
MTH 620: 2020-04-14 lecture

Alexandru Chirvasitu

1 Tensor products

You are doubtless familiar with the fact that for topological spaces X the cohomology

H∗(X) :=
⊕
n≥0

Hn(X)

is a graded ring, in the sense that it comes equipped with a multiplication

Hm(X)⊗Hn(X)→ Hm+n(X), m, n ∈ Z≥0.

Since, as discussed before, the cohomology of a group G is the singular cohomology of its
classifying space BG, we must have the same type of structure on

H∗(G) :=
⊕
n≥0

Hn(G).

This multiplicative structure (in a somewhat more general setup) will be the focus of this lecture.
We will have to refer back to the previous lecture [1] quite a bit.

1.1 Tensor products of complexes

This is a brief recollection of a construction discussed in class. We denote by C∗ and D∗ two
cochain complexes with differentials

∂C : Cn → Cn+1 and ∂D : Dn → Dn+1

respectively. In earlier lectures we encountered

Definition 1.1 The tensor product C∗ ⊗D∗ is the cochain complex E∗ with terms

En :=
⊕

p+q=n

Cp ⊗ Cq,

whose differential ∂E : En → En+1, restricted to the summand Cp ⊗Dq of En, is given by

∂E(x⊗ y) := ∂C(x)⊗ y + (−1)px⊗ ∂D(y). �

Remark 1.2 The sign convention in Definition 1.1 is very common in homological algebra, and
you might find it referred to as sign rule. The mnemonic for it is that you should think of x ∈ Cp

as having degree p and of the symbol ∂ as having “degree 1”, and in general, you pick up a (−1)mn

sign whenever you flip two symbols of degrees m and n. Since you passed a ∂ (of degree 1) over an
x (of degree p), that’s the (−1)p. �
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We are interested in cohomology though, hence the relevance of the following

Proposition 1.3 Let (C∗, ∂C) and (D∗, ∂D) be two cochain complexes. Then, there are well-defined
maps

Hp(C∗)⊗Hq(D∗)→ Hp+q(C∗ ⊗D∗)

sending
(class of x ∈ Cp)⊗ (class of y ∈ Dp)

to
class of x⊗ y ∈ Cp ⊗Dq ⊂ (C∗ ⊗D∗)p+q.

Problem 1 Prove Proposition 1.3.

You’ll have to prove a number of things, like say the fact that x⊗ y is a cocycle whenever both
x and y are, and also that the image in cohomology only depends on the cohomology classes of x
and y.

1.2 Coalgebras, bialgebras, and tensor products of G-modules

The category GMod is of course a category of modules by definition, but it has more structure
because of the special nature of the group ring ZG.

In general, for any two rings R and S and modules M ∈ RMod, N ∈ SMod the tensor product
M ⊗ N (over Z) acquires a natural module structure over R ⊗ S: the action of the latter ring is
given by

(r ⊗ s)(m⊗ n) = rm⊗ sn, r ∈ R, s ∈ S, m ∈M, n ∈ N,

as you would have expected. This is often referred to as the external tensor product of M and N .
In particular, this applies to R = S = ZG and two modules M,N ∈ GMod to make M ⊗N into

a module over
ZG⊗ ZG ∼= Z[G×G].

This is not the end of the story though: ZG comes equipped with a ring morphism

ZG 3 g 7→ g ⊗ g ∈ ZG⊗ ZG.

This allows us to pull back the ZG ⊗ ZG-module structure on M ⊗ N back to ZG by scalar
restriction, and hence make M ⊗ N into a G-module. In summary, the action of G on M ⊗ N is
simply given by

g(m⊗ n) = gm⊗ gn.

As an aside, what makes ZG special is that it is not simply an algebra but a bialgebra. First,
consider the following dualization of the notion of a ring.

Definition 1.4 A coring C is an abelian group equipped with a map ∆ : C → C ⊗ C (the
comultiplication, or coproduct) that is coassociative, in the sense that

C

C ⊗ C

C ⊗ C
C ⊗ C ⊗ C

∆

∆

∆(∆⊗id)

∆(id⊗∆)

commutes.
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C is counital if it is further equipped with an abelian group morphism ε : C → Z (the counit)
such that

C

C ⊗ C

C ⊗ C

C

∆

∆

ε⊗id

id⊗ε

id

commutes.
As for rings, we occasionally use the term coalgebra instead of coring, especially when working

over a field instead of Z. �

Unless specified otherwise, we work with counital corings/coalgebras (as was the case for rings,
which for us are assumed unital).

Remark 1.5 Note that Definition 1.4 is precisely parallel to the definition of a ring, except that
all arrows are reversed: you have a comultiplication map C → C ⊗ C instead of multiplication
R⊗R→ R, a counit C → Z instead of a unit Z→ R, etc. �

To get back to a term mentioned in passing above:

Definition 1.6 A (unital and counital) bialgebra is an abelian group B equipped with

� an algebra structure m : B ⊗B → B, η : Z→ B and

� a coalgebra structure ∆ : B → B ⊗B, ε : B → Z

that are compatible in the sense that ∆ and ε are both morphisms of unital algebras. �

Definition 1.6 seems somewhat unbalanced: we asked that the coalgebra structure maps be
algebra morphisms but not the other way around. It turns out that this was unnecessary, as it
would lead to exactly the same notion:

Problem 2 Let B be an algebra and coalgebra as in the first part of Definition 1.6. Prove that the
two conditions below are equivalent:

(a) ∆ and ε are morphisms of unital algebras;

(b) m and η are morphisms of counital coalgebras.

Finally, after all of this, we can get to the point (of this bialgebra-themed aside):

Proposition 1.7 For every group G, the group algebra ZG becomes a bialgebra when equipped with
the comultiplication

∆ : g 7→ g ⊗ g ∈ ZG⊗ ZG

and the counit

ε : g 7→ δg,1 :=

{
1 if g = 1

0 otherwise.

Now, the G-module M ⊗ N (for M,N ∈ GMod) can be recovered as an application of the
general remark that for a bialgebra B with B-modules M and N , M ⊗N is again a B-module by

� first making it into a B ⊗ B-module via the external tensor product construction discussed
above;

� then restricting scalars back to B via the comultiplication B → B ⊗B.
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2 Multiplicative structure on H∗(G)

Let G be a group. We will construct “multiplication” morphisms

Hp(G,M)⊗Hq(G,N)→ Hp+q(G,M ⊗N), p, q ∈ Z≥0,

functorial in M,N ∈ GMod, where M ⊗ N ∈ GMod is the tensor product module constructed in
§1.2.

We proceed as follows. First, consider the canonical contractible resolutions

0→M → C0 → C1 → · · ·

and
0→ N → D0 → D1 → · · ·

of M and N introduced in the previous lecture ([1, Proposition 3.2]). Because they are contractible,
so is the complex

0→M ⊗N → E0 → E1 → · · · ,

where

� E∗ := C∗ ⊗D∗ is the tensor product cochain complex, as discussed in §1.1;

� all tensor products of G-modules are again considered as G-modules, as in §1.2.

In other words, E∗ is a resolution of M ⊗N . This means that for every injective resolution

0→M ⊗N → I0 → · · ·

we have

� a morphism
E∗ → I∗ (2-1)

of complexes that extends the identity on M ⊗N ;

� which is unique up to homotopy.

We now have all of the ingredients, and can start putting them together.

(1) First, note that for any two G-modules X and Y we have a canonical abelian group morphism

XG ⊗ Y G → (X ⊗ Y )G

that simply sends x ⊗ y to x ⊗ y again, for x ∈ XG and y ∈ Y G. Assembling together such
maps in each degree will give us a morphism

C∗G ⊗D∗G → (C∗ ⊗D∗)G = E∗G

of cochain complexes (of abelian groups). According to Proposition 1.3, this then induces
morphisms

Hp(G,M)⊗Hq(G,N) ∼= Hp(C∗G)⊗Hq(D∗G)→ Hp+q(E∗G). (2-2)

Note that we have used [1, Theorem 1.2] to conclude that the cohomology ofM can be computed
via the acyclic (though in general not injective) resolution C∗, and similarly for N .
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(2) Apply the fixed-point functor (−)G to (2-1) and then take cohomology to get maps

Hp+q(E∗G)→ Hp+q(I∗G) ∼= Hp+q(G,M ⊗N). (2-3)

(3) Finally, compose (2-2) and (2-3) to get the sought-after morphisms

Hp(G,M)⊗Hq(G,N)→ Hp+q(G,M ⊗N). (2-4)

Definition 2.1 Let G be a group and M,N ∈ GMod two G-modules. The cup product

∪ : Hp(G,M)⊗Hq(G,N)→ Hp+q(G,M ⊗N)

is the map (2-4) constructed above. �

[2, Theorem, p.585] offers a good summary of the properties of these maps. Ignore the hats
on top of the cohomology groups; they denote Tate cohomology, which we haven’t discussed; it
specializes back to ordinary cohomology for positive integer degrees.

The construction of cup products given above is well motivated conceptually, but not the most
straightforward definition to work with.. We will have more explicit descriptions of products later,
in future lectures.

2.1 Cohomology algebras

If you recall, this lecture was initially motivated by the fact that the (integer-valued, say) singular
cohomology H∗(X) of a space forms an algebra. This is the case for the cohomology H∗(G,M) of
a single module M (as opposed to Definition 2.1, which requires two modules), but we need extra
structure on the module. The relevant concept is

Definition 2.2 Let G be a group. A G-algebra is a G-module A that is also an algebra (i.e. ring)
such that

� the unit 1 ∈ A is fixed by G, i.e. 1 ∈ AG;

� the multiplication A⊗A→ A is a G-module morphism.

This latter condition simply says that

g(ab) = (ga)(gb), ∀a, b ∈ A, ∀g ∈ G.

We say that A is a commutative G-algebra if it is a G-algebra that is commutative as an algebra.�

For a G-algebra A we have the cup product

∪ : Hp(G,A)⊗Hq(G,A)→ Hp+q(G,A⊗A)

from Definition 2.1, which we can follow up with the map

Hp+q(G,A⊗A)→ Hp+q(G,A)

obtained by applying the functor Hp+q(G,−) to the G-module multiplication morphism A⊗A→ A.
See also the discussion immediately preceding [2, §9.8].

We summarize the discussion in
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Proposition 2.3 Let G be a group and A a G-algebra.

(a) Equipped with the multiplication morphisms

Hp(G,A)⊗Hq(G,A)→ Hp+q(G,A)

from above the direct sum

H∗(G,A) :=
⊕
n≥0

Hn(G,A)

is a graded algebra. In particular, the multiplication introduced above is associative, and the
class of 1 ∈ AG = H0(G,A) is a unit for the multiplication.

(b) If furthermore A is commutative then H∗(G,A) is anticommutative (or skew-commutative or
super-commutative) in the sense that

yx = (−1)pqxy, ∀x ∈ Hp(G,A), y ∈ Hq(G,A). (2-5)

As is customary with graded algebras, call an element x ∈ H∗(G,A) homogeneous if it belongs
to one of the summands Hp(G,A), and in that case refer to p as the degree of x. We also fix the
notation |x| = p for the degree. With that in place, (2-5) says

yx = (−1)|x||y|xy, ∀ homogeneous x, y ∈ H∗(G,A).

3 A last problem

Very briefly, I mentioned above that for two G-modules M,N ∈ GMod we have a canonical abelian
group morphism

MG ⊗NG → (M ⊗N)G. (3-1)

This problem has you explore that map just a little bit:

Problem 3 Is the map (3-1) always an isomorphism? Prove the claim or provide a counterexam-
ple.
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