
19 | Quotient Spaces

So far we have encountered two methods of constructing new topological spaces from old ones:• given a space X we can obtain new spaces by taking subspaces of X ;• given two (or more) spaces X1, X2 we can obtain a new space by taking their product X1 × X2.Here we will consider another, very useful construction of a quotient space of a given topological space.This construction will let us produce, in particular, interesting examples of manifolds. Intuitively, aquotient space of a space X is a space Y which is obtained by identifying some points of X . Forexample, if we take the square X = [0, 1]× [0, 1] and identify each point (0, t) with the point (1, t) for
t ∈ [0, 1] we obtain a space Y that looks like a cylinder:
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In order to make this precise we need to specify the following:1) what are the points of Y ;2) what is the topology on Y .The first part is done by considering Y as the set of equivalence classes of some equivalence relationon X . The second part is done by defining the quotient topology. We explain these notions below.
19.1 Definition. Let X be a set. An equivalence relation on X is a binary relation ∼ satisfying threeproperties:1) x ∼ x for all x ∈ X (reflexivity)2) if x ∼ y then y ∼ x (symmetry)3) if x ∼ y and y ∼ z then x ∼ z (transitivity)
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19.2 Example. Let X = [0, 1] × [0, 1]. Define a relation on X as follows. For any (s, t) ∈ X we set(s, t) ∼ (s, t). Also, for any t ∈ [0, 1] we set (0, t) ∼ (1, t) and (1, t) ∼ (0, t). This relation is anequivalence relation that identifies corresponding points of the vertical edges of the square [0, 1]× [0, 1].
19.3 Example. Define a relation ∼ on the set of real numbers R as follows: r ∼ s if s = r + n forsome n ∈ Z. One can check that this is an equivalence relation (exercise).
19.4 Definition. Let X we a set with an equivalence relation ∼ and let x ∈ X . The equivalence classof x is the subset [x ] ⊆ X consisting of all elements that are in the relation with x:[x ] = {y ∈ X | x ∼ y}
19.5 Example. Take X = [0, 1] × [0, 1] with the equivalence relation defined as in Example 19.2. If(s, t) ∈ X and s 6= 0, 1 then [(s, t)] consists of a single point: [(s, t)] = {(s, t)}. If s = 0, 1 then [(s, 0)]consists of two points: [(0, t)] = [(1, t)] = {(0, t), (1, t)}.
19.6 Example. Take R with the equivalence relation defined as in Example 19.3. For r ∈ R we have:[r] = {r + n | n ∈ Z}For example: [1] = {1 + n | n ∈ Z} = Z. Notice that [1] = [2] and [√2] = [√2 + 1].
19.7 Proposition. Let X be a set with an equivalence relation ∼, and let x, y ∈ X .

1) If x ∼ y then [x ] = [y].
2) If x 6∼ y then [x ] ∩ [y] = ∅.

Proof. 1) Assume that x ∼ y and that z ∈ [x ]. This gives z ∼ x and by transitivity z ∼ y. Therefore
z ∈ [y]. This shows that [x ] ⊆ [y]. In the same way we can show that [y] ⊆ [x ]. Therefore we get[x ] = [y].2) Assume that [x ] ∩ [y] 6= ∅, and let z ∈ [x ] ∩ [y]. Then x ∼ z and y ∼ z, so by transitivity x ∼ ywhich contradicts our assumption.
19.8 Note. Proposition 19.7 shows that an equivalence relation ∼ on a set X splits X into a disjointunion of distinct equivalence classes of ∼. The opposite is also true. Namely, assume that we havea family {Ai}i∈I of subsets of X such that Ai ∩ Aj = ∅ for i 6= j and ⋃i∈I Ai = X . We can define arelation ∼ on X such that x ∼ y if and only if both x and y are elements of the same subset Ai. Thisrelation is an equivalence relation and its equivalence classes are the sets Ai.
19.9 Definition. Let X be a set with an equivalence relation ∼. The quotient set of X is the set X/∼whose elements are all distinct equivalence classes of ∼. The function

π : X → X/∼given by π(x) = [x ] is called the quotient map.
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19.10 Note. Let X be a set with an equivalence relation ∼, and let f : X → Y be a function. Assumethat for each x, x ′ ∈ X such that x ∼ x ′ we have f (x) = f (x ′). Then we can define a function
f : X/∼ → Y by f ([x ]) = f (x). We have f = fπ, i.e. the following diagram commutes:

X/∼

X Y

π

f

f

19.11 Definition. Let X be a topological space and let ∼ be an equivalence relation on X . The
quotient topology on the set X/∼ is the topology where a set U ⊆ X/∼ is open if the set π−1(U) isopen in X . The set X/∼ with this topology is called the quotient space of X taken with respect to therelation ∼.
19.12 Proposition. Let X be a topological space and let ∼ be an equivalence relation on X . A set
A ⊆ X/∼ is closed if and only the set π−1(A) is closed in X .

Proof. Exercise.
19.13 Proposition. Let X, Y be a topological spaces and let ∼ be an equivalence relation on X . A
function f : X/∼ → Y is continuous if and only if the function fπ : X → Y is continuous.

Proof. Exercise.
19.14 Note. Let X be a space with an equivalence relation ∼ and let f : X → Y be a continuousfunction. If for each x, x ′ ∈ X such that x ∼ x ′ we have f (x) = f (x ′) then as in (19.10) we obtain afunction f : X/∼ → Y , f ([x ]) = f (x). Since the function fπ = f is continuous thus by Proposition 19.13
f is a continuous function.
19.15 Example. Take the closed interval [−1, 1] with the equivalence relation ∼ such that (−1) ∼ 1(and t ∼ t for all t ∈ [−1, 1]). We will show that the quotient space [−1.1]/∼ is homeomorphic to thecircle S1. Consider the function f : [−1, 1]→ S1 given by f (x) = (sinπx, − cosπx):Since f (1) = f (−1) by (19.14) we get the induced continuous function f : [−1, 1]/∼ → S1. We willprove that f is a homeomorphism. First, notice that f is a bijection. Next, since [−1, 1] is a compactspace and the quotient map π : [−1, 1] → [−1, 1]/∼ is onto by Proposition 14.9 we obtain that thespace [−1, 1]/∼ is compact. Therefore we can use Proposition 14.18 which says that any continuousbijection from a compact space to a Hausdorff space is a homeomorphism.This example can be generalized as follows. Take the closed unit ball

Bn = {x ∈ Rn | d(0, x) ≤ 1}
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The unit sphere Sn−1 = {x ∈ Rn | d(0, x) = 1} is a subspace of Bn. Consider the equivalence relation
∼ on Bn that identifies all points of Sn−1: x ∼ x ′ for all x, x ′ ∈ Sn−1. Using similar arguments asabove one can show that Bn/∼ is homeomorphic to the sphere Sn (exercise). Notice that for n = 1 wehave B1 = [−1, 1] and S0 = {−1, 1} so in this case we recover the homeomorphism [−1, 1]/∼ ∼= S1.
19.16 Note. Let X be a space and let A ⊆ X . Consider the equivalence relation on X that identifiesall points of A: x ∼ x ′ for all x, x ′ ∈ A. The quotient space X/∼ is usually denoted by X/A. Usingthis notation the homeomorphism given in Example 19.15 can be written as Bn/Sn−1 ∼= Sn.
19.17 Example. Take the square [0, 1] × [0, 1] with the equivalence relation defined as in Example19.2: (0, t) ∼ (1, t) for all t ∈ [0, 1]. Using arguments similar as in Example 19.15 we can show thatthe quotient space is homeomorphic to the cylinder S1 × [0, 1]:
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19.18 Example. Take the square [0, 1]× [0, 1] with the equivalence relation given by (0, t) ∼ (1, 1− t)for all t ∈ [0, 1]. The space obtained as a quotient space is called the Möbius band :
MTH42719p007

The Möbius band is a 2-dimensional manifold with boundary, and its boundary is homeomorphic to S1.
19.19 Example. Take the square [0, 1]× [0, 1] with the equivalence relation given by (0, t) ∼ (1, t) forall t ∈ [0, 1] and (s, 0) ∼ (s, 1) for all s ∈ [0, 1]. Using arguments similar to these given in Example19.15 one can show that the quotient space in this case is homeomorphic to the torus:

MTH427p008
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19.20 Example. Take the square [0, 1]× [0, 1] with the equivalence relation given by (0, t) ∼ (1, t) forall t ∈ [0, 1] and (s, 0) ∼ (1− s, 1) for all s ∈ [0, 1]. The resulting quotient space is called the Klein
bottle. One can show that the Klein bottle is a two dimensional manifold.MTH427p009

19.21 Example. Following the scheme of the last two examples we can consider the square [0, 1]× [0, 1]with the equivalence relation given by (0, t) ∼ (1, 1− t) and (s, 0) ∼ (1− s, 1) for all s, t ∈ [0, 1]:
MTH427p010

The resulting quotient space is homeomorphic to the space RP2 which is defined as follows. Take thethe 2-dimensional closed unit ball B2. The boundary of B2 is the circle S1. Consider the equivalencerelation ∼ on B2 that identifies each point (x1, x2) ∈ S1 with its antipodal point (−x1,−x2):
MTH427p011

We define RP2 = B2/∼. This space is called the 2-dimensional real projective space and it is a2-dimensional manifold. One can show that RP2 (and also the Klein bottle) cannot be embedded into
R3. For this reason it is harder to visualize it.
19.22 Example. The construction of RP2 given in Example 19.21 can be generalized to higherdimensions. Consider the n-dimensional closed unit ball Bn. The boundary Bn is the sphere Sn−1.Similarly as before we can consider the equivalence relation ∼ on Bn that identifies antipodal points
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of Sn−1: (x1, . . . , xn) ∼ (−x1, . . . ,−xn)for all (x1, . . . , xn) ∈ Sn−1. The quotient space Bn/∼ is denoted by RPn and is called the n-dimensional
real projective space. The space RPn is an n-dimensional manifold. For another perspective on projectivespaces see Exercise 19.8.
Many constructions in topology involve the following setup. We start with two topological spaces X1,
X2, and we build a new space Y by identifying certain points of X1 with certain points of X2:

X1 X2 Y

An example of a setting that uses such assembly process is described in Chapter 20.The first step in constructions of this kind it to create a new space X1 t X2 which contains X1 and
X2 as its subspaces. The space Y can be then described as a quotient space of X1 t X2. The space
X1 t X2 is defined as follows. If X1 ∩ X2 = ∅ then X1 t X2 = X1 ∪ X2 as a set. A set U ⊆ X1 t X2is open if and only if U ∩ Xi is open in Xi for i = 1, 2. If X1 ∩ X2 6= ∅ then we first replace Xi witha homeomorphic space X ′i such that X ′1 ∩ X ′2 = ∅ (e.g. we can take X ′i = {i} × Xi) and then we set
X1 t X2 to be equal to X ′i t X ′2.
19.23 Definition. The space X1 t X2 is called the disjoint union (or the coproduct) of spaces X1 and
X2.
19.24 Example. Take X1 = (0, 1) and X1 = [1, 2). Since X1 ∩ X2 = ∅ we can construct the space(0, 1)t [1, 2) so that it consists of the points of the interval (0, 2). However, the disjoint union (0, 1)t [1, 2)is not homeomorphic to the interval (0, 2) taken with the usual topology. For example, the set U = [1, 12 )is not open in the interval (0, 2), but it is open in (0, 1) t [1, 2) since U ∩ (0, 1) = ∅ is open in (0, 1)and U ∩ [1, 2) = [1, 12 ) is open in [1, 2). In general, in the disjoint union X1 t X2 the spaces X1 and X2can be imagined as being far apart from each other so that an arbitrary combination of an open setin X1 and and open set in X1 gives an open set in X1 t X2. For example, the space (0, 1) t [1, 2) ishomeomorphic to the subspace of R2 given by (0, 1)× {−a} ∪ [1, 2)× {a} for some a > 0.
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The construction of a disjoint union can be extended to arbitrary families of topological spaces. Givena family {Xi}i∈I such that Xi ∩ Xj = ∅ for all i 6= j , we define ⊔i∈I Xi = ⋃
i∈I Xi as a set. A set

U ⊆
⊔
i∈I Xi is open if and only if the set U ∩Xi is open in Xi for each i ∈ I . If the family {X}i∈I doesnot consist of disjoint spaces, then we first replace it with a family {X ′i}i∈I such that X ′i ∼= Xi for each

i ∈ I , and X ′i ∩ X ′j = ∅ for all i 6= j .If ⊔i∈I Xi is the disjoint union of a family {Xi}i∈I , then for each j ∈ I we have an embedding
kj : Xj → ⊔

i∈I Xi. The following fact is an essential property of the space ⊔i∈I Xi:
19.25 Proposition. For any family of continuous functions {fi : Xi → Y }i∈I , there exists a unique
continuous function f : ⊔i∈I Xi → Y such that kj f = fj for each j ∈ I .

Proof. Exercise.
19.26 Note. The function f : ⊔i∈I Xi → Y in Proposition 19.25 is usually denoted by ⊔i∈I fi.

Exercises to Chapter 19

E19.1 Exercise. Prove Proposition 19.12.
E19.2 Exercise. Prove Proposition 19.13.
E19.3 Exercise. Consider the real line R with the equivalence relation defined as in Example 19.3.Show that the quotient space R/∼ is homeomorphic with S1.
E19.4 Exercise. Take the closed interval [0, 1] with the equivalence relation ∼ defined as in Example19.15. Let π : [0, 1]→ [0, 1]/∼ be the quotient map. The set U = [0, 12 ) which is open subset of [0, 1].Show that π(U) is not open in [0, 1]/∼.
E19.5 Exercise. Let Bn ⊆ Rn be the closed unit ball (see Example 19.15). Show that Bn/Sn−1 ishomeomorphic to Sn.
E19.6 Exercise. Let X be a compact Hausdorff space, and let U ⊆ X be an open set. Show that theone-point compactification U+ of U (18.14) is homeomorphic to the quotient space X/(X r U).
E19.7 Exercise. Recall that the topologists sine curve Y is the subspace of R2 consisting of the



19. Quotient Spaces 127

vertical line segment Y1 = {(0, y) | − 1 ≤ y ≤ 1} and the curve Y2 = {(x, sin(1
x )) | x > 0}:

Y1 Y2

Show that the space Y /Y1 is homeomorphic to the half line [0,+∞).
E19.8 Exercise. Consider the unit sphere Sn with the equivalence relation that identifies antipodalpoints of Sn: (x1, . . . , xn+1) ∼ (−x1, . . . ,−xn+1)for all (x1, . . . , xn+1). Show that the quotient space Sn/∼ is homeomorphic to the projective space RPn(19.22).Note: This construction lets us interpret RPn as the space of straight lines in Rn+1 that pass throughthe origin. Indeed, any such line L intersects the sphere Sn at two points: some point x and itsantipodal point −x:

x

−x

L

Since RPn is obtained by identifying antipodal points we get a bijective correspondence betweenelements of RPn and lines in Rn+1 passing through the origin.
E19.9 Exercise. A pointed topological space is a pair (X, x0) where X is a topological space and
x0 ∈ X . The smash product of pointed spaces (X, x0) and (Y , y0) is the quotient space

X ∧ Y = (X × Y )/A
where A = (X × {y0}) ∪ ({x0} × Y )a) Let X, Y be a locally compact spaces (18.17). Show that the space X × Y is locally compact.b) By part a) and Corrollary 17.17 if X, Y are locally compact Hausdorff spaces then the space
X × Y is also locally compact and Hausdorff. By Theorem 18.19 we have in such case one-pointcompactifications X+, Y+, and (X × Y )+ of the spaces X , Y , and X × Y respectively. Recall that
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X+ = X ∪ {∞} and Y+ = Y ∪ {∞}. Consider (X+,∞) and (Y+,∞) as pointed spaces. Show thatthere is a homeomorphism:
X+ ∧ Y+ ∼= (X × Y )+

E19.10 Exercise. Prove Proposition 19.25.
E19.11 Exercise. Let {Xi}i∈I be a family of topological spaces, let Z be a topological space and foreach i ∈ I let gi : Xi → Z let be a continuous function. Assume that for each family of continuousfunction functions {fi : Xi → Z}i∈I there exists a unique function f : Z → Y such that gif = fi for each
i ∈ I . Show that the space Z is homeomorphic to ⊔i∈I Xi.
E19.12 Exercise. The Hawaiian earring space is a subspace X ⊆ R2 given by X = ⋃∞n=1 Cn where
Cn is the circle with radius 1

n and center at the point (0, 1
n ):

(0, 0)

Notice that the point (0, 0) is the intersection of all circles Cn.For n = 1, 2, . . . let Cn be the circle defined as above, and let Y be the quotient space of the disjointunion ⊔∞i=1 Cn obtained by identifying points (0, 0) ∈ Cn for all n. Show that Y is not homeomorphicto X .
E19.13 Exercise. Let Rn+, Rn−, Rn0 be subspaces of Rn given by

Rn+ = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}
Rn− = {(x1, . . . , xn) ∈ Rn | xn ≤ 0}
Rn0 = {(x1, . . . , xn) ∈ Rn | xn = 0}Notice that Rn0 is contained in both Rn+ and Rn−. Given a homeomorphism h : Rn0 → Rn0 let Rn+ ∪h Rn−denote the quotient space (Rn+ tRn−)/∼ where ∼ is the equivalence relation which identifies each point(x1, . . . , xn−1, 0) ∈ Rn+ with h(x1, . . . , xn−1, 0) ∈ Rn−. Show that Rn+ ∪h Rn− is homeomorphic to Rn.

h

Rn+

Rn
−

Rn0
Rn0

Rn+
Rn
−
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E19.14 Exercise. For n > 0 consider the sphere Sn−1 = {(x1, . . . , xn) ∈ Rn |
∑n

i=1 xi = 1} as asubspace of the closed ball Dn = {(x1, . . . , xn) ∈ Rn |
∑n

i=1 xi ≤ 1}. Given a continuous function
f : Sn−1 → X define a space X ∪f Dn as a quotient space:

X ∪f Dn = X tDn/∼

where x ∼ f (x) for each x ∈ Sn−1. We say that the space X ∪f Dn is obtained by attaching an n-cellto the space X .MTH428p041

f

Dn

X X ∪f Dn

Show that if X is a normal space then the space X ∪f Dn is normal.


