Matrix Arithmetic

$$
\begin{gathered}
\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A} \\
(\mathbf{A}+\mathbf{B})+\mathbf{C}=\mathbf{A}+(\mathbf{B}+\mathbf{C}) \\
(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C}) \\
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \\
(\mathbf{A}+\mathbf{B})(\mathbf{C}+\mathbf{D})=\mathbf{A C}+\mathbf{A D}+\mathbf{B C}+\mathbf{B D}
\end{gathered}
$$

Transpose and Trace of a Matrix

$$
\begin{aligned}
&(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime} \\
&(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime} \\
&(\mathbf{A B C})^{\prime}=\mathbf{C}^{\prime} \mathbf{B}^{\prime} \mathbf{A}^{\prime} \\
& \operatorname{tr}(c \mathbf{A})= c \times \operatorname{tr}(\mathbf{A}) \\
& \operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B}) \\
& \operatorname{tr}\left(\mathbf{A}^{\prime}\right)= \operatorname{tr}(\mathbf{A}) \\
& \operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})
\end{aligned}
$$

Matrix Inverse

$$
\begin{gathered}
\mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I} \\
\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A} \\
\left(\mathbf{A}^{\prime}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\prime} \\
(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1} \\
(\mathbf{A B C})^{-1}=\mathbf{C}^{-1} \mathbf{B}^{-1} \mathbf{A}^{-1}
\end{gathered}
$$

If \mathbf{A}^{-1} does not exist, we say \mathbf{A} is singular.

Idempotent

If

$$
\mathbf{A}^{2}=\mathbf{A}
$$

then \mathbf{A} is called idempotent.
The property $\mathbf{A}^{2}=\mathbf{A}$ implies

$$
\mathbf{A}^{m}=\mathbf{A}
$$

for any positive integer m.

Rank of a Matrix

The rank of an $r \times c$ matrix \mathbf{A} is the number of linearly independent rows (or columns), $\operatorname{rank}(\mathbf{A})$.

- $\operatorname{rank}(\mathbf{A}) \leq \min (r, c)$
- $\operatorname{rank}(\mathbf{A})=\min (r, c) \Rightarrow \mathbf{A}$ is of full rank.
- If \mathbf{A} is an $n \times n$ matrix, then:

$$
\operatorname{rank}(\mathbf{A})=n \Leftrightarrow \mathbf{A}^{-1} \text { exists } \Leftrightarrow|\mathbf{A}| \neq 0
$$

- $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{\prime} \mathbf{A}\right)=\operatorname{rank}\left(\mathbf{A A}^{\prime}\right)$
- If \mathbf{A} is idempotent, then $\operatorname{rank}(\mathbf{A})=\operatorname{tr}(\mathbf{A})$

The Conditional Inverse \mathbf{A}^{c}

Let \mathbf{A} be a matrix. If a matrix \mathbf{G} satisfies:

$$
\mathbf{A G A}=\mathbf{A}
$$

then \mathbf{G} is called a conditional inverse of \mathbf{A}.

- If \mathbf{A} is a square, nonsingular matrix, then the unique conditional inverse of \mathbf{A} is \mathbf{A}^{-1}. Otherwise, \mathbf{A}^{c} is not unique.
- $\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{c} \mathbf{A}\right)$
- $\mathbf{A}^{c} \mathbf{A}$ is idempotent, so $\operatorname{rank}(\mathbf{A})=\operatorname{tr}\left(\mathbf{A}^{c} \mathbf{A}\right)$

Determinant

For a 2×2 matrix: $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ the determinant is defined as:

$$
|\mathbf{A}|=a d-b c
$$

and the inverse is:

$$
\mathbf{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Expectation and Variance

Let \mathbf{Y} be a random vector with mean $\boldsymbol{\mu}$. The variance-covariance matrix Σ is:

$$
\operatorname{Var}(\mathbf{Y})=\mathrm{E}\left[(\mathbf{Y}-\boldsymbol{\mu})(\mathbf{Y}-\boldsymbol{\mu})^{\prime}\right]=\boldsymbol{\Sigma}
$$

Let \mathbf{A} and \mathbf{B} be nonrandom (constant) matrices.
a) $\mathrm{E}(\mathbf{A}+\mathbf{B Y})=\mathbf{A}+\mathbf{B} \boldsymbol{\mu}$
b) $\operatorname{Var}(\mathbf{A}+\mathbf{B Y})=\mathbf{B \Sigma} \mathbf{B}^{\prime}$
c) $\mathrm{E}\left(\mathbf{Y}^{\prime} \mathbf{A} \mathbf{Y}\right)=\operatorname{tr}(\mathbf{A} \boldsymbol{\Sigma})+\boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\mu}$

Quadratic Forms: Theorem 12.1.2

Suppose $\mathbf{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let \mathbf{A} and \mathbf{B} be constant matrices. Then
a) $\operatorname{Var}\left(\mathbf{Y}^{\prime} \mathbf{A Y}\right)=2 \operatorname{tr}(\mathbf{A} \boldsymbol{\Sigma} \mathbf{A} \boldsymbol{\Sigma})+4 \boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\Sigma} \mathbf{A} \boldsymbol{\mu}$
b) $\operatorname{Cov}\left(\mathbf{Y}, \mathbf{Y}^{\prime} \mathbf{A Y}\right)=2 \boldsymbol{\Sigma} \mathbf{A} \boldsymbol{\mu}$
c) $\operatorname{Cov}\left(\mathbf{B Y}, \mathbf{Y}^{\prime} \mathbf{A Y}\right)=2 \mathbf{B} \boldsymbol{\Sigma} \mathbf{A} \boldsymbol{\mu}$

