The Multivariate Normal Distribution

Let \mathbf{Y} be a $n \times 1$ random vector with mean $\boldsymbol{\mu}$ and covariance matrix Σ. We say that \mathbf{Y} follows a multivariate normal distribution $\mathbf{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ if: $f_{\mathbf{Y}}(\mathbf{y})=\frac{1}{(2 \pi)^{n / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right\}$ Let \mathbf{A} be $m \times 1$ and \mathbf{B} be $m \times n$ constant. Then:

$$
\begin{equation*}
\mathbf{A}+\mathbf{B Y} \sim N_{m}\left(\mathbf{A}+\mathbf{B} \boldsymbol{\mu}, \mathbf{B} \boldsymbol{\Sigma} \mathbf{B}^{\prime}\right) \tag{11.2.2}
\end{equation*}
$$

General Linear Model in Matrix Terms

In matrix terms, the multiple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{p-1} X_{i, p-1}+\varepsilon_{i}
$$

is given by:

$$
\mathbf{Y} \sim \mathbf{X} \boldsymbol{\beta}+\varepsilon
$$

- The matrix \mathbf{X} is the design matrix.
- The vector $\boldsymbol{\beta}$ contains the true population regression coefficients.
- The response vector \mathbf{Y} and errors ε are random.

The Normal Errors Regression Model

Under the normal errors model, $\varepsilon_{i} \sim \operatorname{iid} N\left(0, \sigma^{2}\right)$. In matrix terms: $\varepsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$. The normal simple linear regression model is then:

$$
\mathbf{Y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)
$$

- $\mathbf{b} \sim N_{p}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$
- $\hat{\mathbf{Y}} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{H}\right)$
- $\mathbf{e} \sim N_{n}\left(\mathbf{0}, \sigma^{2}\left(\mathbf{I}_{n}-\mathbf{H}\right)\right)$

Vector Differentiation/Least Squares

Let \mathbf{a} and \mathbf{x} be vectors and \mathbf{A} be a symmetric matrix. Then:

$$
\begin{gather*}
\frac{\partial\left(\mathbf{a}^{\prime} \mathbf{x}\right)}{\partial \mathbf{x}}=\mathbf{a} \tag{11.4.1a}\\
\frac{\partial\left(\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}\right)}{\partial \mathbf{x}}=2 \mathbf{A} \mathbf{x} \tag{11.4.1b}
\end{gather*}
$$

Regression parameters are obtained through minimization of the quantity:

$$
Q=(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})
$$

The Hat Matrix H

Suppose the design matrix \mathbf{X} has full column rank with $\operatorname{rank}(\mathbf{X})=p$. Define $\mathbf{H}=$ $\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$, so $\hat{\mathbf{Y}}=\mathbf{H Y}$. Then:

- \mathbf{H} is symmetric.
11.6.1a
- \mathbf{H} is idempotent.
- $\operatorname{rank}(\mathbf{H})=p$.

Properties of $\mathbf{b}, \hat{\mathbf{Y}}, \mathrm{e}$

- $\mathrm{E}[\mathrm{b}]=\boldsymbol{\beta}$ i.e. \mathbf{b} is unbiased.
11.5.1a
- $\operatorname{Var}(\mathbf{b})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
11.5.1b
- $\mathrm{E}[\hat{\mathbf{Y}}]=\mathbf{X} \boldsymbol{\beta}$
- $\operatorname{Var}(\hat{\mathbf{Y}})=\sigma^{2} \mathbf{H}$
- $\mathrm{E}[\mathrm{e}]=0$
11.6.3a
- $\operatorname{Var}(\mathbf{e})=\sigma^{2}\left(\mathbf{I}_{n}-\mathbf{H}\right)$
11.6.3b

The Least Squares Estimator b

Consider the model:

$$
\mathbf{Y} \sim \mathbf{X} \boldsymbol{\beta}+\varepsilon
$$

Further assume that the design matrix \mathbf{X} has full column rank with $\operatorname{rank}(\mathbf{X})=p$. Then the least squares estimator for $\boldsymbol{\beta}$ is given by:

$$
\begin{equation*}
\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \tag{11.4.2}
\end{equation*}
$$

Distribution of Quadratic Forms

Let \mathbf{A} be an $n \times n$ symmetric matrix and $\mathbf{Y} \sim$ $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\operatorname{rank}(\boldsymbol{\Sigma})=n$. Then:

- $\mathbf{Y}^{\prime} \mathbf{A Y} \sim \chi_{\text {rank }(\mathbf{A}), \mu^{\prime} \mathbf{A} \boldsymbol{\mu}}^{2}$
if and only if $\mathbf{A} \boldsymbol{\Sigma}$ is idempotent. 12.1.3:
- $\mathbf{B \Sigma A}=\mathbf{0}$ if and only if:
a) $\mathbf{Y}^{\prime} \mathbf{A Y} \perp \mathbf{B Y}$, and
b) $\mathrm{Y}^{\prime} \mathrm{AY} \perp \mathrm{Y}^{\prime} \mathbf{B Y}$ 12.1.4b

Distribution Results for $S S E$ and $S S R$
Let $\mathbf{Y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$. Then:

- $\mathrm{E}(M S E)=\sigma^{2}$
- $\frac{S S E}{\sigma^{2}} \sim \chi_{n-p}^{2}$.
- $\mathrm{E}(M S R)=\sigma^{2}+\frac{1}{p-1} \boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{H}-\frac{1}{n} \mathbf{J}_{n}\right) \mathbf{X} \boldsymbol{\beta}$
- $\frac{S S R}{\sigma^{2}} \sim \chi_{p-1, \lambda}^{2}, \lambda=\frac{1}{\sigma^{2}} \boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime}\left(\mathbf{H}-\frac{1}{n} \mathbf{J}_{n}\right) \mathbf{X} \boldsymbol{\beta}$
- $S S R \perp S S E$

