
MTH 620: 2020-04-07 lecture

Alexandru Chirvasitu

1 Acyclic resolutions

This will be a bit of a detour, revisiting general derived-functor theory before we circle back to
group (co)homology. First, let’s make sense of the title of the present section.

Definition 1.1 Let R be a ring and F : RMod→ Ab a left exact functor. An object X ∈ RMod is
F -acyclic (or just plain ‘acyclic’ when F is understood) if all right derived functors RiF (X), i ≥ 1
vanish on X.

Similarly, for right exact F we call X F -acyclic if all left derived functors LiF (X), i ≥ 1 vanish.�

This is fairly standard terminology; see e.g. [1, Definition, p.358, p.368 or p.379].
We’ll specialize mostly to left exact (and hence right derived) functors. The usefulness of the

concept for us stems from the fact that there’s a general phenomenon, whereby computing the right
derived functors RiF (X) (for an object X) doesn’t actually require you resolve X by injectives,
but rather it’s enough to resolve by F -acyclic objects.

You can see a particular case of this in [1, Theorem 7.5], for Tor: there, the point is that in
order to compute Tori(X,Y ), it’s enough to use a flat (rather than projective) resolution of either
X or Y . I will state the general principle here (in its right-derived-functor incarnation), and then
leave it as homework to prove it.

Theorem 1.2 Let R be a ring, F : RMod→ Ab a left exact functor, X ∈ RMod an object and

0→ X → A0 → A1 → · · · (1-1)

a resolution of X (i.e. exact sequence) with all Ai F -acyclic. Then, the ith derived functor RiF (X)
can be computed as the ith cohomology of the cochain complex

F (A∗) := 0→ F (A0)→ F (A1)→ · · ·

of abelian groups.

In short, acyclic resolutions are just as good as injective ones for the purpose of computing
derived functors. Needless to say, there is a version for right exact (and their left derived) functors
that should be trivial to state at this point.

This brings us to

Problem 1 Prove Theorem 1.2.

The ensuing discussion is meant to get you started on Problem 1. My suggestion is you approach
this by induction on i, the case i = 0 being easy (using nothing but the left exactness of F ). Now,
for i ≥ 1, consider the short exact sequence that starts off (1-1):

0→ X → A0 → C → 0,
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where C is simply the cokernel of the embedding X → A0. You then get a long exact derived-functor
sequence

· · · → Ri−1F (A0)→ Ri−1F (C)→ RiF (X)→ RiF (A0)→ · · · .

If i ≥ 2 the acyclicity of A0 means that the two extreme terms displayed above vanish, so

Ri−1F (C) ∼= RiF (X).

This means that you can replace i with i− 1, X with C, (1-1) with

0→ C → A1 → A2 → · · ·

and proceed by induction. So you’re left having to prove the claim for i = 1, which I’ll let you sort
out.

2 Change of rings / groups and derived functors

The following observation should be fairly simple, given the way we defined derived functors (via
projective or injective resolutions).

Proposition 2.1 Let R and S be rings, and F : RMod→ SMod an exact functor.

(a) If F preserves injectivity and G : SMod→ Ab is left exact, then we have a natural isomorphism

Ri(G ◦ F ) ∼= (RiG) ◦ F.

for all i ∈ Z≥0.

(b) Dually, if F preserves projectivity and G : SMod → Ab is right exact, then we have a natural
isomorphism

Li(G ◦ F ) ∼= (LiG) ◦ F.

for all i ∈ Z≥0. �

We’ll specialize this to functors resulting from ring (and eventually group) morphisms. To
that end, let R → S be a ring homomorphism. We are interested in the following application of
Proposition 2.1.

Problem 2 Suppose S is projective as a left R-module.

(a) Let M be a right R-module and N a left S-module. Show that we have isomorphisms

TorRi (M,N) ∼= TorSi (M ⊗R S,N),

where on the left N is regarded as an R-module via scalar restriction.

(b) Let M be a left S-module and N a left R-module. Show that we have isomorphisms

ExtiR(M,N) ∼= ExtiS(M,RHom(S,N)),

where on the left M is regarded as an R-module via scalar restriction.
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You’ll want to show that you can take the functor F from Proposition 2.1 to be either

−⊗R S : ModR → ModS (2-1)

or

RHom(S,−) : RMod→ SMod, (2-2)

and the hypotheses of Proposition 2.1 will be satisfied (you’ll have to decide what G is in each
case). For projectivity / injectivity preservation, you want

� For any ring morphism R → S the functor (2-1) turns projective modules into projective
modules.

� Dually, (2-2) preserves injectivity.

In turn, you might want to use the fact that these functors are left and right adjoints respectively
to scalar restriction from S-modules to R-modules, and scalar restriction is exact.

Finally, we can turn to groups. As an immediate consequence of Problem 2 we now have

Corollary 2.2 Let H ≤ G be a subgroup. Then, for every H-module M and arbitrary i ∈ Z≥0 we
have

Hi(H,M) ∼= Hi(G,ZG⊗ZH M)

and
H i(H,M) ∼= H i(G,HHom(ZG,M)).

�

This is Shapiro’s Lemma, which you can also find as [1, Proposition 9.76]. It uses Problem 2
and the fact that given a group inclusion H ≤ G the group algebra ZG is projective (indeed, even
free, as seen in class) over ZH.

In particular, taking H to be trivial in Corollary 2.2 we obtain

Corollary 2.3 Let G be a group and A an abelian group. Then,

(a) The G-module ZG⊗A has trivial higher homology Hi, i ≥ 1.

(b) The G-module Hom(ZG,A) has trivial higher cohomology H i, i ≥ 1.

�

Modules of this type are important enough to warrant special terminology (see [1, Definition,
p.561]):

Definition 2.4 Let G be a group.
An induced G-module is one of the form ZG⊗A, where A is an abelian group.
A coinduced G-module is one of the form Hom(ZG,A), where A is an abelian group. �

Now that we have the language, we can restate Corollary 2.3 as saying that

(a) Induced G-modules are acyclic for the functor (−)G of G-coinvariants.

(b) Coinduced G-modules are acyclic for the functor (−)G of G-coinvariants.
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3 Assembling the pieces

We’re working our way up to a conclusion: Section 1 is about using acyclic resolutions to compute
derived functors, while Section 2 provides a wealth of acyclic G-modules.

Let M be a G-module. You can then also consider M to be a plain abelian group (forgetting
the G-action), and construct the associated coinduced module Hom(ZG,M) (the Hom is over Z).
Now consider the map ψM sending an element m ∈M to the function G→M defined by

ψM (m)(g) := gm.

Identifying functions G→M to the coinduced G-module Hom(ZG,M), this gives us a map

ψM : M → Hom(ZG,M).

Problem 3 Show that ψM is in fact a G-module embedding, and that it is functorial in M ∈ GMod.
Prove also that the embedding ψM : M → Hom(ZG,M) splits as an abelian group map (not

necessarily as a G-module map!).

Remark 3.1 As everywhere in the discussion above, the coinduced module Hom(ZG,M) is a
G-module via right multiplication on the domain ZG:

(gf)(x) := f(xg)

for all g ∈ G, x ∈ ZG and f ∈ Hom(ZG,M). �

Problem 3 allows us to construct a canonical, functorial acyclic resolution for every G-module
M :

0→M → A0 → A1 → · · · ,

where

� M → A0 is the canonical embedding from Problem 3;

� which fits into a short exact sequence

0→M → A0 → C → 0

you can then follow up with another canonical embedding

C → A1 := Hom(ZG,C);

� fitting into another short exact sequence

0→ C → A1 → D → 0

and thus giving rise to another canonical embedding

D → A2 := Hom(ZG,D);

� etc; continue this process recursively.
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Furthermore, the fact that canonical embeddings

M → Hom(ZG,M)

split over Z (as claimed by Problem 3) implies

Proposition 3.2 For every M ∈ GMod the canonical acyclic resolution by coinduced modules
constructed above is contractible.

Let me remind you from class that ‘contractible’, for a complex, means that the identity mor-
phism of the complex is chain-homotopic to the zero map.

This is excellent news: recall that the bar resolution of the trivial G-module Z was convenient,
among other things, because it was contractible in the category Ab. That gave us a very useful
projective resolution for computing

H i(G,M) = ExtiZG(Z,M). (3-1)

Now, on the other hand, we have contractible resolutions at the “other end” of (3-1), i.e. for M
rather than Z; furthermore, those resolutions are natural in M . This came at the cost of replacing
injectivity with the weaker property of acyclicity.
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