19 | Duotient Spaces

So far we have encountered two methods of constructing new topological spaces from old ones:

- given a space X we can obtain new spaces by taking subspaces of X;
- given two (or more) spaces X_{1}, X_{2} we can obtain a new space by taking their product $X_{1} \times X_{2}$.

Here we will consider another, very useful construction of a quotient space of a given topological space. This construction will let us produce, in particular, interesting examples of manifolds. Intuitively, a quotient space of a space X is a space Y which is obtained by identifying some points of X. For example, if we take the square $X=[0,1] \times[0,1]$ and identify each point $(0, t)$ with the point $(1, t)$ for $t \in[0,1]$ we obtain a space Y that looks like a cylinder:

In order to make this precise we need to specify the following:

1) what are the points of Y;
2) what is the topology on Y.

The first part is done by considering Y as the set of equivalence classes of some equivalence relation on X. The second part is done by defining the quotient topology. We explain these notions below.
19.1 Definition. Let X be a set. An equivalence relation on X is a binary relation \sim satisfying three properties:

1) $x \sim x$ for all $x \in X$ (reflexivity)
2) if $x \sim y$ then $y \sim x$ (symmetry)
3) if $x \sim y$ and $y \sim z$ then $x \sim z$ (transitivity)
19.2 Example. Let $X=[0,1] \times[0,1]$. Define a relation on X as follows. For any $(s, t) \in X$ we set $(s, t) \sim(s, t)$. Also, for any $t \in[0,1]$ we set $(0, t) \sim(1, t)$ and $(1, t) \sim(0, t)$. This relation is an equivalence relation that identifies corresponding points of the vertical edges of the square $[0,1] \times[0,1]$.
19.3 Example. Define a relation \sim on the set of real numbers \mathbb{R} as follows: $r \sim s$ if $s=r+n$ for some $n \in \mathbb{Z}$. One can check that this is an equivalence relation (exercise).
19.4 Definition. Let X we a set with an equivalence relation \sim and let $x \in X$. The equivalence class of x is the subset $[x] \subseteq X$ consisting of all elements that are in the relation with x :

$$
[x]=\{y \in X \mid x \sim y\}
$$

19.5 Example. Take $X=[0,1] \times[0,1]$ with the equivalence relation defined as in Example 19.2. If $(s, t) \in X$ and $s \neq 0,1$ then $[(s, t)]$ consists of a single point: $[(s, t)]=\{(s, t)\}$. If $s=0,1$ then $[(s, 0)]$ consists of two points: $[(0, t)]=[(1, t)]=\{(0, t),(1, t)\}$.
19.6 Example. Take \mathbb{R} with the equivalence relation defined as in Example 19.3. For $r \in \mathbb{R}$ we have:

$$
[r]=\{r+n \mid n \in \mathbb{Z}\}
$$

For example: $[1]=\{1+n \mid n \in \mathbb{Z}\}=\mathbb{Z}$. Notice that [1] $=[2]$ and $[\sqrt{2}]=[\sqrt{2}+1]$.
19.7 Proposition. Let X be a set with an equivalence relation \sim, and let $x, y \in X$.

1) If $x \sim y$ then $[x]=[y]$.
2) If $x \nsim y$ then $[x] \cap[y]=\varnothing$.

Proof. 1) Assume that $x \sim y$ and that $z \in[x]$. This gives $z \sim x$ and by transitivity $z \sim y$. Therefore $z \in[y]$. This shows that $[x] \subseteq[y]$. In the same way we can show that $[y] \subseteq[x]$. Therefore we get $[x]=[y]$.
2) Assume that $[x] \cap[y] \neq \varnothing$, and let $z \in[x] \cap[y]$. Then $x \sim z$ and $y \sim z$, so by transitivity $x \sim y$ which contradicts our assumption.
19.8 Note. Proposition 19.7 shows that an equivalence relation \sim on a set X splits X into a disjoint union of distinct equivalence classes of \sim. The opposite is also true. Namely, assume that we have a family $\left\{A_{i}\right\}_{i \in I}$ of subsets of X such that $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$ and $\bigcup_{i \in I} A_{i}=X$. We can define a relation \sim on X such that $x \sim y$ if and only if both x and y are elements of the same subset A_{i}. This relation is an equivalence relation and its equivalence classes are the sets A_{i}.
19.9 Definition. Let X be a set with an equivalence relation \sim. The quotient set of X is the set X / \sim whose elements are all distinct equivalence classes of \sim. The function

$$
\pi: X \rightarrow X / \sim
$$

given by $\pi(x)=[x]$ is called the quotient map.
19.10 Note. Let X be a set with an equivalence relation \sim, and let $f: X \rightarrow Y$ be a function. Assume that for each $x, x^{\prime} \in X$ such that $x \sim x^{\prime}$ we have $f(x)=f\left(x^{\prime}\right)$. Then we can define a function $\bar{f}: X / \sim \rightarrow Y$ by $\bar{f}([x])=f(x)$. We have $f=\bar{f} \pi$, i.e. the following diagram commutes:

19.11 Definition. Let X be a topological space and let \sim be an equivalence relation on X. The quotient topology on the set X / \sim is the topology where a set $U \subseteq X / \sim$ is open if the set $\pi^{-1}(U)$ is open in X. The set X / \sim with this topology is called the quotient space of X taken with respect to the relation \sim.
19.12 Proposition. Let X be a topological space and let \sim be an equivalence relation on X. A set $A \subseteq X / \sim$ is closed if and only the set $\pi^{-1}(A)$ is closed in X.

Proof. Exercise.
19.13 Proposition. Let X, Y be a topological spaces and let \sim be an equivalence relation on X. A function $f: X / \sim \rightarrow Y$ is continuous if and only if the function $f \pi: X \rightarrow Y$ is continuous.

Proof. Exercise.
19.14 Note. Let X be a space with an equivalence relation \sim and let $f: X \rightarrow Y$ be a continuous function. If for each $x, x^{\prime} \in X$ such that $x \sim x^{\prime}$ we have $f(x)=f\left(x^{\prime}\right)$ then as in (19.10) we obtain a function $\bar{f}: X / \sim \rightarrow Y, \bar{f}([x])=f(x)$. Since the function $\bar{f} \pi=f$ is continuous thus by Proposition 19.13 \bar{f} is a continuous function.
19.15 Example. Take the closed interval $[-1,1]$ with the equivalence relation \sim such that $(-1) \sim 1$ (and $t \sim t$ for all $t \in[-1,1]$). We will show that the quotient space $[-1.1] / \sim$ is homeomorphic to the circle S^{1}. Consider the function $f:[-1,1] \rightarrow S^{1}$ given by $f(x)=(\sin \pi x,-\cos \pi x)$:
Since $f(1)=f(-1)$ by (19.14) we get the induced continuous function $\bar{f}:[-1,1] / \sim \rightarrow S^{1}$. We will prove that \bar{f} is a homeomorphism. First, notice that \bar{f} is a bijection. Next, since $[-1,1]$ is a compact space and the quotient map $\pi:[-1,1] \rightarrow[-1,1] / \sim$ is onto by Proposition 14.9 we obtain that the space $[-1,1] / \sim$ is compact. Therefore we can use Proposition 14.18 which says that any continuous bijection from a compact space to a Hausdorff space is a homeomorphism.

This example can be generalized as follows. Take the closed unit ball

$$
\bar{B}^{n}=\left\{x \in \mathbb{R}^{n} \mid d(0, x) \leq 1\right\}
$$

The unit sphere $S^{n-1}=\left\{x \in \mathbb{R}^{n} \mid d(0, x)=1\right\}$ is a subspace of \bar{B}^{n}. Consider the equivalence relation \sim on \bar{B}^{n} that identifies all points of $S^{n-1}: x \sim x^{\prime}$ for all $x, x^{\prime} \in S^{n-1}$. Using similar arguments as above one can show that \bar{B}^{n} / \sim is homeomorphic to the sphere S^{n} (exercise). Notice that for $n=1$ we have $\bar{B}^{1}=[-1,1]$ and $S^{0}=\{-1,1\}$ so in this case we recover the homeomorphism $[-1,1] / \sim \cong S^{1}$.
19.16 Note. Let X be a space and let $A \subseteq X$. Consider the equivalence relation on X that identifies all points of $A: x \sim x^{\prime}$ for all $x, x^{\prime} \in A$. The quotient space X / \sim is usually denoted by X / A. Using this notation the homeomorphism given in Example 19.15 can be written as $\bar{B}^{n} / S^{n-1} \cong S^{n}$.
19.17 Example. Take the square $[0,1] \times[0,1]$ with the equivalence relation defined as in Example 19.2: $(0, t) \sim(1, t)$ for all $t \in[0,1]$. Using arguments similar as in Example 19.15 we can show that the quotient space is homeomorphic to the cylinder $S^{1} \times[0,1]$:

19.18 Example. Take the square $[0,1] \times[0,1]$ with the equivalence relation given by $(0, t) \sim(1,1-t)$ for all $t \in[0,1]$. The space obtained as a quotient space is called the Möbius band:

The Möbius band is a 2-dimensional manifold with boundary, and its boundary is homeomorphic to S^{1}.
19.19 Example. Take the square $[0,1] \times[0,1]$ with the equivalence relation given by $(0, t) \sim(1, t)$ for all $t \in[0,1]$ and $(s, 0) \sim(s, 1)$ for all $s \in[0,1]$. Using arguments similar to these given in Example 19.15 one can show that the quotient space in this case is homeomorphic to the torus:

19.20 Example. Take the square $[0,1] \times[0,1]$ with the equivalence relation given by $(0, t) \sim(1, t)$ for all $t \in[0,1]$ and $(s, 0) \sim(1-s, 1)$ for all $s \in[0,1]$. The resulting quotient space is called the Klein bottle. One can show that the Klein bottle is a two dimensional manifold.

19.21 Example. Following the scheme of the last two examples we can consider the square $[0,1] \times[0,1]$ with the equivalence relation given by $(0, t) \sim(1,1-t)$ and $(s, 0) \sim(1-s, 1)$ for all $s, t \in[0,1]$:

The resulting quotient space is homeomorphic to the space $\mathbb{R} \mathbb{P}^{2}$ which is defined as follows. Take the the 2-dimensional closed unit ball \bar{B}^{2}. The boundary of \bar{B}^{2} is the circle S^{1}. Consider the equivalence relation \sim on \bar{B}^{2} that identifies each point $\left(x_{1}, x_{2}\right) \in S^{1}$ with its antipodal point $\left(-x_{1},-x_{2}\right)$:

We define $\mathbb{R P}^{2}=\bar{B}^{2} / \sim$. This space is called the 2-dimensional real projective space and it is a 2-dimensional manifold. One can show that $\mathbb{R P}^{2}$ (and also the Klein bottle) cannot be embedded into \mathbb{R}^{3}. For this reason it is harder to visualize it.
19.22 Example. The construction of $\mathbb{R P}^{2}$ given in Example 19.21 can be generalized to higher dimensions. Consider the n-dimensional closed unit ball \bar{B}^{n}. The boundary \bar{B}^{n} is the sphere S^{n-1}. Similarly as before we can consider the equivalence relation \sim on \bar{B}^{n} that identifies antipodal points
of S^{n-1} :

$$
\left(x_{1}, \ldots, x_{n}\right) \sim\left(-x_{1}, \ldots,-x_{n}\right)
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in S^{n-1}$. The quotient space \bar{B}^{n} / \sim is denoted by $\mathbb{R} \mathbb{P}^{n}$ and is called the n-dimensional real projective space. The space $\mathbb{R P}^{n}$ is an n-dimensional manifold. For another perspective on projective spaces see Exercise 19.8.

Many constructions in topology involve the following setup. We start with two topological spaces X_{1}, X_{2}, and we build a new space Y by identifying certain points of X_{1} with certain points of X_{2} :

An example of a setting that uses such assembly process is described in Chapter 20.
The first step in constructions of this kind it to create a new space $X_{1} \sqcup X_{2}$ which contains X_{1} and X_{2} as its subspaces. The space Y can be then described as a quotient space of $X_{1} \sqcup X_{2}$. The space $X_{1} \sqcup X_{2}$ is defined as follows. If $X_{1} \cap X_{2}=\varnothing$ then $X_{1} \sqcup X_{2}=X_{1} \cup X_{2}$ as a set. A set $\cup \subseteq X_{1} \sqcup X_{2}$ is open if and only if $U \cap X_{i}$ is open in X_{i} for $i=1,2$. If $X_{1} \cap X_{2} \neq \varnothing$ then we first replace X_{i} with a homeomorphic space X_{i}^{\prime} such that $X_{1}^{\prime} \cap X_{2}^{\prime}=\varnothing$ (e.g. we can take $X_{i}^{\prime}=\{i\} \times X_{i}$) and then we set $X_{1} \sqcup X_{2}$ to be equal to $X_{i}^{\prime} \sqcup X_{2}^{\prime}$.
19.23 Definition. The space $X_{1} \sqcup X_{2}$ is called the disjoint union (or the coproduct) of spaces X_{1} and X_{2}.
19.24 Example. Take $X_{1}=(0,1)$ and $X_{1}=[1,2)$. Since $X_{1} \cap X_{2}=\varnothing$ we can construct the space $(0,1) \sqcup[1,2)$ so that it consists of the points of the interval $(0,2)$. However, the disjoint union $(0,1) \sqcup[1,2)$ is not homeomorphic to the interval $(0,2)$ taken with the usual topology. For example, the set $U=\left[1, \frac{1}{2}\right)$ is not open in the interval $(0,2)$, but it is open in $(0,1) \sqcup[1,2)$ since $U \cap(0,1)=\varnothing$ is open in $(0,1)$ and $U \cap[1,2)=\left[1, \frac{1}{2}\right)$ is open in $[1,2)$. In general, in the disjoint union $X_{1} \sqcup X_{2}$ the spaces X_{1} and X_{2} can be imagined as being far apart from each other so that an arbitrary combination of an open set in X_{1} and and open set in X_{1} gives an open set in $X_{1} \sqcup X_{2}$. For example, the space $(0,1) \sqcup[1,2)$ is homeomorphic to the subspace of \mathbb{R}^{2} given by $(0,1) \times\{-a\} \cup[1,2) \times\{a\}$ for some $a>0$.

The construction of a disjoint union can be extended to arbitrary families of topological spaces. Given a family $\left\{X_{i}\right\}_{i \in I}$ such that $X_{i} \cap X_{j}=\varnothing$ for all $i \neq j$, we define $\bigsqcup_{i \in I} X_{i}=\bigcup_{i \in I} X_{i}$ as a set. A set $U \subseteq \bigsqcup_{i \in I} X_{i}$ is open if and only if the set $U \cap X_{i}$ is open in X_{i} for each $i \in I$. If the family $\{X\}_{i \in I}$ does not consist of disjoint spaces, then we first replace it with a family $\left\{X_{i}^{\prime}\right\}_{i \in l}$ such that $X_{i}^{\prime} \cong X_{i}$ for each $i \in I$, and $X_{i}^{\prime} \cap X_{j}^{\prime}=\varnothing$ for all $i \neq j$.
If $\bigsqcup_{i \in I} X_{i}$ is the disjoint union of a family $\left\{X_{i}\right\}_{i \in I}$, then for each $j \in I$ we have an embedding $k_{j}: X_{j} \rightarrow \bigsqcup_{i \in I} X_{i}$. The following fact is an essential property of the space $\bigsqcup_{i \in I} X_{i}$:
19.25 Proposition. For any family of continuous functions $\left\{f_{i}: X_{i} \rightarrow Y\right\}_{i \in 1}$, there exists a unique continuous function $f: \bigsqcup_{i \in I} X_{i} \rightarrow Y$ such that $k_{j} f=f_{j}$ for each $j \in I$.

Proof. Exercise.
19.26 Note. The function $f: \bigsqcup_{i \in I} X_{i} \rightarrow Y$ in Proposition 19.25 is usually denoted by $\bigsqcup_{i \in I} f_{i}$.

Exercises to Chapter 19

E19.1 Exercise. Prove Proposition 19.12.
E19.2 Exercise. Prove Proposition 19.13.
E19.3 Exercise. Consider the real line \mathbb{R} with the equivalence relation defined as in Example 19.3. Show that the quotient space \mathbb{R} / \sim is homeomorphic with S^{1}.

E19.4 Exercise. Take the closed interval $[0,1]$ with the equivalence relation \sim defined as in Example 19.15. Let $\pi:[0,1] \rightarrow[0,1] / \sim$ be the quotient map. The set $U=\left[0, \frac{1}{2}\right)$ which is open subset of $[0,1]$. Show that $\pi(U)$ is not open in $[0,1] / \sim$.

E19.5 Exercise. Let $\bar{B}^{n} \subseteq \mathbb{R}^{n}$ be the closed unit ball (see Example 19.15). Show that \bar{B}^{n} / S^{n-1} is homeomorphic to S^{n}.

E19.6 Exercise. Let X be a compact Hausdorff space, and let $U \subseteq X$ be an open set. Show that the one-point compactification U^{+}of $U(18.14)$ is homeomorphic to the quotient space $X /(X \backslash U)$.
E19.7 Exercise. Recall that the topologists sine curve Y is the subspace of \mathbb{R}^{2} consisting of the
vertical line segment $Y_{1}=\{(0, y) \mid-1 \leq y \leq 1\}$ and the curve $Y_{2}=\left\{\left.\left(x, \sin \left(\frac{1}{x}\right)\right) \right\rvert\, x>0\right\}$:

Show that the space Y / Y_{1} is homeomorphic to the half line $[0,+\infty)$.
E19.8 Exercise. Consider the unit sphere S^{n} with the equivalence relation that identifies antipodal points of S^{n} :

$$
\left(x_{1}, \ldots, x_{n+1}\right) \sim\left(-x_{1}, \ldots,-x_{n+1}\right)
$$

for all $\left(x_{1}, \ldots, x_{n+1}\right)$. Show that the quotient space S^{n} / \sim is homeomorphic to the projective space $\mathbb{R P}^{n}$ (19.22).

Note: This construction lets us interpret \mathbb{R}^{n} as the space of straight lines in \mathbb{R}^{n+1} that pass through the origin. Indeed, any such line L intersects the sphere S^{n} at two points: some point x and its antipodal point $-x$:

Since $\mathbb{R} \mathbb{P}^{n}$ is obtained by identifying antipodal points we get a bijective correspondence between elements of $\mathbb{R P}^{n}$ and lines in \mathbb{R}^{n+1} passing through the origin.

E19.9 Exercise. A pointed topological space is a pair $\left(X, x_{0}\right)$ where X is a topological space and $x_{0} \in X$. The smash product of pointed spaces $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ is the quotient space

$$
X \wedge Y=(X \times Y) / A
$$

where $A=\left(X \times\left\{y_{0}\right\}\right) \cup\left(\left\{x_{0}\right\} \times Y\right)$
a) Let X, Y be a locally compact spaces (18.17). Show that the space $X \times Y$ is locally compact.
b) By part a) and Corrollary 17.17 if X, Y are locally compact Hausdorff spaces then the space $X \times Y$ is also locally compact and Hausdorff. By Theorem 18.19 we have in such case one-point compactifications X^{+}, Y^{+}, and $(X \times Y)^{+}$of the spaces X, Y, and $X \times Y$ respectively. Recall that
$X^{+}=X \cup\{\infty\}$ and $Y^{+}=Y \cup\{\infty\}$. Consider $\left(X^{+}, \infty\right)$ and $\left(Y^{+}, \infty\right)$ as pointed spaces. Show that there is a homeomorphism:

$$
X^{+} \wedge Y^{+} \cong(X \times Y)^{+}
$$

E19.10 Exercise. Prove Proposition 19.25.
E19.11 Exercise. Let $\left\{X_{i}\right\}_{i \in I}$ be a family of topological spaces, let Z be a topological space and for each $i \in I$ let $g_{i}: X_{i} \rightarrow Z$ let be a continuous function. Assume that for each family of continuous function functions $\left\{f_{i}: X_{i} \rightarrow Z\right\}_{i \in I}$ there exists a unique function $f: Z \rightarrow Y$ such that $g_{i} f=f_{i}$ for each $i \in I$. Show that the space Z is homeomorphic to $\bigsqcup_{i \in I} X_{i}$.
E19.12 Exercise. The Hawaiian earring space is a subspace $X \subseteq \mathbb{R}^{2}$ given by $X=\bigcup_{n=1}^{\infty} C_{n}$ where C_{n} is the circle with radius $\frac{1}{n}$ and center at the point $\left(0, \frac{1}{n}\right)$:

Notice that the point $(0,0)$ is the intersection of all circles C_{n}.
For $n=1,2, \ldots$ let C_{n} be the circle defined as above, and let Y be the quotient space of the disjoint union $\bigsqcup_{i=1}^{\infty} C_{n}$ obtained by identifying points $(0,0) \in C_{n}$ for all n. Show that Y is not homeomorphic to X.

E19.13 Exercise. Let $\mathbb{R}_{+}^{n}, \mathbb{R}_{-}^{n}, \mathbb{R}_{0}^{n}$ be subspaces of \mathbb{R}^{n} given by

$$
\begin{aligned}
\mathbb{R}_{+}^{n} & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n} \geq 0\right\} \\
\mathbb{R}_{-}^{n} & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n} \leq 0\right\} \\
\mathbb{R}_{0}^{n} & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}=0\right\}
\end{aligned}
$$

Notice that \mathbb{R}_{0}^{n} is contained in both \mathbb{R}_{+}^{n} and \mathbb{R}_{-}^{n}. Given a homeomorphism $h: \mathbb{R}_{0}^{n} \rightarrow \mathbb{R}_{0}^{n}$ let $\mathbb{R}_{+}^{n} U_{h} \mathbb{R}_{-}^{n}$ denote the quotient space $\left(\mathbb{R}_{+}^{n} \sqcup \mathbb{R}_{-}^{n}\right) / \sim$ where \sim is the equivalence relation which identifies each point $\left(x_{1}, \ldots, x_{n-1}, 0\right) \in \mathbb{R}_{+}^{n}$ with $h\left(x_{1}, \ldots, x_{n-1}, 0\right) \in \mathbb{R}_{-}^{n}$. Show that $\mathbb{R}_{+}^{n} \cup_{h} \mathbb{R}_{-}^{n}$ is homeomorphic to \mathbb{R}^{n}.

E19.14 Exercise. For $n>0$ consider the sphere $S^{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i}=1\right\}$ as a subspace of the closed ball $D^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i} \leq 1\right\}$. Given a continuous function $f: S^{n-1} \rightarrow X$ define a space $X \cup_{f} D^{n}$ as a quotient space:

$$
X \cup_{f} D^{n}=X \sqcup D^{n} / \sim
$$

where $x \sim f(x)$ for each $x \in S^{n-1}$. We say that the space $X U_{f} D^{n}$ is obtained by attaching an n-cell to the space X.

Show that if X is a normal space then the space $X \cup_{f} D^{n}$ is normal.

