
Bias and Variance of an Estimator

• The bias of an estimator θ̂ is:

Bias = E[θ̂ − θ] = E[θ̂]− θ
• The variance of an estimator θ̂ is:

Var(θ̂) = E[(θ̂ − E[θ̂])2]

• θ̂1 is more efficient if Var(θ̂1) < Var(θ̂2)

• An estimator is asymptotically unbiased if
lim
n→∞

E[θ̂] = θ

Least Squares Estimation

• Least squares estimation of a parameter θ is
based on: min

θ
E[(Y − E[Y ])2]

• The empirical version uses the criteria:

min
θ
Q(θ) = min

θ

n∑
i=1

(Yi − Eθ[Yi])
2

• The normal equations, derived by setting par-
tial derivatives of Q equal to zero, may be used
to obtain parameter estimates.

Maximum Likelihood Estimation

• The joint multivariate pdf of an independent
sample Y1, . . . , Yn is given by:

fY1,...,Yn(y1, . . . , yn) =
n∏
i=1

fYi(yi) = L(θ)

• L(θ) is the likelihood function.

• The maximum likelihood estimator
(MLE), θ̂MLE, is defined as the point where
L(θ) reaches its maximum.

Interval Estimation

• A 100(1 − α) % confidence interval for a

parameter θ is a pair of statistics θ̂L and θ̂U
such that:

P (θ̂L < θ < θ̂U) = 1− α

• Let Q = q(Y1, . . . , Yn; θ). If Q has a distri-
bution that does not depend on θ, then Q is
a pivotal quantity.

Hypothesis Testing

• A hypothesis is a statement about character-
istics of a probability distribution.
• The p-value equals the probability that the

test statistic is at least as extreme as the ob-
served value.

α = P (Type I error) = P (Reject H0|H0 true)

β = P (Type II error) = P (Not reject H0|H0 F)

Power = 1− β = P (Reject H0|H0 false)

The Simple Linear Regression Model

Yi = β0 + β1Xi + εi i = 1, 2, . . . , n

• Xi is the known (fixed) predictor and Yi the
associated response for the ith observation.
• β0 and β1 are the regression coefficients.
• εi is a random variable such that:

– E[εi] = 0

– Var(εi) = σ2

– εi ⊥ εj for all i 6= j

Normal Equations

•
∑n

i=1 Yi = nb0 + b1
∑n

i=1Xi

•
∑n

i=1XiYi = b0
∑n

i=1Xi + b1
∑n

i=1X
2
i

or

•
∑n

i=1 (Yi − b0 − b1Xi) = 0 (1)

•
∑n

i=1Xi (Yi − b0 − b1Xi) = 0 (2)

Properties of Fitted Regression Line

•
∑n

i=1(Yi − Ŷi) =
∑n

i=1 ei = 0

•
∑n

i=1 Yi =
∑n

i=1 Ŷi

•
∑n

i=1Xiei = 0

•
∑n

i=1 Ŷiei = 0

• (X̄, Ȳ ) is on the regression line.

•
∑n

i=1 e
2
i is a minimum.

b0 and b1 as Linear Combinations of Yi

b1 =
∑

kiYi b0 =
∑(

1

n
− X̄ki

)
Yi

• ki =
Xi − X̄∑
(Xi − X̄)2

•
∑
ki = 0

•
∑
kiXi = 0

•
∑
k2i =

1∑
(Xi − X̄)2

1


