Suppose $\triangle ABC$ is a triangle and DE is a segment congruent to AB. Then, on each side of \overrightarrow{DE} there is a point F such that $\triangle ABC \cong \triangle DEF$.

Proof The Angle Construction Theorem (4.5) shows that on any pre-determined side of \overrightarrow{DE} you can construct a ray \overrightarrow{DG} such that $\angle BAC \cong \angle GDE$.

Next, by the Segment Construction Theorem (3.35) there is a point F in the interior of the ray \overrightarrow{DG} such that $AC = DF$.

Finally, the triangles ABC and DEF now satisfy the hypotheses of the SAS postulate: $AB = DE$ by hypothesis, $AC = DF$ by our construction of F, and $m\angle BAC = m\angle FDE$ by our construction of the ray $\overrightarrow{DG} = \overrightarrow{DF}$. The postulate then ensures the congruence of the two triangles ABC and DEF.