Consistent Sequence of Estimators

A sequence of estimators $W_n = W_n(X_1, \ldots, X_n)$ is a **consistent sequence of estimators** of the parameter θ if, for every $\epsilon > 0$ and every $\theta \in \Theta$,

 $\lim_{n \to \infty} P_{\theta}(|W_n - \theta| < \epsilon) = 1$

Sufficient Conditions for Consistency

If W_n is a sequence of estimators of a parameter θ satisfying

i.
$$\lim_{n \to \infty} \mathsf{Var}_{\theta} W_n = 0$$
,

ii. $\lim_{n \to \infty} \operatorname{Bias}_{\theta} W_n = 0.$

for every $\theta \in \Theta$, then W_n is a consistent sequence of estimators of θ .

\downarrow

Consistency of MLEs

Let X_1, X_2, \ldots , be iid $f(x|\theta)$, $\hat{\theta}$ the MLE of θ , and $\tau(\theta)$ a continuous function of θ . Under the regularity conditions in Miscellanea 10.6.2 on $f(x|\theta)$, for every $\epsilon > 0$ and every $\theta \in \Theta$,

$$\lim_{n \to \infty} P_{\theta}(|\tau(\hat{\theta}) - \tau(\theta)| \ge \epsilon) = 0$$

i.e. $\tau(\hat{\theta})$ is a consistent estimator of $\tau(\theta)$.

Asymptotic Variance

For an estimator T_n , suppose that

 $k_n(T_n - \tau(\theta)) \rightarrow \mathsf{n}(0, \sigma^2)$

in distribution. The parameter σ^2 is called the **asymptotic variance** or *variance of the limit distribution* of T_n .

Asymptotic Distrib. of Simple LRT

For testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, suppose X_1, \ldots, X_n are iid $f(x|\theta)$, $\hat{\theta}$ is the MLE of θ , and $f(x|\theta)$ satisfies the regularity conditions in Miscellanea 10.6.2. Then under H_0 , as $n \to \infty$,

 $-2\log\lambda(\mathbf{X}) \rightarrow \chi_1^2$ in distribution

where χ_1^2 is a χ^2 random variable with 1 degree of freedom.

Wald Test

In general, a **Wald test** is a test based on a statistic of the form

$$Z_n = \frac{W_n - \theta_0}{S_n}$$

where θ_0 is a hypothesized value of the parameter θ , W_n is an estimator of θ , and S_n is a standard error for W_n , an estimate of the standard deviation of W_n .

Asymptotically Efficient

A sequence of estimators W_n is **asymptoti**cally efficient for a parameter $\tau(\theta)$ if

$$\sqrt{n}[W_n - \tau(\theta)] \rightarrow \mathsf{n}[0, v(\theta)]$$

in distribution and

 \rightarrow

$$v(\theta) = \frac{[\tau'(\theta)]^2}{\mathsf{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^2 \right)}$$

Asymptotic Efficiency of MLEs

Let X_1, X_2, \ldots , be iid $f(x|\theta)$, let $\hat{\theta}$ denote the MLE of θ , and let $\tau(\theta)$ be a continuous function of θ . Under the regularity conditions in Miscellanea 10.6.2 on $f(x|\theta)$ and, hence, $L(\theta|\mathbf{x})$,

$$\sqrt{n}[\tau(\hat{\theta}) - \tau(\theta)] \rightarrow \mathbf{n}[0, v(\theta)]$$

That is, $\tau(\hat{\theta})$ is a consistent and asymptotically efficient estimator of $\tau(\theta)$.

\downarrow

Approximate Variance of an MLE

Suppose that X_1, \ldots, X_n are iid $f(x|\theta)$, $\hat{\theta}$ is the MLE of θ , and $I_n(\theta) = \mathsf{E}_{\theta} \left(\frac{\partial}{\partial \theta} \log L(\theta|\mathbf{X})\right)^2$ is the information number of the sample. The variance of $h(\hat{\theta})$ can be approximated by:

$$\mathsf{Var}(h(\hat{\theta})|\theta) \approx \frac{[h'(\theta)]^2}{I_n(\theta)} \approx \frac{[h'(\theta)]^2 \big|_{\theta = \hat{\theta}}}{-\frac{\partial^2}{\partial \theta^2} \log L(\theta|\mathbf{X}) \big|_{\theta = \hat{\theta}}}$$