it is preferable to iterate over the lines of text that the file contains.

The following examples assume that a file named ”filename.txt” has been created in the
directory that Python was started in. This file contains the three lines:

Leonard
Penny
Sheldon

Python Code Explanation

In [1]: f = open("filename.txt") Open ”filename.txt” for read-
ing using open

In [2]: for line in f:

print line,

Leonard

Penny

Sheldon

The lines of an open file can
be iterated over in a for loop.
Note the use of a “,” after
print line, since each line
already ends with a new line

In [3]: f.close() Close ”filename.txt” using
close

In [4]: f = open("filename.txt")

first names = f.read()

f.close()

first names

"Leonard\nPenny\nSheldon\n"

read reads in the whole file
as a single string. The new-
lines at the end of each line
are shown as “\n” characters

In [5]: print first names

Leonard

Penny

Sheldon

Printing a string causes the
newline characters “\n” to be
outputted as new lines

31

CHAPTER 2. PROGRAMMING PYTHON 2.19. COMMENTS

In [6]: f = open("filename.txt")

data = f.readlines()

f.close()

data

["Leonard\n", "Penny\n",
"Sheldon\n"]

readlines reads in the whole
file as a list, with each line as
a separate string

Files can also be opened for writing using the ”w” option to open.

Python Code Explanation

In [1]: data = ["Hofstadter", "?", "Cooper"]

output file = open("names.txt", "w")

for name in data:

output file.write(name + "\n")
output file.close()

Write each string in the data

list to a separate line in the
file. Note that new lines are
not automatically included, so
they need to be added

In [2]: f = open("names.txt")

last names = f.read()

f.close()

print last names

Hofstadter

?

Cooper

Check that the ”names.txt”
file has been written correctly

2.19 Comments

Comments are text that is included in the code but not executed. They are used to
document and explain what the code is doing. Python allows two forms of comment.

� A hash symbol # means that the rest of the line is a comment, and is not to be
executed.

� A documentation string is surrounded by triple quotes ”””. Everything inside the
quotes is ignored.

Python Code Explanation

In [1]: # This is a single-line comment

In [2]: """This is a documentation string,

which can span multiple lines"""

32

3 NumPy

NumPy (Numerical Python) is the fundamental package for scientific computing with
Python. It defines a new kind of container - the ndarray (usually just referred to as
an array) - that supports fast and efficient computation. NumPy also defines the basic
routines for accessing and manipulating these arrays.

Arrays have the following properties (among others):

� A shape, which is a tuple of integers. The number of integers is the number of
dimensions in the array, and the integers specify the size of each dimension.

� A dtype (data-type), which specifies the type of the objects stored in the array.

In NumPy, the dimensions of an array are referred to as axes. An example of an array
with dtype int and shape ((4, 5)) is shown below. The first axis has four elements, each
of which is an array with 5 elements.

[[0 1 2 3 4]

[5 6 7 8 9]

[10 11 12 13 14]

[15 16 17 18 19]]

The main differences between NumPy arrays and Python lists are:

� The objects in a NumPy array must all be of the same type - booleans, integers,
floats, complex numbers or strings.

� The size of an array is fixed at creation, and can’t be changed later.

� Arrays can be multi-dimensional.

� Mathematical operations can be applied directly to arrays. When this is done they
are applied elementwise to the array, generating another array as output. This is
much faster than iterating over a list.

� Indexing for arrays is more powerful than that for lists, and includes indexing using
integer and boolean arrays.

� Slicing an array produces a view of the original array, not a copy. Modifying this
view will change the original array.

NumPy is well documented online, with a standard tutorial and good introductory tutorial
available.

33

http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://www.engr.ucsb.edu/~shell/che210d/numpy.pdf

CHAPTER 3. NUMPY 3.1. ARRAY CREATION

3.1 Array Creation

NumPy arrays can be created:

� From a list. The elements of the list need to all be of the same type, or of a kind
that can all be cast to the same type. For example, a list consisting of both integers
and floats will generate an array of floats, since the integers can all be converted to
floats.

� According to a given shape. The array will be initialized differently depending on the
function used.

� From another array. The new array will be of the same shape as the existing array,
and could either be a copy, or initialized with some other values.

� As a result of an operation on other arrays. The standard mathematical operators
can all be applied directly to arrays. The result is an array of the same shape where
the operation has been performed separately on corresponding elements.

The following functions are the main ones you need to know.

array Create an array from a list.

linspace Return an array of evenly spaced numbers over a specified interval.

arange Return an array of evenly spaced integers within a given interval.

empty Return an a new array of a given shape and type, without initializing entries.

zeros Return an a new array of a given shape and type, filled with zeros.

ones Return an a new array of a given shape and type, filled with ones.

empty like Return a new array with the same shape and type as a given array.

zeros like Return an array of zeros with the same shape and type as a given array.

ones like Return an array of ones with the same shape and type as a given array.

copy Return an array copy of the given object.

meshgrid Returns a pair of 2D x and y grid arrays from 1D x and y coordinate arrays.

These array creation functions are illustrated below.

Python Code Explanation

In [1]: from numpy import *

x = array([1, 2, 3])

print x

[1 2 3]

array(object) creates an array
from a list - note that arrays
are printed without commas

In [2]: x = array([1, 2, 3], dtype=float)

print x

[1. 2. 3.]

array(object, dtype) creates
an array of type dtype - the
integers are now cast to floats

34

http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html#numpy.linspace
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html#numpy.arange
http://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty
http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html#numpy.zeros
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html#numpy.ones
http://docs.scipy.org/doc/numpy/reference/generated/numpy.empty_like.html#numpy.empty_like
http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros_like.html#numpy.zeros_like
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones_like.html#numpy.ones_like
http://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html#numpy.copy
http://docs.scipy.org/doc/numpy/reference/generated/numpy.meshgrid.html

CHAPTER 3. NUMPY 3.1. ARRAY CREATION

In [3]: x = linspace(0, 1, 6)

print x

[0. 0.2 0.4 0.6 0.8 1.]

linspace(start, stop, num)
returns num equally spaced
points, including endpoints

In [4]: x = arange(5)

print x

[0 1 2 3 4]

arange works just like range,
but returns an array instead of
a list

The functions empty, zeros and ones all take a shape argument and create an array of
that shape, initialized as appropriate.

Python Code Explanation

In [1]: x = empty((3, 2))

print x

[[6.93946206e-310 6.93946206e-310]

[6.36598737e-314 6.36598737e-314]

[6.36598737e-314 0.00000000e+000]]

empty(shape) returns an ar-
ray of shape shape, initially
filled with garbage

In [2]: x = zeros((2, 3))

print x

[[0. 0. 0.]

[0. 0. 0.]]

zeros(shape) returns an array
of shape shape filled with ze-
ros - note the default type is
float

In [3]: x = ones((2, 3), dtype=int)

print x

[[1 1 1]

[1 1 1]]

ones(shape, dtype) returns
an array of shape shape filled
with ones - using dtype=int
casts the elements to type int

Arrays can be created directly from other arrays using empty like, zeros like, ones like
and copy.

Python Code Explanation

In [1]: x = arange(3, dtype=float)

print x

[0. 1. 2.]

Create an array of floats using
arange

In [2]: y = empty like(x)

print y

[0.00000000e+000 6.51913678e+091

6.95022185e-310]

y has the same shape as
x, but is initially filled with
garbage

In [3]: y = zeros like(x)

print y

[0. 0. 0.]

y has the same shape as x,
but is initialized with zeros

35

CHAPTER 3. NUMPY 3.2. ARRAY PROPERTIES

In [4]: y = ones like(x)

print y

[1. 1. 1.]

y has the same shape as x,
but is initialized with ones

In [5]: y = copy(x)

print y

[0. 1. 2.]

y is a copy of x - changing y

will not change x

The function meshgrid(x, y) creates two-dimensional arrays from one-dimensional x- and
y-coordinate axes. One array contains the x-coordinates of all the points in the xy-plane
defined by these axes, and the other contains the y-coordinates.

Python Code Explanation

In [1]: from numpy import *

x = arange(4)

y = arange(3)

X, Y = meshgrid(x, y)

meshgrid creates 2D x- and
y- coordinate arrays from 1D
x- and y- coordinate arrays

In [2]: print X

[[0 1 2 3]

[0 1 2 3]

[0 1 2 3]]

X is a 2D array containing just
the x-coordinates of points in
the xy plane

In [3]: print Y

[[0 0 0 0]

[1 1 1 1]

[2 2 2 2]]

Y is a 2D array containing just
the y-coordinates of points in
the xy plane

3.2 Array Properties

NumPy provides a set of functions for accessing the properties of an array.

Python Code Explanation

In [1]: x = arange(6)

type(x)

numpy.ndarray

x is of type numpy.ndarray

In [2]: x.dtype

dtype("int64")

dtype returns the element
type - a 64-bit integer

In [3]: x.shape

(6,)

x is a 1-dimensional array with
6 elements in the first axis

It is possible to create an array from the elements of an existing array, but with the
properties changed. The number of dimensions and size of each dimension can be changed

36

CHAPTER 3. NUMPY 3.3. ARRAY OPERATIONS

using reshape (as long as the total number of elements is the same), and the dtype can
be changed using astype.

Python Code Explanation

In [1]: x = arange(6).reshape((2, 3))

print x

[[0 1 2]

[3 4 5]]

reshape creates a view of an
array with the same number
of elements, but a different
shape

In [2]: y = x.astype(float)

print y

[[0. 1. 2.]

[3. 4. 5.]]

astype casts the integers in x

to floats in y. This creates a
new array - modifying it will
not alter the original

3.3 Array Operations

Array arithmetic is done on an elementwise basis.

Python Code Explanation

In [1]: from numpy import *

x = arange(4)

print x

[0 1 2 3]

Create an array of consecutive
integers using arange

In [2]: print x + 1

[1 2 3 4]

1 is added to every element of
the array x

In [3]: print x * 2

[0 2 4 6]

Every element of the array x

is multiplied by 2

In [4]: print x ** 2

[0 1 4 9]

Every element of the array x

is squared

In [5]: y = array([3, 2, 5, 1]) Create a second array

In [6]: print x

print y

print x + y

[0 1 2 3]

[3 2 5 1]

[3 3 7 4]

The elements of x are added
to the corresponding ele-
ments of y on an element-by-
element basis

In [7]: print x**y

[0 1 32 3]

Exponentiation is done using
corresponding elements

37

CHAPTER 3. NUMPY 3.3. ARRAY OPERATIONS

Comparison operators and other Boolean expressions are also applied on an element-by-
element basis. The result is an array of booleans.

Python Code Explanation

In [1]: x = arange(5)

print x

print x % 2 == 0

[0 1 2 3 4]

[True False True False True]

The Boolean expression is
evaluated for each element
separately, resulting in an ar-
ray of booleans

In [2]: x = arange(4)

y = array([3, 2, 5, 1])

print x

print y

print x < y

[0 1 2 3]

[3 2 5 1]

[True True True False]

The comparison is done on an
elementwise basis, resulting in
an array of booleans

NumPy contains vectorized versions of all the basic mathematical functions. Note that
they need to be imported before we can use them. Some examples are given below.

Python Code Explanation

In [1]: x = arange(3)

print x

[0 1 2]

Create an array

In [2]: print sin(x)

[0. 0.84147098 0.90929743]

sin is applied to each element,
to create a new array

In [3]: print exp(x)

[1. 2.71828183 7.3890561]

exp is the exponential opera-
tor

In [4]: x = random.randint(5, size=(2,3))

print x

[[1 4 3]

[2 2 3]]

random.randint returns an
array of a given size filled
with randomly selected inte-
gers from a given range

In [5]: print x.min(), x.max()

1 4

min and max calculate the
minimum and maximum val-
ues across the entire array

In [6]: print x.min(axis=0)

print x.min(axis=1)

[1 2 3]

[1 2]

The axis argument finds each
minimum along a given axis.
The resulting array is the
shape of the original array, but
with the given axis removed

38

CHAPTER 3. NUMPY 3.4. ACCESSING ARRAYS

In [7]: print x.sum()

15

sum sums all the elements of
an array

In [8]: print x.sum(axis=0)

[3 6 6]

Providing the axis argument
sums along the given axis

3.4 Accessing Arrays

Arrays can be indexed and sliced using square brackets in the same way as lists. An index
or start:end filter needs to be provided for each axis, separated by commas. Indexing
is zero-based, as it is with lists.

Python Code Explanation

In [1]: from numpy import *

x = arange(20).reshape((4, 5))

print x

[[0 1 2 3 4]

[5 6 7 8 9]

[10 11 12 13 14]

[15 16 17 18 19]]

reshape provides a fast way
to create a 2D array

In [2]: print x[1,2]

7

Indexing is done into each axis
in order - row 1, column 2

In [3]: print x[1,:]

[5 6 7 8 9]

Slicing selects every element
of the first axis

In [4]: print x[:,1]

[1 6 11 16]

Slicing selects the first ele-
ment of every axis

In [5]: print x[1:3, 1:4]

[[6 7 8]

[11 12 13]]

Slice rows 1 and 2 using 1:3,
then slice columns 1, 2 and 3
using 1:4

NumPy also offers some fancy indexing tricks. The first is to index using an array of
integers. An array with axes the same size as the indexing array is returned, with elements
selected from the array according to the integers in the indexing array.

Python Code Explanation

In [1]: x = arange(9)**2

print x

[0 1 4 9 16 25 36 49 64]

First create the array using
arange, then square each el-
ement

39

CHAPTER 3. NUMPY 3.4. ACCESSING ARRAYS

In [2]: index = array([1, 3])

print x[index]

[1 9]

An array is returned contain-
ing elements from the first ar-
ray, selected according to the
integers in the second array

In [3]: index = array([[1, 3], [7, 2]])

print index

print x[index]

[[1 3]

[7 2]]

[[1 9]

[49 4]]

When indexing using an inte-
ger array, the returned array
has the same shape as the in-
dexing array

We can also index using arrays of booleans. In this case, only the elements corresponding
to True values in the indexing array are returned. A common use of this technique is
to filter out the elements of an array that satisfy some condition. This can be done by
first applying the condition to the array to generate an array of booleans, then using the
resulting array as an index. The result is that only elements for which the condition holds
true are selected.

Python Code Explanation

In [1]: x = arange(20)

index3 = (x % 3 == 0)

index 5 = (x % 5 == 0)

index3 and index5 are
boolean arrays containing
True elements for the inte-
gers that are divisible by 3
and 5 respectively.

In [2]: print x[index3]

[0 3 6 9 12 15 18]

Select the elements of x that
are divisible by 3

In [3]: print x[index5]

[0 5 10 15]

Select the elements of x that
are divisible by 5

In [4]: print x[logical or(index3, index5)]

[0 3 5 6 9 10 12 15 18]

The function logical or per-
forms an elementwise “or”.
The result is the integers di-
visible by either 3 or 5

40

4 Matplotlib

Matplotlib is a 2D plotting library for Python. It can be used to generate graphs, his-
tograms, bar charts, contour plots, scatter plots, and many other kinds of mathematical
graphics. The “pyplot” interface provides a MATLAB-like interface for simple plotting,
and is the main one we will be using in class. The online reference provides a full descrip-
tion of the available functions. A good tutorial is also available online.

The following commands are the main ones used for creating and formatting graphs.

plot Plot lines and/or markers.

show Display a figure.

title Set a title for the graph.

xlabel/ylabel Set labels for the x and y axes.

xlim/ylim Get or set the range of x and y values to be displayed.

xticks/yticks Get or set the locations and labels for the tick marks on the x and y axes.

subplot Plot multiple graphs in one figure.

figure Create a new figure.

fill between Fill the area between two curves.

legend Put a legend on the graph.

Colors, line styles, and marker styles can all be set to create customized graphs. These
are usually specified as strings, with the most frequently used options as follows.

Style options Colors

”-” solid line ”b” blue

”- -” dashed line ”g” green

”.” point marker ”r” red

”o” circle marker ”c” cyan

”s” square marker ”m” magenta

”+” plus marker ”y” yellow

”x” x marker ”k” black

”D” diamond marker ”w” white

41

http://matplotlib.org/api/pyplot_summary.html
http://scipy-lectures.github.io/intro/matplotlib/matplotlib.html
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.title
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.xlabel
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.ylabel
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.xlim
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.ylim
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.xticks
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.yticks
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subplot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.figure
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.fill_between
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend

CHAPTER 4. MATPLOTLIB 4.1. BASIC PLOTTING

4.1 Basic Plotting

Functions can be graphed using a call to plot(x, y), followed by a call to show. Note
that:

� The x parameter contains the x-coordinates of the points to plot, and the y parameter
contains the y-coordinates.

� We need to import the required NumPy and Pylab functions for array manipulation
and plotting. If using IPython notebook, this can also be done using the IPython

magic %pylab . In this case, the call to show is done for us automatically when the
cell is executed.

� The default plotting behavior is to connect the points with a blue line.

The following example plots the exponential function in the range [0, 5].

from numpy i m p o r t * # Import e v e r y t h i n g from numpy
i m p o r t p y l a b as p l # Import p l o t t i n g f u n c t i o n s from p y l a b

x = l i n s p a c e (0 , 5) # C r e a t e a r r a y o f e q u a l l y spaced v a l u e s
p l . p l o t (x , exp (x)) # P l o t the e x p o n e n t i a l f u n c t i o n
p l . show () # F i n a l l y , show t he f i g u r e

0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

42

CHAPTER 4. MATPLOTLIB 4.2. A MORE COMPLEX PLOTTING EXAMPLE

4.2 A More Complex Plotting Example

A range of options are available for customizing plots. These are illustrated in the example
below, which plots a sine and cosine curve on the same graph. Note that:

� The third argument to plot can be used to set colors, line types and marker types.

� Plot can be called multiple times, followed by a single call to show.

from numpy i m p o r t * # I m p o r t s l i n s p a c e , s i n , cos
i m p o r t p y l a b as p l # Import p l o t t i n g f u n c t i o n s
x = l i n s p a c e (0 , 2* pi , 50) # P l o t 50 p o i n t s on th e x−a x i s
p l . f i g u r e (f i g s i z e =(10 ,7)) # Set the s i z e o f the f i g u r e
p l . p l o t (x , s i n (x) , l a b e l= ’ s i n e ’) # D e f a u l t s t y l e i s a b l u e l i n e
p l . p l o t (x , cos (x) , ’ r o ’ , l a b e l= ’ c o s i n e ’) # Use ’ r o ’ f o r r e d c i r c l e s
p l . x l a b e l (’ t h e t a ’) # L a b e l th e x−a x i s
p l . x l i m (0 , 2* p i) # L i m i t x−a x i s to t h i s r an ge
t i c k s = [i * p i /2 f o r i i n ra ng e (5)] # L o c a t i o n s o f t i c k s on x−a x i s
l a b e l s = [r ’ 0 ’ , r ’ $\ p i /2$ ’ , r ’ $\ p i$ ’ , # L a b e l s f o r th e x−a x i s t i c k s

r ’ $3\ p i /2$ ’ , r ’ $2\ p i$ ’] # − t h e s e a r e LaTeX s t r i n g s
p l . x t i c k s (t i c k s , l a b e l s , s i z e= ’ l a r g e ’) # Add t he x−t i c k s and l a b e l s
p l . t i t l e (’ S i n e and C o s i n e ’) # Add a t i t l e
p l . l e g e n d () # Legend u s e s the p l o t l a b e l s
p l . show () # F i n a l l y , show t he f i g u r e

0 π/2 π 3π/2 2π

theta

1.0

0.5

0.0

0.5

1.0

xlabel

title

legend

xticks

xlim

'ro' style

default style

Sine and Cosine

sine
cosine

43

CHAPTER 4. MATPLOTLIB 4.3. BAR PLOTS

4.3 Bar Plots

The function bar is used to create bar plots.

� Bars are described by their height, width, and position of the left and bottom edges.

� The width argument can be used to make bars thinner or thicker.

� The face color and edge color of the bars can be specified independently.

The following example shows a bar plot with the face color set to ”c” (cyan) and edge
color set to ”b” (blue). Labels are positioned at the centers of the bars.

i m p o r t p y l a b as p l # Import p l o t t i n g f u n c t i o n s

g r a d e s = [’A ’ , ’B ’ , ’C ’ , ’D ’ , ’ F ’] # Used to l a b e l t he b a r s
f r e q s = [3 0 , 35 , 20 , 10 , 5] # Bar h e i g h t s a r e f r e q u e n c i e s
width = 0 . 8 # R e l a t i v e width o f each bar
t i c k s = [width /2 + i f o r i i n ran ge (5)] # T i c k s i n c e n t e r o f t he b a r s
p l . bar (ra ng e (5) , f r e q s , f c= ’ c ’ , ec= ’ b ’) # f c / ec a r e f a c e / edge c o l o r s
p l . x t i c k s (t i c k s , g r a d e s) # P l a c e l a b e l s f o r t he b a r s
p l . y l i m (0 , 40) # Set th e s p a c e a t th e top
p l . t i t l e (’ Grade d i s t r i b u t i o n ’) # Add a t i t l e
p l . x l a b e l (’ Grade ’) # Add a l a b e l f o r t he x−a x i s
p l . y l a b e l (’ Frequency (%) ’) # Add a l a b e l f o r th e y−a x i s
p l . show () # F i n a l l y , show t he f i g u r e

A B C D F
Grade

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y
(%

)

xlabel

title

ylabel

xticks

ylim
width = .8

fc = 'c'

ec = 'b'

Grade distribution

44

CHAPTER 4. MATPLOTLIB 4.4. HISTOGRAMS

4.4 Histograms

The function hist is used to plot histograms. These group numerical data into “bins”,
usually of equal width, in order to show how the data is distributed.

� Each bin covers a range of values, with the height of each bin indicating the number
of points falling in that range.

� The first argument is an array or sequence of arrays.

� The bins argument specifies the number of bins to use.

� The range argument specifies the range of values to include.

The following example plots a histogram of 1000 samples drawn from a uniform probability
distribution over [0, 1).

from numpy i m p o r t * # Make random . rand a v a i l a b l e
i m p o r t p y l a b as p l # Import p l o t t i n g f u n c t i o n s

x = random . rand (1000) # 1000 random v a l u e s i n [0 , 1)
p l . h i s t (x , b i n s =20, ra ng e =(0 ,1) , f c= ’ g ’) # C r e a t e h i s t o g r a m w i t h 20 b i n s
p l . t i t l e (’ Uniform d i s t r i b u t i o n ’) # Add a t i t l e
p l . x l a b e l (’ Va lue ’) # Add a l a b e l f o r t he x−a x i s
p l . y l a b e l (’ Frequency ’) # Add a l a b e l f o r t he y−a x i s
p l . show () # F i n a l l y , show t he f i g u r e

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

xlabel

title

ylabel

range = (0, 1)

bins = 20 fc = 'g'

Uniform distribution

45

CHAPTER 4. MATPLOTLIB 4.5. CONTOUR PLOTS

4.5 Contour Plots

The functions contour and contourf are used for contour plots and filled contour plots
respectively. These are projections of a graph surface onto a plane, with the contours
showing the level curves of the graph.

� The first two arguments are one dimensional arrays representing the x- and y-
cooordinates of the points to plot.

� The third coordinate is a two dimensional array representing the z-coordinates.

� Contour levels are automatically set, although they can be customized.

� A colorbar can be added to display the level curves.

The following examples are of a filled and unfilled contour plot of the two-dimensional
Gaussian function, f(x, y) = e−(x2+y2).

i m p o r t p y l a b as p l # Import p l o t t i n g f u n c t i o n s
from numpy i m p o r t * # Import numpy

x = l i n s p a c e (−2 ,2) # L o c a t i o n s o f x−c o o r d i n a t e s
y = l i n s p a c e (−2 ,2) # L o c a t i o n s o f y−c o o r d i n a t e s
XX, YY = meshgr id (x , y) # meshgr id r e t u r n s two 2D a r r a y s
z = exp (−(XX**2 + YY**2)) # z i s a 2D G a u s s i a n
p l . f i g u r e (f i g s i z e =(14 ,5)) # Set the f i g u r e d i m e n s i o n s
p l . s u b p l o t (’ 121 ’) # F i r s t s u b p l o t , 1 row , 2 columns
p l . c o n t o u r (x , y , z) # Contour p l o t
p l . t i t l e (’ Contour p l o t ’) # T i t l e added to f i r s t s u b p l o t
p l . c o l o r b a r () # C o l o r bar added to f i r s t s u b p l o t
p l . s u b p l o t (’ 122 ’) # Second s u b p l o t
p l . c o n t o u r f (x , y , z) # F i l l e d c o n t o u r p l o t
p l . t i t l e (’ F i l l e d c o n t o u r p l o t ’) # T i t l e added to second s u b p l o t
p l . c o l o r b a r () # C o l o r bar added to second s u b p l o t
p l . show () # F i n a l l y , show t he f i g u r e

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Contour plot

0.15

0.30

0.45

0.60

0.75

0.90

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Filled contour plot

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

46

CHAPTER 4. MATPLOTLIB 4.6. MULTIPLE PLOTS

4.6 Multiple Plots

The function subplot is used to plot multiple graphs on a single figure. This divides a
figure into a grid of rows and columns, with plotting done in the currently active subplot.

� Calls to subplot specify the number of rows, number of columns, and subplot number.

� Subplots are numbered from left to right, row by row, starting with 1 in the top left.

� All plotting is done in the location specified in the most recent call to subplot.

� If there are less than 10 rows, columns and subplots, subplot can be called with a
string argument. For example, subplot(2, 3, 4) is the same as subplot(”234”).

The example below uses 2 rows and 3 columns. The “subplot” calls displayed on the
figure show which call corresponds to each grid location.

i m p o r t p y l a b as p l # Import p l o t t i n g f u n c t i o n s

f i g=p l . f i g u r e (f i g s i z e =(8 ,5)) # Set the f i g u r e d i m e n s i o n s
nrows=2 # Number o f rows
n c o l s =3 # Number o f columns
f o r i i n ran ge (nrows* n c o l s) :

p l . s u b p l o t (nrows , n c o l s , i +1) # S u b p l o t number ing s t a r t s a t 1

0 2 4 6 8 10
0

1

2

3

4

5

subplot(2,3,1)

0 2 4 6 8 10
0

1

2

3

4

5

subplot(2,3,2)

0 2 4 6 8 10
0

1

2

3

4

5

subplot(2,3,3)

0 2 4 6 8 10
0

1

2

3

4

5

subplot(2,3,4)

0 2 4 6 8 10
0

1

2

3

4

5

subplot(2,3,5)

0 2 4 6 8 10
0

1

2

3

4

5

subplot(2,3,6)

47

CHAPTER 4. MATPLOTLIB 4.7. FORMATTING MATHEMATICAL EXPRESSIONS

4.7 Formatting Mathematical Expressions

LaTex provides a way to format mathematical expressions in Matplotlib graphs in a similar
way to IPython notebook Markdown cells.

� Expressions are identified using r”$〈formula〉$” .

� The syntax for 〈formula〉 is the same as that described in section 1.5.3.

� These expressions can be used anywhere a string is used, such as titles, axis and
ticks labels, and legends.

48

5 Additional Topics

5.1 Loading Numerical Files

We often need to load files containing numerical data into a NumPy array for further
processing and display. Such data files typically consist of:

� Header information. This describes what the data represents and how it is formatted.

� A set of rows of numerical data. Each row contains the same number of values,
separated by some string such as a comma or tab.

The NumPy function numpy.loadtxt can be used to load such data. This returns a NumPy
array, where each row corresponds to a line in the data file. The first argument to this
function is the data file name. Some of the optional keyword arguments are shown below.

� dtype. This is the data type of values in the array, which are floats by default.

� delimiter. This is the string used to separate values in each row. By default, any
whitespace such as spaces or tabes are considered delimiters.

� skiprows. This is the number of rows to ignore at the start of the file before reading
in data. It is usually used to skip over the header information, and defaults to 0.

The example shown below uses a file called “weather.dat”, which contains the following:

Day High-Temp Low-Temp
1 77 56
2 79 62

This data is loaded as follows.

Python Code Explanation

In [1]: from numpy import loadtxt Import the loadtxt function

In [2]: data = loadtxt("weather.dat",

dtype=int, skiprows=1)

Load the ”weather.dat” file,
skipping the first row, and cre-
ating an array of integers

In [3]: print data

[[1 77 56]

[2 79 62]]

The data array is a 2 × 3 inte-
ger array - for floats, the dtype
argument would not be used

49

http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html

CHAPTER 5. ADDITIONAL TOPICS 5.2. ANIMATION

5.2 Animation

An animation consists of a sequence of frames which are displayed one after the other.
Animation using Matplotlib essentially involves updating the data associated with some
drawn object or objects (such as points or lines), and redrawing these objects. Producing
an animation therefore involves the following steps:

� Set up the variables and data structures relating to the animation.

� Draw the first frame.

� Repeatedly update the frame with new data.

Animations are generated using FuncAnimation from the matplotlib.animation module.
This takes the following required arguments:

� fig. This is the figure in which the animation is to be drawn. It can be obtained
using either of the Matplotlib figure or subplots functions.

� func. This specifies the function to call to perform a single step of the animation. It
should take a single argument which is the frame number (an integer). The frame
number is used to update the values of drawn objects such as points or lines. If the
blit keyword argument is True, this function should return a tuple of the modified
objects that need to be redrawn.

FuncAnimation also takes the following keyword arguments.

� frames. An integer specifying the number of frames to generate.

� init func. This specifies the function which is called once at the start to draw the
background that is common to all frames. If the blit keyword argument is True, this
function should also return a tuple of the modified objects that need to be redrawn.

� interval. This argument specifies the time (in ms) to wait between drawing successive
frames.

� blit. If True, the animation only redraws the parts of the plot which have changed.
This can help ensure that successive frames are displayed quickly.

� repeat. If True (the default), the animation will repeat from the beginning once it
is finished.

The following example for IPython Notebook animates a point circling the origin with
constant angular velocity. The animate function is defined to update the position of the
point based on the frame number.

50

http://matplotlib.org/api/animation_api.html#matplotlib.animation.FuncAnimation
http://matplotlib.org/api/animation_api.html
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.figure
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subplots

CHAPTER 5. ADDITIONAL TOPICS 5.2. ANIMATION

%p y l a b # Note %pylab , not %p y l a b i n l i n e
from m a t p l o t l i b i m p o r t a n i m a t i o n

omega = . 0 2 # Angu la r v e l o c i t y
f i g , ax = s u b p l o t s (f i g s i z e =(4 ,4)) # Get th e f i g u r e & a x e s f o r t he p l o t
ax . s e t a s p e c t (’ e q u a l ’) # Make th e a x e s have the same s c a l e
p o i n t , = p l o t ([] , [] , ’ r o ’ , ms=10) # ” p o i n t ” i s th e o b j e c t drawn by p l o t
x l i m (−1 . 5 , 1 . 5) # − note t h a t ” p l o t ” r e t u r n s a t u p l e
y l i m (−1 . 5 , 1 . 5) # Set l i m i t s f o r th e e n t i r e a n i m a t i o n

I n i t i a l i z a t i o n f u n c t i o n . Th i s i s c a l l e d once to p l o t the background .
d e f i n i t () :

p o i n t . s e t d a t a ([] , [])
r e t u r n p o i n t , # Return a t u p l e o f the m o d i f i e d o b j e c t s

Animat ion f u n c t i o n . Th i s i s c a l l e d once p e r a n i m a t i o n s t e p .
The i n t e g e r i i s th e frame number .
d e f an imate (i) :

x = cos (i *omega)
y = s i n (i *omega)
p o i n t . s e t d a t a (x , y) # Update t he x , y c o o r d i n a t e s o f th e p o i n t
r e t u r n p o i n t , # Return a t u p l e o f the m o d i f i e d o b j e c t s

S t a r t th e a n i m a t o r w i t h a c a l l to ” FuncAnimation ”
a n i m a t i o n . FuncAnimation (f i g , animate , i n i t f u n c=i n i t , f r a m e s =100 ,

i n t e r v a l =20, b l i t =True)

Some frames from this animation are shown below.

Note that in IPython Notebook the IPython magic we need to use is %pylab rather than
%pylab inline. Inline graphs in IPython Notebook are static, meaning that once drawn,
they cannot be updated. Using %pylab generates graphs in a separate window, where the
updated data can be displayed.

51

CHAPTER 5. ADDITIONAL TOPICS 5.3. IMAGES

5.3 Images

Matplotlib provides functions for saving, reading, and displaying images. These images
are either 2- or 3-dimensional NumPy arrays. In both cases, the first two axes of the array
correspond to the rows and columns of the image. The third axis corresponds to the color
of the pixel at each (column, row) coordinate.

� For a 2D array, the array values are floats in the range [0, 1]. These represent the
luminance (brightness) of a grayscale image from black (0) to white (1).

� For a 3D array, the third axis can have either 3 or 4 elements. In both cases, the
first three elements correspond to the red, green, and blue components of the pixel
color. These can be either floats in the range [0, 1], or 8-bit integers of type ’uint8’.
A fourth element corresponds to an “alpha” value representing transparency.

The main functions we use are:

imread Read an image file into an array.

imsave Save an image to file.

imshow Display an image array.

Python Code Explanation

In [1]: img = zeros((100, 100, 3)) Create an image array of 100
rows and columns, set to zero

In [2]: img[:60,:60,0] = 1. Set the top-left corner to red

In [3]: img[40:,40:,1] = 1. Set the lower-right corner to
green

In [4]: img[20:80,20:80,2] = 1. Set the center square to blue

In [5]: imsave("squares.png", img)

img2 = imread("squares.png")

imshow(img2)

Save the img array to the
”squares.png” file, read the
file back to the img2 array,
and display the image

52

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imread
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imsave
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imshow

CHAPTER 5. ADDITIONAL TOPICS 5.4. RANDOM NUMBER GENERATION

5.4 Random Number Generation

NumPy provides a library of functions for random number generation in the random
module. These return either a sample, or an array of samples of a given size, drawn from
a given probability distribution. The main functions we use are:

random.rand Samples are drawn from a uniform distribution over [0, 1).

random.randint Samples are integers drawn from a given range.

random.randn Samples are drawn from the “standard normal” distribution.

random.normal Samples are drawn from a normal (Gaussian) distribution.

The following examples illustrate the use of these functions.

Python Code Explanation

In [1]: from numpy import *

print random.rand()

0.723812203628

Return a single random num-
ber uniformly drawn from the
interval [0, 1)

In [2]: print random.rand(3)

[0.74654564 0.58764797 0.15557362]

Return an array of 3 random
numbers drawn from [0, 1)

In [3]: print random.rand(2, 3)

[[0.65382707 0.71701863 0.5738609]

[0.22064692 0.57487732 0.5710538]]

Return an array of size (2,
3) of random numbers drawn
from [0, 1)

In [4]: print random.randint(7)

3

Return an integer drawn from
{0, 1, 2, 3, 4, 5, 6}. Note
that 7 is not included

In [5]: print random.randint(5,9,size=(2,4))

[[5 5 5 8]

[7 8 7 6]]

Return an array of size (2, 4)
of integers drawn from {5, 6,
7, 8}

In [6]: print random.randn(3)

[0.47481788 -0.7690172 0.42338774]

Return array of samples drawn
from “standard” normal dis-
tribution (µ = 0, σ = 1)

In [7]: print random.normal(100, 15)

111.676554337

Return a sample drawn from a
normal distribution with µ =
100, σ = 15

53

http://docs.scipy.org/doc/numpy/reference/routines.random.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html#numpy.random.rand
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html#numpy.random.randint
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html#numpy.random.randn
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html#numpy.random.normal

CHAPTER 5. ADDITIONAL TOPICS 5.5. SOUND FILES

5.5 Sound Files

Sound is a vibration that propagates through a medium such as air as a wave of pressure
and displacement. Recording devices such as microphones convert this wave to an elec-
trical signal. This signal is then sampled at regular intervals and converted to a sequence
of numbers, which correspond to the wave amplitude at given times.

The WAVE (or WAV) file format is a standard for storing such audio data without com-
pression. WAVE files contain two main pieces of information:

� The rate at which the wave has been sampled, usually 44,100 times per second.

� The audio data, usually with 16 bits used per sample. This allows 216 = 65,536
different amplitude levels to be represented.

The module scipy.io.wavfile provides functions to read and write such files.

scipy.io.wavfile.read Read a WAV file, returning the sample rate and the data.

scipy.io.wavfile.write Write a NumPy array as a WAV file.

The following example creates and saves a WAV file with a single frequency at middle C,
then plots the first 1000 samples of the data.

from numpy i m p o r t l i n s p a c e
from s c i p y . i o i m p o r t w a v f i l e
from p y l a b i m p o r t p l o t , show

r a t e = 44100 # Number o f s a mp l e s / second
end = 10 # The f i l e i s 10 s e c o n d s l o n g
t ime = l i n s p a c e (0 , end , r a t e *end+1) # Time i n t e r v a l s a r e 1/ r a t e
f r e q = 261.625565 # Frequency o f ” m i d d l e C”
data = s i n (2* p i * f r e q * t ime) # G e n e r a t e t he s i n e wave
w a v f i l e . w r i t e (” middleC . wav” , r a t e , data) # Write the a r r a y to a wav f i l e
p l o t (t ime [: 1 0 0 0] , data [: 1 0 0 0]) # P l o t th e f i r s t 1000 s a m p le s
show () # F i n a l l y , show the f i g u r e

54

http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.read.html#scipy.io.wavfile.read
http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.write.html#scipy.io.wavfile.write

CHAPTER 5. ADDITIONAL TOPICS 5.6. LINEAR PROGRAMMING

5.6 Linear Programming

Linear programming problems are a special class of optimization problem. They involve
finding the maximum (or minimum) of some linear objective function f(x) of a vector of
variables x = (x1, x2, . . . , xn), subject to a set of linear equality and inequality constraints.

Since the objective function and constraints are linear, we can represent the problem as:

Maximize cTx, where the vector c contains the coefficients of the objective function,

subject to Aub ∗ x ≤ bub, where Aub is a matrix and bub a vector,

and Aeq ∗ x = beq, where Aeq is a matrix and beq a vector.

An example of such a problem would be: x = {x1, x2}. Maximize f(x) = 2x1 + 3x2
subject to the inequality constraints (i) 0 ≤ x1 ≤ 80, (ii) x2 ≥ 0, (iii) x1 +x2 ≤ 100, and
(iv) x1 + 2x2 ≤ 160. This example is graphed below, showing the level curves of f(x).

The function scipy.optimize.linprog implements the “simplex algorithm” we discuss in class
to solve this problem. The arguments to this function are the values c, Aub, bub, Aeq and
beq given above. An optional bounds argument represents the range of permissible values
that the variables can take, with None used to indicate no limit.

Applying linprog to this problem is done as shown below. Note that linprog finds the
minimum of f(x), so we use negative values for the c coefficients to find a maximum.

c = a r r a y ([−2 , −3]) # N e g a t i v e c o e f f i c i e n t s o f f (x)
A ub = a r r a y ([[1 , 1] , [1 , 2]]) # M a t r i x o f t he i n e q u a l i t y c o e f f i c i e n t s
b ub = a r r a y ([1 0 0 , 1 6 0]) # V e c t o r o f the i n e q u a l i t y upper bounds
bounds = [(0 , 80) , (0 , None)] # Each t u p l e i s a (lower , upper) bound
r e s u l t = l i n p r o g (c , A ub=A ub , b ub=b ub , bounds=bounds)
p r i n t r e s u l t . x # The ” x” f i e l d h o l d s th e s o l u t i o n

This yields the correct solution for x1 and x2, as seen in the graph above:

[4 0 . 6 0 .]

55

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

6 Programming Style

This chapter contains some tips on how to make programs easier to read and understand.
Programs are written first and foremost to be understood by human beings, not by com-
puters. Ideally, it should be possible a year from now for you to pick up the code that
you’re writing today and still understand what you were doing and why. (It should also
be possible for the instructor to understand it a week from now...)

6.1 Choosing Good Variable Names

Good variable names make reading and debugging a program much easier. Well chosen
names are easy to decipher, and make the intent clear without additional comments.

� A variable name should fully and accurately describe the data it represents. As an
example, date may be ambiguous whereas current_date is not. A good technique
is to state in words what the variable represents, and use that for the name.

� Names that are too short don’t convey enough meaning. For example, using d for
date or cd for current date is almost meaningless. Research shows that programs
with variable names that are about 9 to 15 characters long are easiest to understand
and debug.

� Variable names should be problem-oriented, refering to the problem domain, not how
the problem is being solved. For example, planet_velocity refers to the problem,
but vector_3d refers to how this information is being represented.

� Loop indices are often given short, simple names such as i, j and k. This is okay
here, since these variables are just used in the loop, then thrown away.

� If loops are nested, longer index names such as row and column can help avoid
confusion.

� Boolean variables should have names that imply either True or False. For example,
prime_found implies that either a prime has been found, or it hasn’t.

� Boolean variables should be positive. For example, use prime_found rather than
prime_not_found, since negative names are difficult to read (particularly if they are
negated).

� Named constants should be in uppercase and refer to what the constant represents
rather than the value it has. For example, if you want to use the same color blue
for the font in every title, then define the color in one place as TITLE_FONT_COLOR

rather than FONT_BLUE. If you later decide to have red rather than blue titles, just
redefine TITLE_FONT_COLOR and it keeps the same meaning.

56

CHAPTER 6. PROGRAMMING STYLE 6.2. CHOOSING GOOD FUNCTION NAMES

6.2 Choosing Good Function Names

The recommended style for naming functions in Python is to use all lowercase letters,
separated by underscores as necessary. As with variable names, good function names can
help make the intent of the code much easier to decipher.

� For procedures (functions that do something and don’t return a value), use a verb
followed by an object. An example would be plot_prime_distribution.

� For functions that return values, use a description of what the returned value repre-
sents. An example would be miles_to_kilometers.

� Don’t use generic names such as calculate_stuff or numbered functions such
as function1. These don’t tell you what the function does, and make the code
difficult to follow.

� Describe everything that the function does, and make the function name as long as
is necessary to do so. If the function name is too long, it may be a sign that the
function itself is trying to do too much. In this case, the solution is to use shorter
functions which perform just one task.

6.3 No “Magic Numbers”

Magic numbers are numbers such as 168 or 9.81 that appear in a program without
explanation. The problem with such numbers is that the meaning is unclear from just
reading the number itself.

� Numbers should be replaced with named constants which are defined in one place,
close to the start of your code file.

� Named constants make code more readable. It’s a lot easier to understand what
HOURS_PER_WEEK is referring to than the number 168.

� If a number needs to change, named constants allow this change to be done in one
place easily and reliably.

6.4 Comments

It’s not necessary to comment every line of code, and “obvious” comments which just
repeat what the code does should be avoided. For example, the endline comment in the
following code is redundant and does nothing to explain what the code is for.

x += 1 # Add 1 to x

Good comments serve two main purposes:

� “Intent” comments explain the purpose of the code. They operate at the level of the
problem (why the code was written) - rather than at the programming-language level
(how the code operates). Intent is often one of the hardest things to understand
when reading code written by another programmer.

57

https://www.python.org/dev/peps/pep-0008/#naming-conventions

CHAPTER 6. PROGRAMMING STYLE 6.5. ERRORS AND DEBUGGING

� “Summary” comments distill several lines of code into one or two sentences. These
can be scanned faster than the code itself to quickly understand what the code is
doing. For example, suppose you are creating several different graphs for a report. A
summary comment before each plot and its associated set of formatting commands
can describe which figure in the report the code is producing.

Endline comments are those at the end of a line, after the code. They are best avoided
for a number of reasons.

� Endline comments are short by necessity as they need to fit into the space remaining
on a line. This means that they tend to be cryptic and uninformative.

� Endline comments are difficult to keep aligned (particularly as the code changes),
and if they’re not aligned they become messy and interfere with the visual structure
of the code.

A final note is to get in the habit of documenting code files. At the top of every file,
include a block comment describing the contents of the file, the author, and the date the
file was created. An example would be:

MTH 3 3 7 : I n t r o to S c i e n t i f i c and Mathemat ica l Computing , F a l l 2015
Report 1 : P r i m i t i v e Pythagorean T r i p l e s
C r e a t e d by Adam Cunningham 8/31/2015

6.5 Errors and Debugging

The following suggestions may help to reduce errors.

� Test each function completely as you go.

� In the initial stages of learning Python, test each few lines of code before moving on
to the next.

� Add “print” statements inside a function to print out the intermediate values of a
calculation. This can be used to check that a function is working as required, and
can always be commented out afterwards.

In the event of an error being generated, IPython will typically give as much information

as possible about the error. If this information is not sufficient, the %debug magic will
start the IPython debugger. This lets the current values of variables inside a function be
examined, and allows code to be stepped through one line at a time.

58

7 Further Reading

The following books may prove useful for further study or reference.

� L. Felipe Martins. IPython Notebook Essentials. Packt Publishing Ltd, Birmingham.
2014.

A fairly short introduction to using NumPy and Matplotlib in IPython Notebooks.
This is not a Python tutorial, although there is a brief review of Python in the
appendix.

� Steve McConnell. Code Complete: A Practical Handbook of Software Construction,
Second Edition. Microsoft Press. 2004.

A general guide to code writing and software construction, this book focuses on
questions of software design rather than any specific language. More useful to an
intermediate-level programmer who wants to improve their skills. No references to
Python.

� Bruce E. Shapiro. Scientific Computation: Python Hacking for Math Junkies. Sher-
wood Forest Books, Los Angeles. 2015.

A tutorial for Python, NumPy and Matplotlib that also covers many of the same
scientific and mathematical topics as this class.

� John M. Stewart. Python for Scientists. Cambridge University Press, Cambridge.
2014.

A good introduction to Python, NumPy, Matplotlib and three-dimensional graph-
ics. Extensive treatment of numerical solutions to ordinary, stochastic, and partial
differential equations.

59

	Getting Started
	Course Description
	Install Python
	Install LibreOffice
	Weekly Reports
	Graphics
	Fonts
	Using Styles

	IPython Notebook
	Magics
	Markdown
	LaTeX

	Programming Python
	Numbers
	Booleans
	Strings
	Type Conversions
	Variable Names
	Modules
	Lists
	Tuples
	Sets
	Dictionaries
	Boolean Expressions
	If Statements
	For Loops
	While Loops
	Break and Continue
	Comprehensions
	Functions
	Reading and Writing Files
	Comments

	NumPy
	Array Creation
	Array Properties
	Array Operations
	Accessing Arrays

	Matplotlib
	Basic Plotting
	A More Complex Plotting Example
	Bar Plots
	Histograms
	Contour Plots
	Multiple Plots
	Formatting Mathematical Expressions

	Additional Topics
	Loading Numerical Files
	Animation
	Images
	Random Number Generation
	Sound Files
	Linear Programming

	Programming Style
	Choosing Good Variable Names
	Choosing Good Function Names
	No ``Magic Numbers''
	Comments
	Errors and Debugging

	Further Reading

