Matrix Arithmetic

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$
$$(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$$
$$(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$$
$$\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{AB} + \mathbf{AC}$$
$$\mathbf{A} + \mathbf{B})(\mathbf{C} + \mathbf{D}) = \mathbf{AC} + \mathbf{AD} + \mathbf{BC} + \mathbf{BD}$$

Idempotent
$$\label{eq:A2} If $\mathbf{A}^2 = \mathbf{A}$ then \mathbf{A} is called idempotent. }$$

The property $A^2 = A$ implies

 $\mathbf{A}^m = \mathbf{A}$

for any positive integer m.

Transpose and Trace of a Matrix $(\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$ $(\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$ $(\mathbf{ABC})' = \mathbf{C}'\mathbf{B}'\mathbf{A}'$ $tr(c\mathbf{A}) = c \times tr(\mathbf{A})$ $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$ $tr(\mathbf{A}') = tr(\mathbf{A})$ $tr(\mathbf{AB}) = tr(\mathbf{BA})$

Matrix Inverse

$$AA^{-1} = A^{-1}A = I$$
$$(A^{-1})^{-1} = A$$
$$(A')^{-1} = (A^{-1})'$$
$$(AB)^{-1} = B^{-1}A^{-1}$$
$$(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$

If A^{-1} does not exist, we say A is singular.

Rank of a Matrix

The **rank** of an $r \times c$ matrix **A** is the number of linearly independent rows (or columns), rank(**A**).

- $\operatorname{rank}(\mathbf{A}) \le \min(r, c)$
- $\operatorname{rank}(\mathbf{A}) = \min(r, c) \Rightarrow \mathbf{A}$ is of full rank.
- If A is an n×n matrix, then: rank(A) = n ⇔ A⁻¹ exists ⇔ |A| ≠ 0
 rank(A) = rank(A'A) = rank(AA')

• If A is idempotent, then
$$rank(A) = tr(A)$$

The Conditional Inverse A^c Let A be a matrix. If a matrix G satisfies: AGA = A

then ${\bf G}$ is called a conditional inverse of ${\bf A}.$

- If A is a square, nonsingular matrix, then the unique conditional inverse of A is A⁻¹. Otherwise, A^c is not unique.
- $rank(\mathbf{A}) = rank(\mathbf{A}^{c}\mathbf{A})$
- $\mathbf{A}^{c}\mathbf{A}$ is idempotent, so rank $(\mathbf{A}) = tr(\mathbf{A}^{c}\mathbf{A})$

Determinant

For a 2×2 matrix: $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ the determinant is defined as:

$$|\mathbf{A}| = ad - bc$$

and the inverse is:

 $\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Expectation and Variance

Let Y be a random vector with mean μ . The variance-covariance matrix Σ is:

$$\mathsf{Var}(\mathbf{Y}) = \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})(\mathbf{Y} - \boldsymbol{\mu})'] = \boldsymbol{\Sigma}$$

Let A and B be nonrandom (constant) matrices.

a)
$$E(A + BY) = A + B\mu$$
 11.1.1a

b)
$$Var(A + BY) = B\Sigma B'$$
 11.1.1b

c)
$$E(Y'AY) = tr(A\Sigma) + \mu'A\mu$$
 12.1.1

Quadratic Forms: Theorem 12.1.2

Suppose $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and let \mathbf{A} and \mathbf{B} be constant matrices. Then

- a) $Var(Y'AY) = 2tr(A\Sigma A\Sigma) + 4\mu'A\Sigma A\mu$
- b) $Cov(\mathbf{Y}, \mathbf{Y}'\mathbf{A}\mathbf{Y}) = 2\Sigma\mathbf{A}\boldsymbol{\mu}$
- c) $Cov(\mathbf{BY}, \mathbf{Y}'\mathbf{AY}) = 2\mathbf{B}\Sigma\mathbf{A}\boldsymbol{\mu}$