Bias and Variance of an Estimator

• The **bias** of an estimator $\hat{\theta}$ is:

$$\mathsf{Bias} = \mathsf{E}[\hat{ heta} - heta] = \mathsf{E}[\hat{ heta}] - heta$$

- The variance of an estimator $\hat{\theta}$ is: $Var(\hat{\theta}) = E[(\hat{\theta} - E[\hat{\theta}])^2]$
- $\hat{\theta}_1$ is more **efficient** if $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$
- An estimator is asymptotically unbiased if $\lim_{n \to \infty} \mathsf{E}[\hat{\theta}] = \theta$

Interval Estimation

• A $100(1 - \alpha)$ % confidence interval for a parameter θ is a pair of statistics $\hat{\theta}_L$ and $\hat{\theta}_U$ such that:

 $P(\hat{\theta}_L < \theta < \hat{\theta}_U) = 1 - \alpha$

• Let $Q = q(Y_1, \ldots, Y_n; \theta)$. If Q has a distribution that does not depend on θ , then Q is a **pivotal quantity**.

Least Squares Estimation

- Least squares estimation of a parameter θ is based on: $\min_{\theta} \mathsf{E}[(Y \mathsf{E}[Y])^2]$
- The empirical version uses the criteria:

$$\min_{\theta} Q(\theta) = \min_{\theta} \sum_{i=1}^{n} (Y_i - \mathsf{E}_{\theta}[Y_i])^2$$

• The **normal equations**, derived by setting partial derivatives of Q equal to zero, may be used to obtain parameter estimates.

Hypothesis Testing

- A **hypothesis** is a statement about characteristics of a probability distribution.
- The **p-value** equals the probability that the test statistic is at least as extreme as the observed value.

$$\alpha = P(\text{Type I error}) = P(\text{Reject } H_0 | H_0 \text{ true})$$

$$\beta = P(\mathsf{Type II error}) = P(\mathsf{Not reject } H_0 | H_0 \mathsf{F})$$

Power
$$= 1 - \beta = P(\text{Reject } H_0 | H_0 \text{ false})$$

Normal Equations

•
$$\sum_{i=1}^{n} Y_i = nb_0 + b_1 \sum_{i=1}^{n} X_i$$

•
$$\sum_{i=1}^{n} X_i Y_i = b_0 \sum_{i=1}^{n} X_i + b_1 \sum_{i=1}^{n} X_i^2$$

or

•
$$\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i) = 0$$

•
$$\sum_{i=1}^{n} X_i (Y_i - b_0 - b_1 X_i) = 0$$

Properties of Fitted Regression Line • $\sum_{i=1}^{n} (Y_i - \hat{Y}_i) = \sum_{i=1}^{n} e_i = 0$ • $\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \hat{Y}_i$ • $\sum_{i=1}^{n} X_i e_i = 0$ • $\sum_{i=1}^{n} \hat{Y}_i e_i = 0$ • (\bar{X}, \bar{Y}) is on the regression line.

• $\sum_{i=1}^{n} e_i^2$ is a minimum.

(1)

(2)

Maximum Likelihood Estimation

• The joint multivariate pdf of an independent sample Y_1, \ldots, Y_n is given by:

$$f_{Y_1,...,Y_n}(y_1,...,y_n) = \prod_{i=1}^n f_{Y_i}(y_i) = L(\theta)$$

- $L(\theta)$ is the likelihood function.
- The maximum likelihood estimator (MLE), $\hat{\theta}_{MLE}$, is defined as the point where $L(\theta)$ reaches its maximum.

The Simple Linear Regression Model

 $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \qquad i = 1, 2, \dots, n$

- X_i is the known (fixed) predictor and Y_i the associated response for the *i*th observation.
- β_0 and β_1 are the regression coefficients.
- ε_i is a random variable such that:

$$- \mathsf{E}[\varepsilon_i] = 0$$
$$- \mathsf{Var}(\varepsilon_i) = \sigma^2$$

-
$$\varepsilon_i \perp \varepsilon_i$$
 for all $i \neq i$

 $b_0 \text{ and } b_1 \text{ as Linear Combinations of } Y_i$ $b_1 = \sum k_i Y_i \qquad b_0 = \sum \left(\frac{1}{n} - \bar{X}k_i\right) Y_i$ • $k_i = \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2}$ • $\sum k_i = 0$ • $\sum k_i X_i = 0$ • $\sum k_i^2 = \frac{1}{\sum (X_i - \bar{X})^2}$