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1 δ-functors revisited (briefly)

The previous lecture focused on the cohomology side of the change-of-groups picture. Here we
briefly dualize the discussion, because there are some interesting applications specific to homology.
[2, §9.6] will be a good reference for much of the new material.

The pertinent concept here is that of a homological (as opposed to cohomological) δ-functor. I
will not reprise the definition, since

� it is a direct dualization of the one in the preceding lecture, and

� it appears as [2, Definition, p.359].

I will, however, recall (the homological version of) universality (see [1, Definition 1.2]):

Definition 1.1 A homological δ-functor (Fi)i≥0 from RMod to Ab is universal if for every homo-
logical δ-functor (F ′i )i, every natural transformation η0 : F ′0 → F0 extends uniquely to a morphism

ηi : F ′i → Fi

of δ-functors.
(Fi)i is effaceable if for every object X there is an epimorphism P → X such that FiP = 0 for

all i ≥ 1. �

Just as in [1, Theorem 1.3], we have

Theorem 1.2 Effaceable homological δ-functors are universal. �

And there’s an analogue for [1, Corollary 1.4] too:

Corollary 1.3 For every right exact functor F : RMod→ Ab the left derived functors (LiF )i∈Z≥0

constitute an effaceable and hence universal homological δ-functor. �

2 Group change in homology

2.1 Corestriction

As before, we consider group morphisms H → G, and we again consider G-modules M as H-
modules via “scalar restriction” along the ring morphism ZH → ZG. Recall that the coinvariant
group MH is by definition

M/(h− 1, h ∈ H),
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i.e. the largest quotient of M on which H acts trivially. Since H acts by restricting the G-action,
the sum of the ranges of h− 1, h ∈ H (with h− 1 regarded as operators on M) is contained in the
sum of the ranges of g − 1, g ∈ G. This means that we have a canonical morphism

MH = M/(h− 1, h ∈ H)→M/(f − 1, g ∈ G) = MG.

This is clearly functorial in M ∈ GMod, so we get a natural transformation

GMod Ab

H0(H,−)

H0(G,−)

(2-1)

By the universality of the homological δ-functor Hi(G,−) (Corollary 1.3), the following notion
makes sense.

Definition 2.1 Let H → G be a group morphism. The corestriction morphisms

cor = corH→Gi : Hi(H,M)→ Hi(G,M), M ∈ GMod

are the components of the unique homological δ-functor morphism Hi(H,−)→ Hi(G,−) extending
(2-1). �

So by contrast to cohomology, where restriction resiG→H : H i(G,−)→ H i(H,−) was the “easy”
concept to define (i.e. worked for any group morphism H → G), in homology it is corestriction
that is easier to come by.

2.2 Restriction

On the other hand, and again by analogy to cohomology, we also have “wrong way” morphisms

Hi(G,−)→ Hi(H,−) (2-2)

provided H → G is a finite-index embedding. Assume that indeed this is the case for the duration
of the present subsection §2.2.

The recipe for constructing (2-2) is parallel to that for defining corestriction in cohomology: we
first start with i = 0, where we want maps

MG →MH , M ∈ GMod,

functorial in M .
Let ti, 1 ≤ i ≤ d be a set of representatives for the right cosets H\G. Then, for m ∈M , define

ψ : M 3 m 7→
∑

tim ∈M. (2-3)

We now come to

Problem 1 Show that the class of the right hand side of (2-3) in MH only depends on the class of
m in MG, and hence we have a commutative diagram

M

M

MG

MH

ψ

ϕ

for a unique map ϕM , functorial in M ∈ GMod.

2



Now, by analogy to [1, Problem 3], one can prove that

Hi(H,−) : GMod→ Ab, i ≥ 0

form an effaceable (and hence universal) homological δ-functor (as in that problem, the subtlety
here is that we’re taking homology over H, but the modules are over G!). We can now make sense
of

Definition 2.2 Let H ≤ G be a finite-index subgroup. The restriction morphisms

res = resG→Hi : Hi(G,M)→ Hi(H,M), M ∈ GMod

are the components of the unique homological δ-functor morphism Hi(G,−)→ Hi(H,−) extending
the natural transformation (−)G → (−)H from Problem 1. �

We also have the following versions of [1, Theorem 2.4 and Corollary 2.5], with essentially the
same proofs.

Theorem 2.3 Let H ≤ G be a finite-index subgroup. Then, for every G-module M , the composi-
tion

cores ◦ res : Hi(G,M)→ Hi(G,M)

is multiplication by the index [G : H]. �

Corollary 2.4 For any finite group G, the higher homology groups Hi(G,−), i ≥ 1 are annihilated
by the order |G|. �

2.3 Transfer

Given a finite-index inclusion H ≤ G, we will now take a closer look at the restriction morphism

resG→H1 : H1(G)→ H1(H).

It will take a particularly explicit form, since we know (from class meetings and, e.g., from [2,
Theorem 9.5.2]) that the first homology group H1(G) is simply the abelianization

Gab := G/[G,G].

So the general theory discussed above tells us that there should be an interesting morphism
Gab → Hab arising as restriction in 1st homology. This is the eponym of the present section:

Definition 2.5 For a finite-index subgroup H ≤ G, the transfer V : Gab → Hab is the restriction
morphism

resG→H1 : H1(G) ∼= Gab → Hab
∼= H1(H). �

Traditionally, the transfer is defined more explicitly (though it would then take some work to
show that the construction is equivalent to Definition 2.5; see [2, Theorem 9.97]).

Let d = [G : H] be the index and {si} a set of representatives for the left cosets G/H. For
every element g ∈ G we have

gsi = sσihi (2-4)

for some permutation σ of {1, · · · , n} and some elements hi. Then, set

V : Gab 3 class of g 7→ class of
∏
i

hi ∈ Hab.

The problem with this is that
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� it’s not immediately clear it is a definition (i.e. only depends on the class of g in Gab rather
than on g itself);

� it’s not clear it is independent of the set {si};

� it’s not clear it is a morphism.

So in other words, the only thing wrong with the construction is everything. Here, we’ll walk
through one possible way of addressing all of the issues that bypasses homology.

We write
Ṽ : G 3 g 7→ class of

∏
i

hi ∈ Hab.

(the domain is now G rather than Gab). Note that Ṽ is at least well defined.

Definition 2.6 A character of H is a group morphism χ : H → S1, where S1 denotes the multi-
plicative circle group of modulus-1 complex numbers.

Characters automatically factor through the abelianization H → Hab (because their codomain
S1 is abelian) and they form a group under pointwise multiplication.

The characters of H again form a group, with pointwise multiplication. We denote this group
by

Ĥ := group of characters of H,

and refer to it as the Pontryagin dual (or just ’dual’, for short) group of H. �

A character χ gives an action of H on C (with h ∈ H acting scaling C by χ(h)), so you can regard
C as an H-module denoted Cχ.

We can then extend scalars to get a G-module

Mχ := CG⊗CH Cχ

and we denote by
ρχ : G→ Gl(Mχ)

the resulting group morphism from G to the general linear group of the vector space Mχ. In other
words, ρχ(g) is the operator g acting on the G-module Mχ.

Problem 2 In the setup above, show that for every χ : H → S1 and every g ∈ G we have

χ
(
Ṽ (g)

)
= σ(g) det ρχ(g) (2-5)

where σ(g) is the sign of the permutation implemented by left multiplication by g on the set G/H
of left cosets.

(2-5) is kind of cool in its own right (if you like that kind of thing), but we’ll actually use it to
address the three bullet points in the above discussion. Specifically, note that (2-5) implies that

for every character χ ∈ Ĥab

� χ
(
Ṽ (g)

)
only depends on the class of g in Gab (why?);

� χ
(
Ṽ (g)

)
does not depend on the choice of coset representatives si;
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� the map

G 3 g 7→ χ
(
Ṽ (g)

)
∈ S1

is a morphism.

(these remarks precisely match the three bullet points listed before, in the same order).

Problem 3 Conclude that the map V : G→ Hab defined by

G 3 g 7→ class of
∏
i

hi ∈ Hab

with hi as in (2-4)

� descends to a map Gab → Hab;

� is independent of the coset representative set {si};

� is a morphism Gab → Hab.

You already know from the discussion preceding the statement that all of these hold once you
further compose V with arbitrary characters χ : H → S1. To conclude, you’ll need to argue that
characters separate the elements of Hab: for every x 6= y ∈ Hab there is some character χ with
χ(x) 6= χ(y):

Problem 4 Let H be an arbitrary abelian group. Show that the characters of H separate its
elements in the sense of the preceding paragraph.

Remark 2.7 A different way to phrase Problem 4 would have been: show that the canonical

morphism H → ̂̂
H sending h ∈ H to the morphism Ĥ → S1 defined by

χ 7→ χ(h)

is one-to-one. �

So I am suggesting you’ll need Problem 4 to solve Problem 3. As for Problem 4 itself, all groups
in sight are abelian now, so you’re effectively working in the category Ab. I would recommend you
use the fact that the circle group S1, where characters land by definition, is a divisible and hence
injective abelian group (you can just use that result; it’s a special case of [2, Corollary 3.35]).

I will wrap up with an illustration (or two..) of the usefulness of the transfer morphism. First,
the following remark is a relatively simple consequence of the construction of V → Gab → Hab in
the discussion following Definition 2.5.

Proposition 2.8 Let H ≤ G be a subgroup of finite index d ∈ Z≥1. Then, for each g ∈ G, the
image of (the class of) g through the transfer morphism V : Gab → Hab is (the class in Hab of) a
product

s∏
i=1

xig
nix−1i

where

� the exponents ni add up to d;
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� all xig
nix−1i belong to H.

�

That’s a bit verbose, but there’s a striking consequence that is much easier to state:

Corollary 2.9 If H ≤ G is a central subgroup of finite index d then the transfer morphism V :
Gab → H is simply

Gab 3 ( class of g ∈ G) 7→ gd ∈ H.

�

Note that it is not clear a priori, without the general theory of transfer morphisms, that the
power-d map in Corollary 2.9 is even a morphism!

Finally, that application:

Proposition 2.10 Let G be a finite group and H ≤ G a finite central subgroup such that

d := [G : H] and m := |H|

are coprime. Then, G decomposes as a direct product H ×N .

Proof According to Corollary 2.9, the composition

G

Gab
H

V

Ṽ

of the transfer morphism with the canonical surjection G → Gab is simply x 7→ xd. Because the
order of the abelian group H is coprime to d, Ṽ restricts to an automorphism of H. It follows that
for N := ker Ṽ we indeed have the internal tensor product decomposition G ∼= H ×N . �
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