
12 | Urysohn
Metrization
Theorem

In this chapter we return to the problem of determining which topological spaces are metrizable i.e.can be equipped with a metric which is compatible with their topology. We have seen already thatany metrizable space must be normal, but that not every normal space is metrizable. We will show,however, that if a normal space space satisfies one extra condition then it is metrizable. Recall that aspace X is second countable if it has a countable basis. We have:
12.1 Urysohn Metrization Theorem. Every second countable normal space is metrizable.

The main idea of the proof is to show that any space as in the theorem can be identified with asubspace of some metric space. To make this more precise we need the following:
12.2 Definition. A continuous function i : X → Y is an embedding if its restriction i : X → i(X ) is ahomeomorphism (where i(X ) has the topology of a subspace of Y ).
12.3 Example. The function i : (0, 1)→ R given by i(x) = x is an embedding. The function j : (0, 1)→ Rgiven by j(x) = 2x is another embedding of the interval (0, 1) into R.
12.4 Note. 1) If j : X → Y is an embedding then j must be 1-1.2) Not every continuous 1-1 function is an embedding. For example, take N = {0, 1, 2, . . . } with thediscrete topology, and let f : N→ R be given

f (n) = {0 if n = 01
n if n > 0
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The function f is continuous and it is 1-1, but it is not an embedding since f : N → f (N) is not ahomeomorphism.
12.5 Lemma. If j : X → Y is an embedding and Y is a metrizable space then X is also metrizable.

Proof. Let µ be a metric on Y . Define a metric ρ on X by ρ(x1, x2) = µ(j(x1), j(x2)). It is easy to checkthat the topology on X is induced by the metric ρ (exercise).
Let now X be a space as in Theorem 12.1. In order to show that X is metrizable it will be enough toconstruct an embedding j : X → Y where Y is metrizable. The space Y will be obtained as a productof topological spaces:
12.6 Definition. Let {Xi}i∈I be a family of topological spaces. The product topology on ∏i∈I Xi is thetopology generated by the basis

B = {∏i∈I Ui | Ui is open in Xi and Ui 6= Xi for finitely many indices i only}
12.7 Note. 1) If X1, X2 are topological spaces then the product topology on X1 × X2 is the topologyinduced by the basis B = {U1 × U2 | U1 is open in X1, U2 is open in X2}.

U1 X1

U2
X2

U1 × U2
X1 × X2

2) In general if X1, . . . , Xn are topological spaces then the product topology on X1 × · · · × Xn is thetopology generated by the basis B = {U1 × · · · × Un | Ui is open in Xi}.3) If {Xi}∞i=1 is an infinitely countable family of topological spaces then the basis of the producttopology on ∏∞i=1 Xi consists of all sets of the form
U1 × · · · × Un × Xn+1 × Xn+2 × Xn+3 × . . .where n ≥ 0 and Ui ⊆ Xi is an open set for i = 1, . . . , n.

12.8 Proposition. Let {Xi}i∈I be a family of topological spaces and for j ∈ I let

pj : ∏
i∈I

Xi → Xj

be the projection onto the j-th factor: pj ((xi)i∈I ) = xj . Then:
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1) for any j ∈ I the function pj is continuous.
2) A function f : Y →∏

i∈I Xi is continuous if and only if the composition pj f : Y → Xj is continuous
for all j ∈ I

Proof. Exercise.
12.9 Note. Notice that the basis B given in Definition 12.6 consists of all sets of the form

p−1
i1 (U1) ∩ · · · ∩ p−1

in (Uin)where i1, . . . , in ∈ I and Ui1 ⊆ Xi1 , . . . , Uin ⊆ Xin are open sets.
12.10 Proposition. If X1, . . . , Xn are metrizable spaces then X1 × · · · × Xn is also a metrizable space.

Proof. Let ρi be a metric on Xi. For (x1, . . . , xn), (x ′1, . . . , x ′n) ∈ X1 × · · · × Xn define
ρ((x1, . . . , xn), (x ′1, . . . , x ′n)) = n∑

i=1 ρi(xi, x ′i)One can show that ρ is a metric, and that the topology induced by this metric is the product topologyon X1 × · · · × Xn (exercise).
12.11 Proposition. If {Xi}∞i=1 is an infinite countable family of metrizable spaces then

∏∞
i=1 Xi is also

a metrizable space.

Proof. Let ρi be a metric on Xi. We can assume that for any x, x ′ ∈ Xi we have ρi(x, x ′) ≤ 1. Indeed, if
ρi does not have this property then we can replace it by the metric ρ′i given by:

ρ′i(x, x ′) = {ρi(x, x ′) if ρi(x, x ′) ≤ 11 otherwise
The metrics ρi and ρ′i are equivalent (exercise), and so they define the same topology on the space Xi.Given metrics ρi on Xi satisfying the above condition define a metric ρ∞ on ∏∞i=1 Xi by:

ρ∞((xi), (x ′i)) = ∞∑
i=1

12i ρi(xi, x ′i)
The topology induced by the metric ρ∞ on ∏∞i=1 Xi is the product topology (exercise).
12.12 Example. The Hilbert cube is the topological space [0, 1]ℵ0 obtained as the infinite countableproduct of the closed interval [0, 1] : [0, 1]ℵ0 = ∞∏

i=1 [0, 1]



12. Urysohn Metrization Theorem 79

Elements of [0, 1]ℵ0 are infinite sequences (ti) = (t1, t2, . . . ) where ti ∈ [0, 1] for i = 1, 2, . . . TheHilbert cube is a metric space with a metric ρ given by
ρ((ti), (si)) = ∞∑

i=1
12i |ti − si|

Theorem 12.1 will follow from a result on embeddings of topological spaces:
12.13 Definition. Let X be a topological space and let {fi}i∈I be a family of continuous functions
fi : X → [0, 1]. We say that the family {fi}i∈I separates points from closed sets if for any point x0 ∈ Xand any closed set A ⊆ X such that x0 6∈ A there is a function fj ∈ {fi}i∈I such that fj (x0) > 0 and
fj |A = 0.
12.14 Embedding Lemma. Let X be a T1-space. If {fi : X → [0, 1]}i∈I is a family that separates points
from closed sets then the map

f∞ : X →∏
i∈I

[0, 1]
given by f∞(x) = (fi(x))i∈I is an embedding.

12.15 Note. If the family {fi}i∈I in Lemma 12.14 is infinitely countable then f∞ is an embedding of Xinto the Hilbert cube [0, 1]ℵ0 .
Proof of Lemma 12.14. We need to show that the function f∞ satisfies the following conditions:1) f∞ is continuous;2) f∞ is 1-1;3) f∞ : X → f∞(X ) is a homeomorphism.1) Let pj : ∏i∈I [0, 1]→ [0, 1] be the projection onto the j-th coordinate. Since pj f∞ = fj , thus pj f∞ isa continuous function for all j ∈ I . Therefore by Proposition 12.8 the function f∞ is continuous.2) Let x, y ∈ X , x 6= y. Since X is a T1-space the set {y} is closed in X . Therefore there is a function
fj ∈ {fi}i∈I such that fj (x) > 0 and fj (y) = 0. In particular fj (x) 6= fj (y). Since fj = pj f∞ this gives
pj f∞(x) 6= pj f∞(y). Therefore f∞(x) 6= f∞(y).3) Let U ⊆ X be an open set. We need to prove that the set f∞(U) is open in f (X ). It will suffice toshow that for any x0 ∈ U there is a set V open in f∞(X ) such that f∞(x0) ∈ V and V ⊆ f∞(U).Given x0 ∈ U let fj ∈ {fi}i∈I be a function such that fj (x0) > 0 and fj |XrU = 0. Let pj : ∏i∈I [0, 1]→[0, 1] be the projection onto the j-th coordinate. Define

V := f∞(X ) ∩ p−1
j ( (0, 1] )
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The set V is open in f∞(X ) since p−1
j ( (0, 1] ) is open in ∏i∈I [0, 1] . Notice that

V = {f∞(x) | x ∈ X and pj f∞(x) > 0}= {f∞(x) | x ∈ X and fj (x) > 0}
Since fj (x0) > 0 we have f∞(x0) ∈ V . Finally, since fj (x) = 0 for all x ∈ X r U we get that
V ⊆ f∞(U).
We are now ready to prove the Urysohn Metrization Theorem:
Proof of Theorem 12.1. Let B = {Vi}∞i=1 be a countable basis of X , and let S the set given by

S := {(i, j) ∈ Z+ × Z+ | V i ⊆ Vj}If (i, j) ∈ S then the sets V i and X r Vj are closed and disjoint, so by the Urysohn Lemma 10.1 thereis a continuous function fij : X → [0, 1] such that
fij (x) = {1 if x ∈ Vi0 if x ∈ X r VjWe will show that the family {fij}(i,j)∈S separates points from closed sets. Take x0 ∈ X and let A ⊆ Xbe an closed set such that x0 6∈ A. Since B = {Vi}∞i=1 is a basis of X there is Vj ∈ B such that

x0 ∈ Vj and Vj ⊆ X r A. Using Lemma 10.3 we also obtain that there exists Vi ∈ B such that x0 ∈ Viand V i ⊆ Vj . We have fij (x0) = 1. Also, since A ⊆ X r Vj we have fij |A = 0.By the Embedding Lemma 12.14 the family {fij}(i,j)∈S defines an embedding
f∞ : X → ∏

(i,j)∈S[0, 1]
The set S is countable. If it is infinite then ∏(i,j)∈S [0, 1] ∼= [0, 1]ℵ0 which is a metrizable space byProposition 12.11. If S is finite then ∏(i,j)∈S [0, 1] ∼= [0, 1]N for some N ≥ 0 and [0, 1]N which is againmetrizable by Proposition 12.10.The statement of Theorem 12.1 follows now from Lemma 12.5.
One can show that the following holds:
12.16 Proposition. Every second countable regular space is normal.

Proof. Exercise.
As a consequence Theorem 12.1 can be reformulated as follows:
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12.17 Urysohn Metrization Theorem (v.2). Every second countable regular space is metrizable.

While every metrizable space is normal (and regular) such spaces do not need to be second countable.For example, any discrete space X is metrizable, but if X consists of uncountably many points it doesnot have a countable basis (Exercise 4.10). This means that the converse of the Urysohn MetrizationTheorem does not hold. However, this theorem can be generalized to give conditions that are bothsufficient and necessary for metrizability of a space. We finish this chapter by giving the statement ofsuch result without proof.
12.18 Definition. Let X be a topological space. A collection U = {Ui}i∈I of open sets in X is locally
finite if each point x ∈ X has an open neighborhood Vx such that Vx ∩ Ui 6= ∅ for finitely many i ∈ Ionly.A collection U is countably locally finite if it can be decomposed into a countable union U = ⋃∞n=1 Unwhere each collection Un is locally finite.
12.19 Nagata-Smirnov Metrization Theorem. Let X be a topological space. The following conditions
are equivalent:

1) X is metrizable.
2) X is regular and it has a basis which is countably locally finite.

Exercises to Chapter 12

E12.1 Exercise. Show that the product topology on Rn = R× · · · × R is the same as the topologyinduced by the Euclidean metric.
E12.2 Exercise. Let {Xi}i∈I be a family of topological spaces. The box topology on ∏i∈I Xi is thetopology generated by the basis

B = {∏i∈I Ui | Ui is open in Xi}
Notice that for products of finitely many spaces the box topology is the same as the product topology,but that it differs if we take infinite products.Let X = ∏∞

n=1[0, 1] be the product of countably many copies of the interval [0, 1]. Consider X as atopological space with the box topology. Show that the map f : [0, 1]→ X given by f (t) = (t, t, t, . . . )is not continuous.
E12.3 Exercise. Prove Proposition 12.8
E12.4 Exercise. Let {Xi}i∈I be a family of topological spaces and for i ∈ I let Ai be a closed set in
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Xi. Show that the set ∏i∈I Ai is closed in the product topology on ∏i∈I Xi.
E12.5 Exercise. Let X and Y be non-empty topological spaces. Show that the space X × Y isconnected if and only if X and Y are connected.
E12.6 Exercise. Assume that X, Y are spaces such that R ∼= X × Y . Show that either X or Y isconsists of only one point.
E12.7 Exercise. Let X, Y be topological spaces. For a (not necessarily continuous) function f : X → Ythe graph of f is the subspace Γ(f ) of X × Y given byΓ(f ) = {(x, f (x)) ∈ X × Y | x ∈ X}Show that if Y is a Hausdorff space and f : X → Y is a continuous function then Γ(f ) is closed in
X × Y .
E12.8 Exercise. Let X1, X2 be topological spaces, and for i = 1, 2 let pi : X1 × X2 → Xi be theprojection map.a) Show that if a set U ⊆ X1 × X2 is open in X1 × X2 then pi(U) is open in Xi.b) Is it true that if A ⊆ X1 × X2 is a closed set then pi(A) must be closed is Xi ? Justify your answer.
E12.9 Exercise. The goal of this exercise is to complete the proof of Proposition 12.10. For i = 1, 2, . . . nlet (Xi, ρi) be a metric space. Let ρ be a metric the Cartesian product X1 × · · · × Xn given by

ρ((x1, . . . , xn), (x ′1, . . . , x ′n)) = n∑
i=1 ρi(xi, x ′i)Show that the topology defined by ρ is the same as the product topology.

E12.10 Exercise. The goal of this exercise is to complete the proof of Proposition 12.11. For i = 1, 2, . . .let (Xi, ρi) be a metric space such that ρi(x, x ′) ≤ 1 for all x, x ′ ∈ Xi. Let ρ∞ be a metric the Cartesianproduct ∏∞i=1 Xi given by
ρ∞((xi), (x ′i)) = ∞∑

i=1
12i ρi(xi, x ′i)Show that the topology defined by ρ∞ is the same as the product topology.

E12.11 Exercise. The goal of this exercise is to give a proof of Proposition 12.16. Let X be a secondcountable regular space and let A,B ⊆ X be closed sets such that A ∩ B = ∅.a) Show that there exist countable families of open sets {U1, U2, . . . } and {V1, V2, . . . } such that(i) A ⊆ ⋃∞i=1 Ui and B ⊆ ⋃∞i=1 Vi(ii) for all i ≥ 1 we have U i ∩ B = ∅ and V i ∩ A = ∅b) For n ≥ 1 define
U ′n := Un r

n⋃
i=1Vi and V ′n := Vn r

n⋃
i=1U i
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Let U ′ = ⋃∞n=1 U ′n and V ′ = ⋃∞n=1 V ′n. Show that U ′ and V ′ are open sets, that A ⊆ U ′ and B ⊆ V ′,and that U ′ ∩ V ′ = ∅.
E12.12 Exercise. Let Rdisc denote the real line with the discrete topology and let X =∏∞n=1 Rdisc .a) Show that X is not second countable.b) By Proposition 12.11 we know that X is a metrizable space. Verify this fact without using Proposition12.11, but using instead only topological properties of X and the Nagata-Smirnov Metrization Theorem12.19.


