On the geometry of nilpotent orbits for classical simple Lie superalgebras

Many aspects of the representation theory of a Lie algebra and its associated algebraic group are governed by the geometry of their nilpotent cone. In this talk, we will introduce an analogue of the nilpotent cone \mathcal{N} for Lie superalgebras and show that for a simple classical Lie superalgebra the number of nilpotent orbits is finite. We will also show that the commuting variety \mathcal{X} described by Duflo and Serganova, which has applications in the study of the finite dimensional representation theory of Lie superalgebras, is contained in \mathcal{N} . Consequently, the finiteness result on \mathcal{N} generalizes and extends the work on the commuting variety. For the general linear Lie superalgebra $\mathfrak{gl}(m|n)$, we will also discuss more detailed geometric results of \mathcal{N} . In particular, we compute the dimensions of \mathcal{N} and the centralizer of a nilpotent orbit, describe the irreducible components of \mathcal{N} , and show that \mathcal{N} is a complete intersection.

This is joint work with Daniel Nakano from the University of Georgia.