Let	A	is said to	if for all	there exists	such that if	then
	sequence (x_n) in \mathbb{R}	converge to $x \in \mathbb{R}$	$\varepsilon > 0$	a natural number $K(\varepsilon)$	$n \ge K(\varepsilon)$	$ x_n - x < \varepsilon$
	sequence (x_n) in \mathbb{R}	be bounded		a real number $M > 0$	$n \in \mathbb{N}$	$ x_n \le M$
	sequence (x_n) in \mathbb{R}	be a Cauchy sequence	$\varepsilon > 0$	a natural number $H(\varepsilon)$	$n, m \ge H(\varepsilon)$	$ x_n - x_m < \varepsilon$
	sequence (x_n) in \mathbb{R}	be contractive		a constant $C, 0 < C < 1$	$n \in \mathbb{N}$	$ x_{n+2} - x_{n+1} \le C x_{n+1} - x_n $
	sequence (x_n) in \mathbb{R}	tend to $+\infty$	$\alpha \in \mathbb{R}$	a natural number $K(\alpha)$	$n \ge K(\alpha)$	$x_n > \alpha$
	sequence (x_n) in \mathbb{R}	tend to $-\infty$	$\beta \in \mathbb{R}$	a natural number $K(\beta)$	$n \ge K(\beta)$	$x_n < \beta$
$A \subseteq \mathbb{R}$	point c in \mathbb{R}	be a cluster point of A	$\delta > 0$	$x \in A, x \neq c$	_	$ x-c <\delta$
$A \subseteq \mathbb{R}$ c a c.p. of A $f: A \to \mathbb{R}$	number L in \mathbb{R}	be a limit of f at c	$\varepsilon > 0$	$\delta > 0$	$x \in A, 0 < x - c < \delta$	$ f(x) - L < \varepsilon$
$A \subseteq \mathbb{R}$ c a c.p. of A	function $f:A\to\mathbb{R}$	be bounded on a neighborhood of c	_	a δ -neighborhood $V_{\delta}(c)$ and a constant $M > 0$	$x \in A \cap V_{\delta}(c)$	f(x) < M
$A \subseteq \mathbb{R}$ c a c.p. of A	function $f:A\to\mathbb{R}$	$\mathbf{tend} \ \mathbf{to} \ \infty \ \mathbf{as} \ x \to c$	$\alpha \in \mathbb{R}$	$\delta = \delta(\alpha) > 0$	$x \in A, 0 < x - c < \delta$	$f(x) > \alpha$
$A \subseteq \mathbb{R}$ c a c.p. of A	function $f:A\to\mathbb{R}$	tend to $-\infty$ as $x \to c$	$\beta \in \mathbb{R}$	$\delta = \delta(\beta) > 0$	$x \in A, 0 < x - c < \delta$	$f(x) < \beta$
$A \subseteq \mathbb{R}$ $f: A \to \mathbb{R}$ $(a, \infty) \subseteq A$	number L in \mathbb{R}	be a limit of f as $x \to \infty$	$\varepsilon > 0$	$K = K(\varepsilon) > a$	x > K	$ f(x) - L < \varepsilon$
$c\in A\subseteq \mathbb{R}$	function $f: A \to \mathbb{R}$	be continuous at c	$\varepsilon > 0$	$\delta > 0$	$x \in A \text{ and } x - c < \delta$	$ f(x) - f(c) < \varepsilon$
$A \subseteq \mathbb{R}$	function $f: A \to \mathbb{R}$	be bounded on A	_	constant $M > 0$	$x \in A$	$ f(x) \le M$
$A \subseteq \mathbb{R}$	function $f: A \to \mathbb{R}$	be uniformly continuous on A	$\varepsilon > 0$	$\delta = \delta(\varepsilon) > 0$	$x, u \in A \text{ and } x - u < \delta$	$ f(x) - f(u) < \varepsilon$
$A \subseteq \mathbb{R}$	function $f:A\to\mathbb{R}$	be a Lipschitz function	_	a constant $K > 0$	$x, u \in A$	$ f(x) - f(u) \le K x - u $
$c \in I \subseteq \mathbb{R}$ $f: I \to \mathbb{R}$	number L in \mathbb{R}	the derivative of f at c	$\varepsilon > 0$	$\delta(\varepsilon) > 0$	$x \in I, 0 < x - c < \delta(\varepsilon)$	$\left \frac{f(x) - f(c)}{x - c} - L \right < \varepsilon$
·	function $f:[a,b] \to \mathbb{R}$	be Riemann integrable on $[a, b]$ if there exists $L \in \mathbb{R}$ s.t.	$\varepsilon > 0$	$\delta_{\varepsilon} > 0$	$\dot{\mathcal{P}}$ is a tagged partition of $[a,b]$ with $ \dot{\mathcal{P}} < \delta_{\varepsilon}$	$ S(f;\dot{\mathcal{P}}) - L < \varepsilon$
$A_0 \subseteq A \subseteq \mathbb{R}$ $f: A_0 \to \mathbb{R}$	sequence of functions (f_n) on A to \mathbb{R}	converge uniformly on A_0 to f	$\varepsilon > 0$	a natural number $K(\varepsilon)$	$n \ge K(\varepsilon)$	$ f_n(x) - f(x) < \varepsilon$ for all $x \in A_0$