Math 444: Geometry for Teachers
Winter 2016

Instructor: Alexandru Chirvasitu

Class times and location: Office: C-417 Padelford
Office hours: W 8:30 - 10 or by appointment
Email: chirva AT

TA: Karthik Iyer
Office: C-430 Padelford
Office hours: Tu 1:30 - 3
Email: karthik2 AT

We're using John M. Lee's Axiomatic Geometry, referred to below as AG. The textbook is absolutely necessary, both for the reading and in order to do the assignments.

You'll also need access to Book I of Euclid's Elements, available electronically here.

It's essential that you do the reading. I won't have time to go over every relevant example in class, and you'll need a good grasp of the material in order to do the homework. In fact, I encourage you to regard the reading as part of your homework.

Unless I say otherwise, 'Chapter X' refers to the textbook, AG.

Due date Assignment Remarks
1 Wed Jan 06 Book I of Euclid's Elements You don't need to read the
proofs of the propositions.
2 Fr Jan 08 Chapter 1 of AG
3 Mon Jan 11 Chapter 2 of AG before the
theorems on page 42
4 Wed Jan 13 Appendix E
5 Fri Jan 15 Appendix F
No meeting Mon Jan 18
because of holiday (MLK Day).
6 Wed Jan 20 Rest of Chapter 2
7 Fri Jan 22 Chapter 3 before 'Betweenness of Points' on page 59
8 Mon Jan 25 Chapter 3 before 'Rays' on page 71
9 Wed Jan 27 Appendix G
10 Fri Jan 29 Finish Chapter 3
11 Mon Feb 01 Chapter 4, stopping before
'Betweenness of Rays' (page 89)
12 Wed Feb 03 Chapter 4, stopping after Corollary 4.24 (page 97)
13 Fri Feb 05 Finish Chapter 4
14 Mon Feb 08 Chapter 5, stopping before
'Intersections of Lines and Triangles' (page 105)
15 Wed Feb 10 Continue Chapter 5;
skip 'Intersections of Lines and Triangles',
stop before page 113
This is where the midterm material stops.
16 Fri Feb 12 The 'Inequalities' section
of Chapter 5
No meeting Mon Feb 15
because of holiday.
17 Wed Feb 17 Finish Chapter 5 This includes the part
you skipped earlier.
18 Fri Feb 19 Chapter 6 up to and including
Theorem 6.4 and its proof
19 Mon Feb 22 Continue Chapter 6; stop
before 'Some Nonmodels' (page 135)
20 Wed Feb 24 Finish Chapter 6
21 Fri Feb 26 Chapter 7 before 'Parallel Lines' (page 149)
22 Mon Feb 29 Finish Chapter 7
23 Wed Mar 02 'Polygons' and 'Convex Polygons'
from Chapter 8
Last reading assignment for the quarter!

Supplementary material

On occasion, I'll post extra notes, comments, etc. in this space.

I will list the problems from AG, as numbered there. The numerical part indicates the chapter, so say problem 1A is at the end of chapter 1 in AG, and so on.

You have to turn in the assignment at the beginning of class, before the lecture. No late homework for any reason, but I will drop the lowest score.

Because of time constraints your TA will grade a couple of problems (tops) for correctness and the rest for completeness. I won't be telling you in advance which problems are graded for correctness though..

Due date Assignment Remarks
1 Wed Jan 13 1A, 1C
2A, 2D, 2F, 2H
EA from Appendix E
For 1C do Propositions 6 and 9
and ignore the last bullet point.
2 Wed Jan 20 2K, 2L, 2M, 2N, 2O, 2Q, 2R
parts (a), (b) and (c) of EB and EC
Please do the 2-column-style proofs as well.
We're only doing this for Chapter 2;
afterwards, we'll abandon the 2-column style.
3 Wed Jan 27 3A, 3B, 3C, 3D, 3E, 3F No need to do any 2-column proofs anymore.
4 Wed Feb 03 3G, 3J, 3L
4A, 4B, 4D, 4E
For 4A and 4B try to imitate
3.9 and 3.10 respectively.
Wed Feb 10 4C, 4F, 4G, 4H, 4I
5D, 5E
Do not turn in!
Treat these as practice for the midterm.
5 Wed Feb 17 All Chapter 5 problems
except for 5D and 5E
6 Wed Feb 24 All Chapter 6 problems
Fri Feb 26 Download This is a bonus homework,
worth 2% extra credit.
You don't have to turn it in.
7 Wed Mar 02 7A, 7B, 7C, 7E, 7F, 7I
8B, 8D
8D shouldn't require any Chapter 8 material
apart from the definition of polygon interior.

This is our last homework for
the Winter quarter.


It's happening in class (usual time and place) Wednesday, Feb 10. The test is open book.


The date and time are set by the department and I cannot change it. Early / late exams are not an option, so please plan accordingly.

Both the midterm and the final are open book exams. You get to bring your book, class notes, past homework, whatever.

As mentioned above, we'll drop the lowest homework score.

"Overloading" means allowing more students in class than the limit (which in our case is 40). Because 40 is also our room limit, there will be no overloading.
Disability Resources

If you need special accomodations please go to DRS (Disability Resources for Students) for more information. You should meet with a DRS counselor and get a letter attesting your need for academic accomodations. Once you have such a letter, please see me so that we can arrange for those.
If you have any questions, don't hesitate to email me.

Back to homepage