
16 | Compact Metric
Spaces

We have seen previously that many questions related to metric spaces (e.g. whether a subset of ametric space is closed or whether a function between metric spaces is continuous) can be resolved bylooking at convergence of sequences. Our main goal in this chapter the proof of Theorem 16.2 whichsays that also compactness of metric spaces can be characterized in terms convergence of sequences.
16.1 Definition. A topological space X is sequentially compact if every sequence {xn} ⊆ X containsa convergent subsequence.
16.2 Theorem. A metric space (X, ρ) is compact if and only if it is sequentially compact.

16.3 Note. The statement of Theorem 16.2 is not true for general topological spaces: there existspaces that are compact but not sequentially compact, and there exist spaces that are sequentiallycompact but not compact.
16.4 Lemma. Let (X, ρ) be a metric space. If a sequence {xn} ⊆ X does not contain any convergent
subsequence then {xn} is a closed set in X .

Proof. Exercise.
16.5 Lemma. Let (X, ρ) be a metric space. If a sequence {xn} ⊆ X does not contain any convergent
subsequence then for each k = 1, 2, . . . there exists εk > 0 such that B(xk , εk ) ∩ {xn} = xk .

Proof. Exercise.
Proof of Theorem 16.2 (⇒). Assume that (X, ρ) is a metric space and that {xn} ⊆ X is a sequencewithout a convergent subsequence. By Lemma 16.4 the set U0 = X r {xn} is open. For k = 1, 2, . . .
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16. Compact Metric Spaces 101

denote Uk := B(xk , εk ) where B(xk , εk ) is the open ball given by Lemma 16.5. The the family of sets
{U0, U1, U2, . . . } is an open cover of X that has no finite subcover. Therefore X is not compact.

xn−1 xn xn+1
X

Un−1 Un Un+1

16.6 Definition. Let (X, ρ) be a metric space, and let U = {Ui}i∈I be an open cover of X . A Lebesgue
number for U is a number λU > 0 such that for every x ∈ X we have B(x, λU) ⊆ Ui for some Ui ∈ U.
16.7 Note. For a general metric space (X, ρ) and an open cover U of X a Lebesgue number for U maynot exist (exercise).
16.8 Lemma. If (X, ρ) is a sequentially compact metric space then for any open cover U of X there
exists a Lebesgue number for U.

Proof. We argue by contradiction. Assume that U is an open cover of X without a Lebesgue number.This implies that for any n ≥ 1 there is xn ∈ X such that B(xn, 1
n ) is not contained in any element of

U. Since X is sequentially compact the sequence {xn} contains a convergent subsequence {xnk}. Let
xnk → x0 and let U0 ∈ U be a set such that x0 ∈ U0. We can find ε > 0 such that B(x0, ε) ⊆ U0 and
k > 0 such that 1

nk <
ε2 and ρ(x0, xnk ) < ε2 . This gives:

B(xnk , 1
nk ) ⊆ B(xnk , ε2 ) ⊆ B(x0, ε) ⊆ U0which is impossible by the choice of xnk .
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16.9 Definition. Let (X, ρ) be a metric space. For ε > 0 an ε-net in X is a set of points {xi}i∈I ⊆ Xsuch that X = ⋃i∈I B(xi, ε).
16.10 Note. A set {xi}i∈I is an ε-net in X if and only if for every x ∈ X there is i ∈ I such that
ρ(x, xi) < ε.
16.11 Lemma. Let (X, ρ) be a sequentially compact metric space. For every ε > 0 there exists a finite
ε-net in X .

Proof. Assume that for some ε > 0 the space X does not have a finite ε-net. Choose any point
x1 ∈ X . We have B(x1, ε) 6= X (since otherwise the set {x1} would be an ε-net in X ), so we can find
x2 ∈ X such that x2 6∈ B(x1, ε). Next, since {x1, x2} is not an ε-net there exists x3 ∈ X such that
x3 6∈ ⋃2

i=1 B(xi, ε). Arguing by induction we get an infinite sequence {xn} ⊆ X such that
xn 6∈

n−1⋃
i=1 B(xi, ε)

for n = 1, 2, . . . This means that for any n 6= m we have ρ(xn, xm) > ε. As a consequence {xn} does notcontain any convergent subsequence (exercise), and so the space X is not sequentially compact.
Proof of Theorem 16.2 (⇐) . Assume that the space (X, ρ) is sequentially compact and let U be anopen cover of X . We need to show that U contains a finite subcover. By Lemma 16.8 there exists aLebesgue number λU for U. Also, by Lemma 16.11, we can find in X a finite λU-net {x1, . . . , xn}. For
i = 1, . . . , n let Ui ∈ U be a set such that B(xi, λU) ⊆ Ui. We have:

X = n⋃
i=1B(xi, λU) ⊆ n⋃

i=1UiTherefore {U1, . . . , Un} is a finite subcover of U.
16.12 Corollary. If (X, ρ) is a compact metric space then for any open cover U of X there exists a
Lebesgue number for U.

Proof. Follows from Theorem 16.2 and Lemma 16.8.

Exercises to Chapter 16

E16.1 Exercise. Prove Lemma 16.4.
E16.2 Exercise. Prove Lemma 16.5.
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E16.3 Exercise. Give an example of an open covering U of the open interval (0, 1) (with the usualmetric) such that there does not exist a Lebesgue number for U.
E16.4 Exercise. The goal of this exercise is to fill one missing detail in the proof of Lemma 16.11.Let (X, ρ) be a metric space and let {xn} be a sequence in X . Assume that for some ε > 0 we have
ρ(xn, xm) > ε for all m 6= n. Show that {xn} does not contain any convergent subsequence.
E16.5 Exercise. Let (X, ρ) be a metric space and let A ⊆ X be a set such that A ∩ K is compact forevery compact set K ⊆ X . Show that A is closed in X .
E16.6 Exercise. Let (X, ρ) be a metric space and A1 ⊆ A2 ⊆ . . . be subsets of X . Assume for each
n = 1, 2, . . . the set An is compact and connected. Show that A = ⋃∞n=1 An is compact and connected.
E16.7 Exercise. Recall that if (X, ρ) is a metric space then a sequence {xn} in X is a Cauchy sequenceif for each ε > 0 there exists N > 0 such that ρ(xn, xm) < ε for all n,m > N . The space (X, ρ) is a
complete metric space if each Cauchy sequence in X is convergent.Let (X, ρ) be a metric space. Show that the following conditions are equivalent.(i) X is compact(ii) The space X is a complete metric space and for any ε > 0 there exists a finite ε-net in X .
E16.8 Exercise. Let (X, ρ) be a metric space. We will say that a function f : X → R is bounded ifthere is K > 0 such that |f (x)| < K for all x ∈ X . Show that the following conditions are equivalent:(i) X is compact(ii) every continuous function f : X → R is bounded.(Hint: Show that if X is non-compact then it contains a sequence {xn} with no convergent subsequenceand such that xn 6= xm for all n 6= m. Let A be the subspace of X consisting of all points of thissequence. Show the function f : A→ R given by f (xn) = n is continuous).
E16.9 Exercise. Theorem 16.2 characterizes compactness in metric spaces. One can ask if everycompact Hausdorff space is metrizable. The goal of this exercise is to show that this is not true ingeneral.a) Recall that a space X is separable if it contains a countable dense subset. Show that any compactmetric space is separable.b) The Alexandroff double circle is a topological space X defined as follows. The points of X are thepoints of two concentric circles: C0 (the inner circle) and C1 (the outer circle). Let p : C0 → C1 denotethe radial projection map. A basis B of the topology on X consists of two types of sets:(i) If y ∈ C1 then {y} ∈ B.(ii) If V ⊆ C0 is an open arch with center at the point x then then V ∪ p(V r {x}) ∈ B.
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Show that X is a compact Hausdorff space, but that it is not separable. By part a) this will imply that
X is not metrizable.
E16.10 Exercise. Let X be the Alexandroff double circle defined in Exercise 16.9. Is X sequentiallycompact? Justify your answer.
E16.11 Exercise. Let (X, ρ) be a compact metric space, Y be a topological space, and let f : X → Y bea continuous function. Show that for family {A1, A2, . . . } of closed sets in X such that A1 ⊆ A2 ⊆ . . .we have

f
( ∞⋂
n=1An

) = ∞⋂
n=1 f (An)

E16.12 Exercise. Let (X, ρ) be a compact metric space and let f : X → X be a continuous functionsuch that ρ(f (x), f (y)) ≥ ρ(x, y) for all x, y ∈ X . Show that f is a homeomorphism.
E16.13 Exercise. Let (X, ρ) be a compact metric space, and let f : X → X be a function such that
ρ(f (x), f (y)) < ρ(x, y) for all x, y ∈ X , x 6= y. By Exercise 14.7 there exists a unique point x0 ∈ Xsuch that f (x0) = x0. Let x be an arbitrary point in X and let {xn} be a sequence defined by x1 = xand xn = f (xn−1) for n > 1. Show that the sequence {xn} converges to the point x0.
E16.14 Exercise. Let (X, ρ), (Y , µ) be metric spaces. We say that a function f : X → Y is uniformly
continuous if for each ε > 0 there exists δ > 0 such that if x1, x2 ∈ X and ρ(x1, x2) < δ then
µ(f (x1), f (x2)) < ε.a) Give an example of a continuous function f : R→ R which is not uniformly continuous. Justify youranswer.b) Show that if f : X → Y is continuous function and X is a compact space then f is uniformlycontinuous.
E16.15 Exercise. Let U ⊆ Rn be an open set and let D ⊆ Rn × Rn be the set consisting of all pairs
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(x, y) ∈ U × U for which the whole line segment joining x and y is contained in U :
D = {(x, y) ∈ U × U | tx + (1− t)y ∈ U for all t ∈ [0, 1]}

Show that D is open in Rn × Rn.
E16.16 Exercise. For A ⊆ Rn and ε > 0 define

Aε := {x ∈ Rn | d(x, y) < ε for some y ∈ A}
ε

A

Aε

Let A ⊆ U ⊆ Rn where A is compact and U is open in Rn. Show that there exists ε > 0 such that
Aε ⊆ U .
E16.17 Exercise. Let (X, ρ) be a metric space, and let a, b ∈ X . For ε > 0 we will say that asequence of points (x1, . . . , xn) is an ε-chain connecting a and b if x1 = a, xn = b, and ρ(xi, xi+1) < εfor i = 1, . . . , n− 1.Let (X, ρ) be a compact metric space. Show that the following conditions are equivalent:1) the space X is connected;2) for any points a, b ∈ X and any ε > 0 there exists ε-chain connecting a and b.


