17 Tychonoff Theorem

We have seen already that a product of finitely many compact spaces is compact (15.6). The main goal here is to show that the same is true for arbitrary products of compact spaces:

17.1 Tychonoff Theorem. If $\{X_s\}_{s \in S}$ is a family of topological spaces and X_s is compact for each $s \in S$ then the product space $\prod_{s \in S} X_s$ is compact.

The proof of Theorem 17.1 involves two main ideas. The first is reformulation of compactness in terms of closed sets.

17.2 Definition. Let A be a family of subsets of a space X. The family A is *centered* if for any finite number of sets $A_1, \ldots, A_n \in A$ we have $A_1 \cap \cdots \cap A_n \neq \emptyset$

17.3 Example. If $\mathcal{A} = \{A_i\}_{i \in I}$ is a family of subsets of X such that $\bigcap_{i \in I} A_i \neq \emptyset$ then \mathcal{A} is centered.

17.4 Example. Let $X = \mathbb{R}$. For n = 1, 2, ... define $A_n = [n, +\infty)$. Then the family $\{A_n\}_{n \in \mathbb{Z}}$ is centered even though $\bigcap_{n=1}^{\infty} A_n = \emptyset$.

17.5 Lemma. Let X be a topological space. The following conditions are equivalent:

- 1) The space X is compact.
- 2) For any centered family A of closed subsets of X we have $\bigcap_{A \in A} A \neq \emptyset$.

Proof. 2) \Rightarrow 1) Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open cover of X. We need to show that \mathcal{U} has a finite subcover. For $i \in I$ define $A_i := X \setminus U_i$. This gives a family $\mathcal{A} = \{A_i\}_{i \in I}$ of closed sets in X. We have:

$$\bigcap_{i\in I} A_i = \bigcap_{i\in I} (X \setminus U_i) = X \setminus \bigcup_{i\in I} U_i = X \setminus X = \emptyset$$

This implies that \mathcal{A} is not a centered family, so there exist sets $A_{i_1}, \ldots, A_{i_n} \in \mathcal{A}$ such that $A_{i_1} \cap \cdots \cap A_{i_n} =$

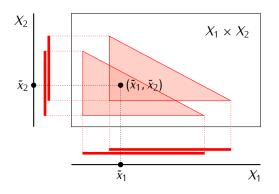
 \varnothing . This gives:

$$\emptyset = A_{i_1} \cap \cdots \cap A_{i_n} = (X \setminus U_{i_1}) \cap \cdots \cap (X \setminus U_{i_n}) = X \setminus (U_{i_1} \cup \cdots \cup U_{i_n})$$

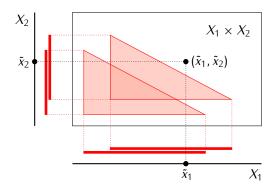
Therefore $X = U_{i_1} \cup \cdots \cup U_{i_n}$, and so $\{U_{i_1}, \ldots, U_{i_n}\}$ is a finite subcover of \mathcal{U} .

1) \Rightarrow 2) Follows from a similar argument.

Having Lemma 17.5 at our disposal we can try to prove the Theorem 17.1 in the following way. Given a centered family \mathcal{A} of subsets of $\prod_{s \in S} X_s$ we need to show that $\bigcap_{A \in \mathcal{A}} A \neq \emptyset$. Let $p_{s_0} \colon \prod_{s \in S} X_s \to X_{s_0}$ be the projection onto the s_0 -th factor. For each $s \in S$ the family $\{p_s(A)\}_{A \in \mathcal{A}}$ is a centered family of closed subsets of X_s . Since X_s is compact we can find $\tilde{x}_s \in X_s$ such that $\tilde{x}_s \in \bigcap_{A \in \mathcal{A}} \overline{p_s(A)}$. If we can show that the point $(\tilde{x}_s)_{s \in S} \in \prod_{s \in S} X_s$ is in $\bigcap_{A \in \mathcal{A}} A$ then we are done.



The problem with this approach is that in general not every choice of points $\tilde{x}_s \in \bigcap_{A \in \mathcal{A}} \overline{p_s(A)}$ will give a point $(\tilde{x}_s)_{s \in S}$ that belongs to $\bigcap_{A \in \mathcal{A}} A$:



This brings in the second main idea of the proof of Tychonoff Theorem, which (modulo a few technical details) can be outlined as follows. We will start with an arbitrary centered family \mathcal{A} of closed subsets of $\prod_{s \in S} X_s$, but then we will replace it by a certain family \mathcal{M} such that $\mathcal{A} \subseteq \mathcal{M}$. This inclusion will

give $\bigcap_{M \in \mathcal{M}} M \subseteq \bigcap_{A \in \mathcal{A}} A$, so it will be enough to show that $\bigcap_{M \in \mathcal{M}} \underline{M \neq \emptyset}$. The advantage of working with the family \mathcal{M} will be that for any choice of points $\tilde{x}_s \in \bigcap_{M \in \mathcal{M}} \overline{p_s(M)}$ the point $(\tilde{x}_s)_{s \in S}$ will belong to $\bigcap_{M \in \mathcal{M}} M$, which will let us avoid the issues indicated above.

The main difficulty is to show that for a given centered family \mathcal{A} we can find a family \mathcal{M} that has the above propreties. This will be accomplished using Zorn's Lemma. This lemma is a very useful result in set theory that appears in proofs of many theorems in various areas of mathematics. Here is a concise introduction to Zorn's Lemma:

17.6 Definition. A partially ordered set (or poset) is a set S equipped with a binary relation \leq satisfying

- (i) $x \le x$ for all $x \in S$ (reflexivity)
- (ii) if $x \le y$ and $y \le x$ then y = x (antisymmetry)
- (iii) if $x \le y$ and $y \le z$ then $x \le z$ (transitivity).

17.7 Example. If *A* is a set and *S* is the set of all subsets of *A* then *S* is a poset with ordering given by inclusion of subsets.

17.8 Definition. A *linearly ordered set* is a poset (S, \leq) such that for any $x, y \in S$ we have either $x \leq y$ or $y \leq x$.

17.9 Definition. If (S, \leq) is a poset then an element $x \in S$ is a *maximal element* of S if we have $x \leq y$ only for y = x.

17.10 Example. If *S* is the set of all subsets of a set *A* ordered by inclusion then *S* has only one maximal element: the whole set *A*.

If we take S' to be the set of all *proper* subsets of a A then S' has many maximal elements: for every $a \in A$ the set $A - \{a\}$ is a maximal element of S'.

17.11 Example. In general a poset does not need to have any maximal elements. For example, take the set of integers \mathbb{Z} with the usual ordering \leq . The set \mathbb{Z} does not have any maximal elements since for every number $n \in \mathbb{Z}$ we can find a larger number (e.g. n + 1).

17.12 Note. If (S, \leq) is a poset and $T \subseteq S$ then T is also a poset with ordering inherited from S.

17.13 Definition. Let (S, \leq) is a poset and let $T \subseteq S$. An *upper bound of* T is an element $x \in S$ such that $y \leq x$ for all $y \in T$.

17.14 Definition. If (S, \leq) is a poset. A *chain* in S is a subset $T \subseteq S$ such that T is linearly ordered.

17.15 Zorn's Lemma. If (S, \leq) is a non-empty poset such that every chain in S has an upper bound

in S then S contains a maximal element.

Proof. See any book on set theory.

We are finally ready for the proof of the Tychonoff Theorem:

Proof of Theorem 17.1. Let $X = \prod_{s \in S} X_s$ where X_s is a compact space for each $s \in S$. Let A be a centered family of closed subsets of X. We will show that there exists $x = (x_s)_{s \in S} \in X$ such that $x \in \bigcap_{A \in A} A$. Let T denote the set consisting of all centered families \mathcal{F} of (not necessarily closed) subsets of X such that $A \subseteq \mathcal{F}$. The set T is partially ordered by the inclusion.

Claim. Every chain in *T* has an upper bound.

Indeed, if $\{\mathcal{F}_j\}_{j\in J}$ is a chain in T then take $\mathcal{F} = \bigcup_{j\in J} \mathcal{F}_j$. Since \mathcal{F} is a centered family (exercise) and $\mathcal{F}_j \subseteq \mathcal{F}$ for all $j \in J$ thus \mathcal{F} is an upper bound of $\{\mathcal{F}_j\}_{j\in J}$.

By Zorn's Lemma 17.15 we obtain that the set T contains a maximal element \mathcal{M} . We will show that there exists $\tilde{x} \in X$ such that

$$\tilde{x} \in \bigcap_{\mathcal{M} \in \mathcal{M}} \overline{\mathcal{M}}$$

Since $\mathcal{A} \subseteq \mathcal{M}$ and \mathcal{A} consists of closed sets we have $\bigcap_{\mathcal{M} \in \mathcal{M}} \overline{\mathcal{M}} \subseteq \bigcap_{A \in \mathcal{A}} A$. Therefore it will follow that $\tilde{x} \in \bigcap_{A \in \mathcal{A}} A$, and thus $\bigcap_{A \in \mathcal{A}} A \neq \emptyset$.

Construction of the element \tilde{x} proceeds as follows. For $s \in S$ let $p_s \colon X \to X_s$ by the projection onto the *s*-th coordinate. For each $s \in S$ the family $\{\overline{p_s(M)}\}_{M \in \mathcal{M}}$ is a centered family of closed subsets of X_s , so by compactness of X_s there is $\tilde{x}_s \in X_s$ such that $\tilde{x}_s \in \bigcap_{M \in \mathcal{M}} \overline{p_s(M)}$. We set $\tilde{x} = (\tilde{x}_s)_{s \in S}$.

In order to see that $\tilde{x} \in \bigcap_{M \in \mathcal{M}} \overline{M}$ notice that \mathcal{M} has the following property:

if
$$B \subseteq X$$
 and $B \cap M \neq \emptyset$ for all $M \in \mathcal{M}$ then $B \in \mathcal{M}$ (*)

Indeed, if $\mathcal{M}' = \mathcal{M} \cup \{B\}$ then $\mathcal{M}' \in \mathcal{T}$ (exercise) and $\mathcal{M} \subseteq \mathcal{M}'$, so by the maximality of \mathcal{M} we must have $\mathcal{M} = \mathcal{M}'$.

For $s \in S$ let $U_s \subseteq X_s$ be an open neighborhood of \tilde{x}_s . Since $\tilde{x}_s \in \overline{p_s(M)}$ for all $M \in \mathcal{M}$, thus $U_s \cap p_s(M) \neq \emptyset$ for all $M \in \mathcal{M}$. Equivalently, $p_s^{-1}(U_s) \cap M \neq \emptyset$ for all $M \in \mathcal{M}$. By property (*) we obtain that $p^{-1}(U_s) \in \mathcal{M}$ for all $s \in S$. Since \mathcal{M} is a centered family we obtain

$$p^{-1}(U_{s_1}) \cap \dots \cap p^{-1}(U_{s_n}) \cap M \neq \emptyset \text{ for all } M \in \mathcal{M}$$

$$(**)$$

Recall that by (12.9) the sets of the form $p^{-1}(U_{s_1})\cap\cdots\cap p^{-1}(U_{s_n})$. are precisely the open neighborhoods of \tilde{x} that belong to the basis of the product topology on X, and thus any open neighborhood of \tilde{x} contains a neighborhood of this type. Therefore using (**) we obtain that if $M \in \mathcal{M}$ then for any open neighborhood U of \tilde{x} we have $M \cap U \neq \emptyset$. This means that for every $M \in \mathcal{M}$ we have $\tilde{x} \in \overline{M}$, and thus $\tilde{x} \in \bigcap_{M \in \mathcal{M}} \overline{M}$.

110

17.16 Proposition. If X_i is a Hausdorff space for each $i \in I$ then the product space $\prod_{i \in I} X_i$ is also Hausdorff.

Proof. Exercise.

17.17 Corollary. If X_i is a compact Hausdorff space space for each $i \in I$ then the product space $\prod_{i \in I} X_i$ is also compact Hausdorff.

Proof. Follows from Tychonoff Theorem 17.1 and Proposition 17.16.

Exercises to Chapter 17

E17.1 Exercise. This problem does not involve topology, it is an exercise in using Zorn's Lemma 17.15. A subset $H \subseteq \mathbb{R}$ is a *subgroup* of \mathbb{R} if it satisfies three conditions:

- 1) 0 ∈ *H*
- 2) if $x \in H$ then $-x \in H$
- 3) if $x, y \in H$ then $x + y \in H$

For example, the set of integers \mathbb{Z} and the set of rational numbers \mathbb{Q} are subgroups of \mathbb{R} . Show that for any real number $r \neq 0$ there exists a subgroup $H \subseteq \mathbb{R}$ such that $r \notin H$, but $r \in H'$ for any subgroup H' such that $H \subseteq H'$ and $H \neq H'$.

E17.2 Exercise. This is another exercise on Zorn's Lemma. Recall (1.24) that any binary relation on a set *S* is formally defined as a subset $R \subseteq S \times S$. We say that *R* is a *partial order relation* if *S* equipped with this relation is a partially ordered set (17.6). In the subset notation this mean that *R* satisfies the following conditions:

- (i) $(x, x) \in R$ for all $x \in S$
- (ii) if $(x, y) \in R$ and $(y, x) \in S$ then x = y
- (iii) if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$.

A partial order relation R is a *linear order relation* if X equipped with this relation becomes a linearly ordered set (17.8). Explicitly, this mean that R satisfies conditions (i) – (iii), and that for any $x, y \in S$ either $(x, y) \in R$ or $(y, x) \in R$.

If R, R' are binary relations on S then we will say that R' extends R if $R \subseteq R'$.

a) Show that if *R* is a partial order relation on *S* and $x_0, y_0 \in S$ are elements such that $(x_0, y_0) \notin R$ and $(y_0, x_0) \notin R$ then *R* can be extended to a partial order relation *R'* such that $(x_0, y_0) \in R'$.

b) Show that if R is a partial order relation on a set S then R can be extended to a linear order relation \overline{R} on S.

E17.3 Exercise. The goal of this exercise is to complete two details in the proof of the Tychonoff Theorem 17.1.

a) For $j \in J$ let \mathcal{F}_j be a centered family of subsets of a space X. Show that if the set $\{\mathcal{F}_j\}_{j\in J}$ is linearly ordered with respect to inclusion then $\mathcal{F} = \bigcup_{i \in J} \mathcal{F}_i$ is a centered family.

b) Let T denote the collection of all centered families of subsets of X. Consider T with ordering given by inclusion. Let \mathcal{M} be a maximal element in T, and let $A \subseteq X$ be s set such that $A \cap M \neq \emptyset$ for all $M \in \mathcal{M}$. Show that the family $\mathcal{M}' = \mathcal{M} \cup \{A\}$ is centered.

E17.4 Exercise. Prove Proposition 17.16.

E17.5 Exercise. The *Cantor set* is the subspace *C* of the real line defined as follows. Take $A_0 = [0, 1]$. The set A_1 is then obtained by removing the open middle third subinterval of A_0 :

$$A_1 = [0, 1] \setminus (\frac{1}{3}, \frac{2}{3}) = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$$

Next, A_2 is obtained from A_2 by removing open middle third subinterval out of each connected component of A_2 . Explicitly:

$$A_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$$

Inductively we construct A_{n+1} from A_n by removing the middle third open subintervals from all connected components of A_n . Then we define $C = \bigcap_{n=0}^{\infty} A_n$.

Show that the Cantor set is homeomorphic to the space $\prod_{n=1}^{\infty} D$ where D is the discrete space with two elements $D = \{0, 1\}$.