Bias and Variance of an Estimator

- The bias of an estimator $\hat{\theta}$ is:

$$
\text { Bias }=\mathrm{E}[\hat{\theta}-\theta]=\mathrm{E}[\hat{\theta}]-\theta
$$

- The variance of an estimator $\hat{\theta}$ is:

$$
\operatorname{Var}(\hat{\theta})=\mathrm{E}\left[(\hat{\theta}-\mathrm{E}[\hat{\theta}])^{2}\right]
$$

- $\hat{\theta}_{1}$ is more efficient if $\operatorname{Var}\left(\hat{\theta}_{1}\right)<\operatorname{Var}\left(\hat{\theta}_{2}\right)$
- An estimator is asymptotically unbiased if $\lim _{n \rightarrow \infty} \mathrm{E}[\hat{\theta}]=\theta$

Interval Estimation

- A $100(1-\alpha) \%$ confidence interval for a parameter θ is a pair of statistics $\hat{\theta}_{L}$ and $\hat{\theta}_{U}$ such that:

$$
P\left(\hat{\theta}_{L}<\theta<\hat{\theta}_{U}\right)=1-\alpha
$$

- Let $Q=q\left(Y_{1}, \ldots, Y_{n} ; \theta\right)$. If Q has a distribution that does not depend on θ, then Q is a pivotal quantity.

Normal Equations

- $\sum_{i=1}^{n} Y_{i}=n b_{0}+b_{1} \sum_{i=1}^{n} X_{i}$
- $\sum_{i=1}^{n} X_{i} Y_{i}=b_{0} \sum_{i=1}^{n} X_{i}+b_{1} \sum_{i=1}^{n} X_{i}^{2}$ or
- $\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)=0$
- $\sum_{i=1}^{n} X_{i}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)=0$

Least Squares Estimation

- Least squares estimation of a parameter θ is based on: $\min _{\theta} \mathrm{E}\left[(Y-\mathrm{E}[Y])^{2}\right]$
- The empirical version uses the criteria:

$$
\min _{\theta} Q(\theta)=\min _{\theta} \sum_{i=1}^{n}\left(Y_{i}-\mathrm{E}_{\theta}\left[Y_{i}\right]\right)^{2}
$$

- The normal equations, derived by setting partial derivatives of Q equal to zero, may be used to obtain parameter estimates.

Hypothesis Testing

- A hypothesis is a statement about characteristics of a probability distribution.
- The \mathbf{p}-value equals the probability that the test statistic is at least as extreme as the observed value.
$\alpha=P($ Type I error $)=P\left(\right.$ Reject $H_{0} \mid H_{0}$ true $)$
$\beta=P($ Type II error $)=P\left(\right.$ Not reject $\left.H_{0} \mid H_{0} \mathbf{F}\right)$
Power $=1-\beta=P\left(\right.$ Reject $H_{0} \mid H_{0}$ false $)$

Maximum Likelihood Estimation

- The joint multivariate pdf of an independent sample Y_{1}, \ldots, Y_{n} is given by:

$$
f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)=\prod_{i=1}^{n} f_{Y_{i}}\left(y_{i}\right)=L(\theta)
$$

- $L(\theta)$ is the likelihood function.
- The maximum likelihood estimator (MLE), $\hat{\theta}_{M L E}$, is defined as the point where $L(\theta)$ reaches its maximum.

The Simple Linear Regression Model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i} \quad i=1,2, \ldots, n
$$

- X_{i} is the known (fixed) predictor and Y_{i} the associated response for the i th observation.
- β_{0} and β_{1} are the regression coefficients.
- ε_{i} is a random variable such that:

$$
\begin{aligned}
& -\mathrm{E}\left[\varepsilon_{i}\right]=0 \\
& -\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2} \\
& -\varepsilon_{i} \perp \varepsilon_{j} \text { for all } i \neq j
\end{aligned}
$$

Properties of Fitted Regression Line

- $\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)=\sum_{i=1}^{n} e_{i}=0$
- $\sum_{i=1}^{n} Y_{i}=\sum_{i=1}^{n} \hat{Y}_{i}$
- $\sum_{i=1}^{n} X_{i} e_{i}=0$
- $\sum_{i=1}^{n} \hat{Y}_{i} e_{i}=0$
- (\bar{X}, \bar{Y}) is on the regression line.
- $\sum_{i=1}^{n} e_{i}^{2}$ is a minimum.
b_{0} and b_{1} as Linear Combinations of Y_{i} $b_{1}=\sum \sum_{k_{i} Y_{i}}^{X_{i}-\bar{X}} \quad b_{0}=\sum\left(\frac{1}{n}-\bar{X} k_{i}\right) Y_{i}$
- $k_{i}=\frac{X_{i}-\bar{X}}{\sum\left(X_{i}-\bar{X}\right)^{2}}$
- $\sum k_{i}=0$
- $\sum k_{i} X_{i}=0$
- $\sum k_{i}^{2}=\frac{1}{\sum\left(X_{i}-\bar{X}\right)^{2}}$

